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Immunotherapy has emerged as a promising anti-cancer treatment, however, little is known

about the genetic characteristics that dictate response to immunotherapy. We develop a

transcriptional predictor of immunotherapy response and assess its prediction in genomic

data from ~10,000 human tissues across 30 different cancer types to estimate the potential

response to immunotherapy. The integrative analysis reveals two distinct tumor types: the

mutator type is positively associated with potential response to immunotherapy, whereas the

chromosome-instable type is negatively associated with it. We identify somatic mutations

and copy number alterations significantly associated with potential response to immu-

notherapy, in particular treatment with anti-CTLA-4 antibody. Our findings suggest that

tumors may evolve through two different paths that would lead to marked differences in

immunotherapy response as well as different strategies for evading immune surveillance. Our

analysis provides resources to facilitate the discovery of predictive biomarkers for immu-

notherapy that could be tested in clinical trials.
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Understanding the interaction between cancer cells and the
immune system has led to novel strategies for treating
cancer1–3. The administration of tumor-infiltrating lym-

phocytes (TILs), interleukin-2, and vaccinations targeting tumor-
specific antigens has prompted the treatment of cancer via host
immune modulation4, 5. A recent strategy targeting immune
checkpoints such as CTLA-4 and PD-1/PD-L1 has showed
striking clinical benefit6–8. However, the overall response rates of
advanced solid cancers to checkpoint inhibitors have been only
modest (18–38%)7, 8 with prolonged responses being even less
common. Furthermore, marked response to immune checkpoint
therapies have been limited to a subset of tumor lineages9–11,
suggesting that differences in organ physiology and molecular
characteristics of various cancers may play a role in the efficacy of
treatment response.

As seen in earlier studies demonstrating that therapeutic tar-
gets were reliable predictive biomarkers12, 13, recent studies
reported that tumor PD-L1 expression or its amplification was
significantly associated with better response in patients under-
going anti-PD-1/PD-L1 therapies11, 14, 15, although not all
responders had high PD-L1 expression. Recent studies have
shown that interferon-gamma target genes such as CXCL9,
CXCL10, IDO1, IFNG, HLA-DRA, and STAT1 are indicative of
response to immunotherapy in many cancers16–19. Moreover,
TILs as well as PD-1 expression in TILs were also correlated with
clinical outcomes14, indicating that a better understanding of the
immunologic landscape could lead to the identification of useful
biomarkers for immunotherapy increasing the spectrum of
patients able to benefit20, 21. Interestingly, recent small-scale
genomic studies demonstrated significant correlation of muta-
tional burden with response to immunotherapy22, 23, suggesting
that genomic alterations may dictate clinical outcomes of
immunotherapies, as they do in targeted therapies. However, this
contention has not been thoroughly tested in large cohorts of
cancer patients across multiple cancer lineages.

In the current study, we aim to assess the potential benefit of
immunotherapy across different cancer lineages and identify
potential genetic markers associated with benefit of
immunotherapy by developing a transcriptional profile from
interventional studies integrated with unbiased systematic
analysis of genomic data from The Cancer Genome Atlas
(TCGA) project.

Results
Immune signature predicting response to immunotherapy.
Gene expression data from a randomized phase II trial of
immunotherapy with MAGE-A3 antigen in malignant melanoma
without prior treatment for metastases other than isolated limb
perfusion were used for analysis24, 25. The tumor samples were
obtained before the immunotherapy and clinical responders were
defined by objective responders (complete and partial) according
to RECIST 1.026 and patients showing stable disease (>4 months)
or mixed response with unequivocal tumor shrinkage. In the
current analysis, we identified 105 genes significantly associated
with response to immunotherapy (P< 0.005 and 1.5-fold differ-
ence, Fig. 1a and Supplementary Data 1) and constructed a
prediction model based on the Bayesian compound covariate
predictor algorithm27. When patients were stratified according to
Bayesian probability (cutoff= 0.5), responders were well sepa-
rated from non-responders (AUC= 0.83, CI; 0.72–0.93,
P< 0.001, Fig. 1d). We next sought to determine whether the
predictor could also identify potential responders to different
immunotherapy like anti-CTLA-4 antibodies. When applied to
data from a mouse mesothelioma model treated with anti-CTLA-
4 antibodies28, our model reliably separated responders from

non-responders (AUC: 0.99, P< 0.001, 90% sensitivity, 90%
specificity) (Fig. 1b, e). We next sought to determine if predictor
can identify responders in clinical setting when applied to gene
expression data from melanoma tissues of patients treated with
ipilimumab29. Consistent with results from mouse model, our
model reliably separated responders from non-responders (AUC:
0.7, P= 0.02) (Fig. 1c, f). Furthermore, patients classified as
responders by predictor showed significantly favorable clinical
outcome in both overall survival and progression-free survival
(P= 0.009 and P= 0.03, respectively, Fig. 1g, h). Taken together,
our data strongly suggest that the Bayesian probability of the
immune signature (IS), hereafter referred to as the IS score, is
associated with response to different immunotherapy approaches
including MAGE-A3 antigen-based immunotherapy and anti-
CTLA-4 immune checkpoint inhibitors. The prediction of
responder by IS score has a good performance compared with
other candidates of immune biomarker such as interferon-gamma
signature16, 17 or cytolytic activity30 (Supplementary Figs. 1−3). IS
score was not well associated with response to treatment with
anti-PD-1 antibody in melanoma (N= 27) and renal cell carci-
noma (N= 10), suggesting potential limitation of IS score pre-
dicting response to different immunotherapies (Supplementary
Figs. 4, 5). However, it is worthwhile to point out that all other
immune biomarkers failed to identify responders in these cohorts,
indicating that lack of association might be due to small sample
size. Pathway enrichment analysis of 105 genes showed activation
of immune signaling pathways (Supplementary Fig. 6). In good
agreement with predicted outcomes of anti-CTLA-4 antibody
treatment, the CTLA-4 pathway was significantly activated,
strongly supporting the notion that IS scores are associated
with immunotherapy response at the biological and molecular
levels. Consistent with pathway enrichment analysis, gene net-
work analysis identified many pro-inflammatory cytokines and
related transcription factors as potential upstream regulators
activated in responder patients (Supplementary Data 2). On the
contrary, anti-inflammatory cytokine IL10 and negative reg-
ulators of cytokine signaling such as SOCS1 and SOCS3 were
activated in non-responder patients31, 32 (Supplementary
Fig. 7A). Interesting, same analysis revealed thatMYC is activated
in non-responders (Supplementary Fig. 7B). This is in good
agreement with previous study demonstrating that MYC is
negative regulator of immune response33.

Distribution of IS score in TCGA pan-cancer cohort. Having
found that the IS score reflected response to anti-CTLA-4
immunotherapies, we applied the IS to gene expression data from
TCGA pan-cancer data including samples of 30 tumor types
(N= 9081, Supplementary Data 3) to estimate the potential
response rate of each cancer lineages to immunotherapy (Sup-
plementary Fig. 8). As expected, cancers arising from lympho-
proliferative tissues, such as diffuse large B-cell lymphoma,
thymoma, and acute myeloid leukemia, had the highest IS scores,
further supporting the notion that the signature reliably reflects
immune activity in cancer tissues. When stratified into two
subcategories (potential responder: >0.5 and non-responder:
<0.5), kidney clear cell carcinoma (KIRC), lung adenocarcinoma
(LUAD), and cervical and endocervical cancer (CESC) had the
highest median IS scores indicative of large proportion of
potential responders (Fig. 2a, b). The proportion of potential
responders to immunotherapy highly varied within each type of
solid cancer ranging from 0.5 to 65.9%. Interestingly, among the
solid cancers, skin cutaneous melanoma (SKCM) had a relatively
high proportion of predicted responders (33.7%) even though the
median IS score was not top-ranked, because IS scores in SKCM
were skewed to a high level.
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Fig. 1 Immune signature reflecting response to immunotherapy from human and mouse cancer tissues. a Expression patterns of genes significantly
associated with response to immunotherapy in training cohort. Pretreatment biopsies from patients with metastatic melanoma were used to generate gene
expression data. Genes whose expression is significantly different between responders and non-responders were selected (105 genes, P< 0.005 and
1.5-fold difference). The data are presented in matrix format, with rows representing the individual gene and columns representing each tissue. Each cell in
the matrix represents the expression level of a gene feature in an individual tissue. Red and green reflect high-expression and low-expression levels,
respectively, as indicated in the scale bar (log 2 transformed scale). Immune signature (IS) scores are presented as color index in blue (0−1 scale).
b Expression patterns of immune signature genes and IS scores from mouse mesothelioma model treated with anti-CTLA-4 antibodies. c Expression
patterns of immune signature genes and IS scores from human melanoma tissues treated with ipilimumab. d–f Receiver operating characteristics (ROC)
analysis of IS scores from each prediction. Robustness of IS scores identifying responders to immunotherapy was estimated by area under curve (AUC)
from ROC analysis. d Human melanoma treated with MAGE-A3 antigen, e mouse mesothelioma model treated with anti-CTLA-4 antibodies, f human
melanoma treated with ipilimumab. (CI: 95% confident internal of AUC). g, h Kaplan−Meier plots of overall survival (OS) and progression-free survival
(PFS) of advanced melanoma patients treated with ipilimumab. Patients were stratified according to IS scores (high >0.5). See also Supplementary Figs. 1
−7 and Supplementary Data 1, 2
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IS score was significantly correlated with progression-free
survival of 78 SKCM patients who were received immunotherapy
in TCGA (P= 0.024, Fig. 2c and Supplementary Data 4).
Moreover, IS score was significantly correlated with interferon-
gamma score (R2 = 0.607, P< 0.001), which can predict the
responders of anti-PD-1 antibody in the previous studies16, 17.
PD-L1 mRNA expression and PD-1 mRNA expression, which
were also proposed to be related with the responder of anti-PD-1/
PD-L1 inhibition11, 14, 21, were significantly correlated with IS
scores (Supplementary Fig. 9) even though these are not
components of the IS score, further supporting the notion that
IS scores reflect underlying biology that determines the outcomes
of immunotherapy.

Consistent with previous indications that patients with
immunogenic tumors had a favorable survival outcome34,
patients with high IS scores (>0.5) showed significantly favorable
overall survival in bladder cancer (BLCA) although they were not
treated for immunotherapy (Supplementary Fig. 10).

For estimation of relative fractions of immune cells in each
tumor, we used CIBERSORT to infer relative RNA fractions of 22
different immune cells35. Not surprisingly, fraction of CD8+

T cells and M1 macrophages were most significantly associated
with IS scores (Supplementary Fig. 11), further supporting that IS
scores well reflect infiltrated active immune cells in tumor mass.

Association of IS scores with molecular subtypes of cancers.
We next assessed the association of IS scores with molecular
subtypes defined by TCGA studies36–43. In SKCM36, although IS
scores were only modestly associated with four mutation subtypes,
they were significantly associated with platform subtypes
(Supplementary Fig. 12). IS scores were significantly higher in the
immune-high mRNA subtype and normal-like methylation sub-
type. When tumors in the immune-high mRNA subtype were
further stratified by methylation subtype, IS scores were sig-
nificantly higher in the normal-like subtype than in other subtypes
(P= 4.1 × 10−8, Fig. 3a). Interestingly, IS scores were lower in the
RAS subtype than in other subtype (Supplementary Fig. 12).

A TCGA study classified thyroid cancer (THCA) into BRAF-
like and RAS-like subtypes37. Consistent with observations in
SKCM, IS scores were significantly lower in the RAS-like subtype
than in the BRAF-like subtype (Supplementary Fig. 13, P= 3.5 ×
10−19). Among platform subtypes in THCA, the C1 methylation
subtype was most significantly associated with IS scores, whereas
the distribution of IS scores was skewed toward high in the
follicular methylation subtype (Supplementary Fig. 13). When
BRAF-like subtypes were further stratified according to methyla-
tion subtype, C1 and follicular subtypes were more significantly
associated with higher IS scores than other methylation subtypes
(P= 1.2 × 10−30, Fig. 3b). In head and neck squamous cell
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Fig. 2 Immune signature scores and potential responders to immunotherapy across major cancer types. a Immune signature (IS) score calculated by
Bayesian probability of immune signature is plotted according to cancer types. Each black dot represents IS score, and red lines in the box represent upper
75%, median, and lower 25% values of each cancer type. Blue line represents IS score of 0.5. b Proportion of potential responders to immunotherapy
(IS score> 0.5) is shown according to cancer types. c Kaplan−Meier plots of progression-free survival (PFS) of advanced melanoma patients in TCGA
treated with immunotherapy. Of 472 patients with melanoma, only 78 patients treated with immunotherapy were included in analysis. Patients were
stratified according to IS scores (high > 0.5). d Association between IS score and interferon-gamma signature score. Scatter plot and fitted dash line
showed the significant association between IS score and interferon-gamma signature score. Abbreviation of cancer type was referred from The Cancer
Genome Atlas tag. See also Supplementary Figs. 8−11 and Supplementary Data 3, 4.
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carcinoma (HNSC), most of the molecular subtypes were
significantly associated with IS scores (Supplementary Fig. 14).
IS scores were significantly higher in the C3 copy number

alteration (CNA) subtype, hypermethylation subtype, mesench-
ymal mRNA subtype, and C3 miRNA subtype than in all the
other subtypes. This association was independent of human
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papillomavirus (HPV) status because IS scores remained high in
these subtypes when HPV-negative tumors only were analyzed
(Supplementary Fig. 15). IS scores in each sensitivity subtype
remained high when HPV-negative tumors were subsequently
stratified into different subtypes (Fig. 3c), suggesting that
molecular mechanisms driving sensitivity to immunotherapy
might be different in each sensitive subtype.

A TCGA study revealed a similarity between lung squamous
cell carcinoma (LUSC) and HNSC38, 39. In good agreement with
this, IS scores were significantly higher in secretory mRNA
subtypes of LUSC that is highly related to mesenchymal mRNA
subtypes in HNSC (Supplementary Fig. 16, top). In LUAD40, IS
scores were significantly higher in the proximal inflammation
mRNA subtype and CIMP-intermediate methylation subtype
than in other subtypes (Supplementary Fig. 16, bottom). In
BLCA41, IS scores were highest in the infiltrated/mesenchymal
mRNA subtype (Supplementary Fig. 17), suggesting potential role
of signaling events governing epithelial to mesenchymal transi-
tion in cancer immunity. In BRCA42, IS scores were significantly
higher in estrogen receptor (ER)-negative tumors (Supplementary
Fig. 18). When the BRCA subtype was further stratified, HER2
mRNA subtype had the lowest IS scores among ER-negative
tumors, whereas the C1 methylation subtype and normal-like
mRNA subtype had higher IS scores than other ER-positive
tumors (Fig. 3d). The majority of the ER-positive showed much
lower IS scores, indicating that in addition to genomic and
epigenetic alterations, ER is a major determinant of cancer
immunity in BRCA. In stomach adenocarcinoma (STAD)43, the
Epstein-Barr virus (EBV) subtype had the highest IS scores
among four molecular subtypes (Supplementary Fig. 19). In the
microsatellite instability (MSI) subtype, a substantial number of
tumors were the C2 mRNA subtype and C2 subtype had
significantly higher IS scores than others (Fig. 3e). Most
interestingly, subtypes with higher IS scores in different cancers
were associated with low genomic CNAs (i.e., the C6 iCluster
subtype of LUAD, C3 CNA subtype of HNSC, C1 CNA subtype
of BRCA, and low CNA subtype of STAD), indicating a potential
connection of genomic instability to tumor immunogenicity that
may govern clinical outcomes of immunotherapies.

Association of IS scores with genomic characteristics of cancer.
Since previous small-scale clinical studies indicated a
potential association of mutation burdens with immunotherapy
response22, 23, we tested the association of IS scores with mutations
rates in TCGA data set (N= 6162) (Supplementary Fig. 20, top).
The number of predicted neoantigens30 was significantly associated
with the mutation rates regardless of mutation types
(Supplementary Fig. 20, bottom). Interestingly, a global analysis of
all tumors showed a significant positive correlation between the
non-synonymous mutation rate and the IS score (R2= 0.017,
P< 0.001, Supplementary Fig. 21, top). In particular, this associa-
tion was more significant in colorectal adenocarcinoma (COAD),
STAD, and BRCA (Fig. 4a and Supplementary Fig. 22, top).

Because our analysis indicated a potential association of
chromosomal instability (CIN) with IS scores, we assessed the
global association of CIN with IS scores (N= 8637) by generating
a “CIN score”44. As expected, CIN scores accurately reflected the
overall CIN of tumors (Supplementary Fig. 23). Most interest-
ingly, CIN scores had a significant negative correlation with IS
scores (R2= 0.095, P< 0.001, Supplementary Fig. 21, bottom) to a
greater degree than mutation rates. Furthermore, the trends of
negative correlation were observed in most cancers (Fig. 4b and
Supplementary Fig. 22, bottom), strongly suggesting that CIN
might be a more important predictor of clinical outcomes of
immunotherapy than mutation rates.

Since our results revealed a correlation of two genomic
alterations types with IS scores, we next integrated non-
synonymous mutation rates with CIN scores (N= 5989) to assess
the interplay of two genomic alterations in cancer immunity.
When two data sets were integrated, tumors were clearly
separated into three major groups: tumors with high mutational
burden and low CIN (mutator or M type), those with low
mutational burden but high CIN (chromosome-instable or C
type), and those not otherwise specified (NOS) (Fig. 4c).
Consistent with previous observation, M-type tumors had high
IS scores, whereas C-type tumors had low IS scores. IS scores
were significantly higher in MSI-high tumors than in MSI-low or
microsatellite-stable tumors (Supplementary Fig. 24, top), con-
sistent with MSI tumors having high mutation rates and relatively
low CNAs (Supplementary Fig. 24, bottom) as well as markedly
increased responses to anti-PD-1 immunotherapy23. Further-
more, the proportion of M type was well correlated with IS score
in each cancer type with the exception of KIRC (Fig. 5). Although
MSI-H tumors have highest average IS scores among MSI
subtypes, some of them have much higher IS scores, suggesting
additional layer of regulatory mechanisms. Further analysis of
gene expression data from MSI-H subtypes indicate that several
interleukins (IL4, IL15, and IL21) are more active in tumors with
high IS scores (Supplementary Fig. 25).

Because CNA can be influenced by tumor purity in tumor
tissues45, we estimated the potential impact of tumor purity in
our analysis by examining the correlation of CIN scores with
histologically assessed tumor purity. The correlation between CIN
scores and tumor purity was only modest (Supplementary Fig. 26,
top). Interestingly, non-synonymous mutation rates were also
modestly correlated with tumor purity, suggesting that the
correlation was not specific to CIN scores. Furthermore, the
significance is not markedly altered by reanalysis of integrated
data with adjusted CIN scores (Supplementary Fig. 26, bottom),
strongly indicating a minimum impact of tumor purity in our
analysis. To further validate insignificant contribution of tumor
purity to CIN and IS scores, we adopted previously established
genomic approach, consensus measurement of purity estimations
(CPE)46, for estimation of tumor purity that use gene expression,
copy number alterations, and methylation data. As seen with IHC
data, the correlation between CIN scores and tumor purity was
modest (Supplementary Fig. 27, top) and the significance is not
markedly altered by reanalysis of integrated data with adjusted
CIN scores (Supplementary Fig. 27, bottom). Not surprisingly, IS
scores are positively correlated with high stromal fraction in
tumor mass (Supplementary Fig. 28), probably reflecting higher
infiltration of immune cells.

Somatic mutations positively associated with IS scores. We next
examined the association of IS scores with somatic mutations in
373 genes that have been designated drivers in previous studies47

(Fig. 6a and Supplementary Data 5, 6). Strikingly, the majority of
the significantly mutated genes were positively correlated with IS
scores, suggesting that some of them might contribute host
immunity. Interestingly, three of the significant genes were
MUC4, MUC17, and MUC7, members of the mucin family that
were previously identified as tumor antigens48–50, and this find-
ing supports our hypothesis. In contrast to tumor antigens, some
of the positively correlated mutations might be selected under
host immunogenic pressure as part of cancer cells’mechanisms to
evade immune surveillance. Mutations in HLA-A, -B, and -C,
B2M, and CASP8 might fall into this category since CASP8 is an
executor of ligand-mediated apoptosis51 and HLA-A, -B, and -C
and B2M encode major antigen presenting machinery to immune
cells52. Any loss-of-function mutations would give a significant

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01018-0

6 NATURE COMMUNICATIONS | 8:  1050 |DOI: 10.1038/s41467-017-01018-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


KIRC
P = 0.316

COAD
P < 0.001

STAD
P = 0.001

LUAD
P = 0.957

SKCM
P = 0.755

BRCA
P < 0.001

GBM
P = 0.242

CESC
P = 0.09

Pan−cancer
P < 1 × 10

–15

0.00

0.25

0.50

0.75

1.00

0 4 8 12
Number of non-synonymous mutation (Log2)

Im
m

un
e 

si
gn

at
ur

e 
sc

or
e

SKCM
P < 1 × 10

–15

COAD
P < 1 × 10

–15

GBM
P = 0.002

Pan−cancer
P < 1 × 10

–15

BRCA
P < 1 × 10

–15

STAD
P < 1 × 10

–15
LUAD

P < 1 × 10
–15

CESC
P < 1 × 10

–5

KIRC
P < 1 × 10

–15

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 > 10,000

Chromosomal instability score

Im
m

un
e 

si
gn

at
ur

e 
sc

or
e

C type

M type

0

200

500

1000

1500

c

a b

> 2000

0 5000 10,000 15,000 20,000 25,000 > 30,000

Chromosomal instability score

N
um

be
r 

of
 n

on
-s

yn
on

ym
ou

s 
m

ut
at

io
n

0.25

0.50

0.75P < 0.001 P < 0.001

P < 0.001

0.00

0.25

0.50

0.75

1.00

M type NOS C type

Im
m

un
e 

si
gn

at
ur

e 
sc

or
e

Fig. 4 Two types of tumors distinct in genomic alterations and response to immunotherapy. a Scatter plots between mutation rates and IS scores. Dotted
line represents global regression curve between mutation rates and IS scores in all cancers. Solid lines represent local regression curves between mutation
rates and IS scores in each cancer as indicated. b Scatter plots between chromosome instability (CIN) scores and IS scores. Dotted line represents global
regression curve between two scores in all cancers. Solid lines represent local regression curves between two scores in each cancer as indicated. CIN
scores were defined by sum of square of gene-level gistic 2 value. c Scatter plots between mutation rates and CIN scores. Size and colors of dots
represents IS scores as indicated in reference index. The tumor with high mutational burden (M type) is defined by number of non-synonymous mutation
more than 200 as described in previous study, whereas the tumor with high chromosomal instability (C-type) is defined by CIN score more than 5000.
Otherwise, tumors are classified as not otherwise specified (NOS). IS score according to M type or C type is summarized inside the graph. Blue lines in the
box represent upper 75%, median, and lower 25% values of subtype. See also Supplementary Figs. 20−28

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01018-0 ARTICLE

NATURE COMMUNICATIONS |8:  1050 |DOI: 10.1038/s41467-017-01018-0 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


advantage to cancer cells to evade immune surveillance. In good
agreement, tumors with mutations in these genes represent
typical M type characteristics (Fig. 6b–d).

Copy number alteration negatively associated with IS scores.
We next examined the association of IS scores with previously
identified copy number-dependent drivers (87 amplification and
123 deletion)47, 53 (Supplementary Fig. 29, Supplementary Data 5,
7, 8). In contrast to mutations, the majority of the significantly
amplified genes were negatively correlated with IS scores (Fig. 7a).
Likewise, the majority of the deleted genes also had a significant
negative association with IS scores (Fig. 7b), suggesting that this
type of genetic event is not prone to stimulate host immunity and
that activated or suppressed genes may play a role in the sup-
pression of host immunity. Consistent with our observations in
BRCA (Fig. 3d), the amplification of ERBB2 (HER2) was
significantly associated with low IS scores. Amplified genes
negatively associated IS scores include well-known driver onco-
genes such as MYC and E2F3 while deleted genes with negative
association include well-known tumor suppressor genes such as
RB1, TP53, and PTEN. Importantly, recent study demonstrated
that loss of PTEN is indeed significantly associated with resistant
to immunotherapy with anti-PD-1 antibodies in melanoma54,
strongly suggesting that many of identified candidates might play
key roles in host immunity to cancer cells. Interestingly, expres-
sion of HLA-A, HLA-B, and HLA-C had a significant negative
correlation with CIN scores in tumors with amplified genes or
deleted genes (Fig. 7c), suggesting that some of the copy number-
altered genes might be involved in the suppression of antigen
presentation in cancer cells either alone or in combination with

other genes. Further supporting this notion, the expression of
HLA genes was further reduced in tumors with co-amplified
MYC and FGFR1 (Fig. 7c).

Association of IS scores with viral presence. Not surprisingly,
EBV-positive STAD and HPV-positive HNSC tumors were sig-
nificantly associated with higher IS scores (P< 0.001,
Supplementary Fig. 30). However, hepatitis B virus positivity was
not associated with IS scores in liver hepatocellular carcinoma
(LIHC), or other cancers (Supplementary Fig. 30, bottom right).

Discussion
In the current study, we generated IS scores based on response to
different immunotherapy approaches in patients and in a model
system and applied them to major cancer types. The analysis
revealed two distinct types of tumors (M type and C type) that
differ in their potential response to immunotherapy. Our analysis
suggested that tumors evolve through two major paths that have
different mechanisms for activating driver genes and may account
for difference in immunotherapy response as well as strategies for
evading immune surveillance.

While initially uncovered by analyzing the data from a vaccine
immunotherapy approach, several lines of evidences strongly
support that IS and IS scores are applicable to other types of
immunotherapy. First, IS scores reliably identified responders to
immunotherapy in a mouse model treated with anti-CTLA-4
antibodies. Second, pathway enrichment analysis identified the
CTLA-4 pathway as one of the key pathways activated in the
signature. Further supporting this finding, the iCOS-iCOSL
pathway that is activated in the signature was recently
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identified as a pharmacodynamic marker for anti-CTLA-4 ther-
apy55. Third, most importantly, IS scores can identify responder
patients with melanoma after treatment with ipilimumab29.
Forth, IS scores is significantly correlated with interferon-gamma
score that is predictive markers for anti-PD-1 therapy in gastric

and head and neck cancer. Furthermore, IS scores were sig-
nificantly associated with expression of PD-1 and PD-L1 in
TCGA data. Fifth, gene network analysis identified many pro-
inflammatory cytokines as activated upstream regulators in
responder patients while it identified anti-inflammatory cytokines
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and negative regulators of cytokine signaling as activated reg-
ulators in non-responder patients. Moreover, it also identified
MYC as negative regulator of immune activity. Indeed, recent

study demonstrated that MYC is negative regulator of immune33.
Finally, IS scores predicted that MSI tumors would have strong
responses to immunotherapy which is supported by clinical trial
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data23. Taken together, these observations strongly suggest that IS
scores well reflect underlying biology that may play key roles in
clinical outcomes.

Although immunotherapy has led to great enthusiasm for
treatment of a subset of cancer types, including melanoma, non-
small cell lung cancer, and kidney cancer56, its clinical effects have
been disappointing in other tumor lineages. While recent studies
using genomic approaches have begun to shed light on genomic
alterations associated with the benefits of immunotherapy21, 22, 57,
the underlying biology of predicting benefit of immunotherapy is
poorly understood. Systematic integration of somatic mutations and
CNAs in connection with our IS predictor of response to immu-
notherapy revealed two distinct types of tumors (Supplementary
Fig. 31). M-type tumors are rich in somatic mutations, low in
CNAs, and likely to be sensitive to immunotherapy. Some of
mutated gene products such as mucins may provide highly
immunogenic antigens and may be accountable for high IS scores.
In contrast to M-type tumors, C-type tumors are high in CNAs, low
in mutations, and likely to be resistant to immunotherapy. This
finding is in good agreement with recent study showing that high
copy number alteration is potential predictive marker for immu-
notherapy58. In another study analyzing of samples from clinical
trials with CTLA-4 and PD-1 blockade treatments, copy number
loss is associated with resistance to immunotherapy59. Molecular
mechanisms of resistance to immunotherapy is currently unknown.
A lack of neoantigen production due to low mutation rates may
account for the insensitivity of C-type tumors to immunotherapy,
however loss of key immune mediators is also likely to contribute.

Evasion of immune surveillance is necessary for cancer cells to
survive and grow60. Two tumor types may adopt different stra-
tegies to evade immune surveillance. M-type tumors have fre-
quent mutations in genes involved in antigen presentation.
Mutations in HLA-A, -B, and -C and B2M might arise under
selective pressure to evade host immunity. Likewise, mutations in
CASP8, which is a key mediator of apoptosis51, give an advantage
to cancer cells to become insensitive to T-cell-mediated cell death.
Similar findings were also observed in previous study using
immune cytolytic score as immune activity in tumor mass30.
While interesting, these associations should be interpreted with
caution and need to be validated in prospective studies.

Amplified and deleted genes in C-type tumors are significantly
associated with lower expression of HLA-A, HLA-B, and HLA-C
genes, suggesting that they may suppress the expression of these
antigen-resenting genes to evade immune surveillance and may
account for low IS scores in C-type tumors. In good agreement with
our analysis that identified PTEN as a key modulator of tumor
immunity, recent study showed that PTEN play roles in T-cell
activation and loss of PTEN is significantly associated with resistance
of melanoma to immunotherapy54. Likewise, MYC was predicted to
be negative regulator of tumor immunity. Recent study also
demonstrated that MYC inhibits T-cell activation by upregulating
CD47 and PD-L161, further supporting validity of our approaches.
Therefore, it is important to determine in future experiments whe-
ther other amplified or deleted genes are secondary therapeutic
targets that can improve the efficacy of immunotherapy. The pro-
portions of M-type tumors were generally well correlated with IS
score in many cancer types. However, KIRC tumors had very high IS
scores and proportion of M-type tumors was low (Fig. 5), suggesting
that a high mutation rate does not fully account for IS scores.

IS scores are clearly associated with clinical subtypes of cancers. As
expected, tumors with viral infection had high likelihood of response
to immunotherapy. Our analysis also showed that the benefits of
immunotherapy may not be limited to viral infected tumors. In
HNSC, IS scores in the C3 CNA and mesenchymal mRNA subtypes
were higher than or almost equal to IS scores in HPV-positive
tumors. In STAD, the C2 mRNA subtype had equally high IS scores

with EBV-positive tumors. Furthermore, a subset analysis of SKCM,
THCA, and BRCA tumors showed a significant difference in IS
scores among clinical subtypes. In good agreement with a previous
study showing a high response rate of basal type breast cancer (24%)
to anti-PD-L1 antibody62, the basal subtype had high IS scores in our
analysis. These results indicate that subtype-specific biomarkers
would improve the efficacy of immunotherapy in future trials.

The results of our study should be further validated in a
prospective cohort of patients receiving immunotherapy.
Although IS scores were validated in melanoma patients treated
with anti-CTLA-4 antibodies, we cannot rule out the possibility
that IS scores are more specific to tumor vaccines and probably to
melanoma. Moreover, our result should be interpreted carefully
when it applied to other cancer types as IS score is mostly vali-
dated in melanoma. Differences in genetic makeup of cancer cells
and tumor microenvironment might have substantial influence
on IS score in other cancer types. This should be further tested
and validated in future studies with data from prospectively
collected samples. As not all patients with high IS scores have
greater benefit of immunotherapy, more clinical factors should be
incorporated to prediction models for improvement of accuracy.
As tumor tissues in TCGA are relatively in the early stages, our
results should be interpreted with caution since later stages of
tumors may have different composition of immune cells.

In the current study, we showed that the potential benefit of
immunotherapy highly varies across cancer lineages and revealed
global subtypes of tumors and genomic alterations significantly
associated with the potential benefit of immunotherapy. Our
findings could lead to opportunities to discover new biomarkers
for immunotherapy that can identify subsets of patients who
could derive greater benefit from immunotherapy.

Methods
Genomic and clinical data sets. We used publicly available data in the current
study. Gene expression data used for identification of IS and generation of IS score
(accession number GSE3564024), and validation of IS scores in mouse model
treated with anti-CTLA-4 antibody (accession number GSE6355728), in human
melanoma patients treated with anti-PD-1 antibody (accession number
GSE7822063), human renal cell carcinoma patients treated with anti-PD-1 antibody
(accession number: GSE6750164) were obtained from Gene Expression Omnibus
database (http://www.ncbi.nlm.nih.gov/geo). Another data set of RNA expressions
regarding the validation of IS scores in human melanoma treated with anti-CTLA-
4 antibody29 was generously given by the authors (Van Allen EM and Garraway
LA). All other data from TCGA project were obtained from TCGA data portal
(https://tcga-data.nci.nih.gov) and cancer browser (https://genome-cancer.ucsc.
edu). Gene-level gene expression data from RNA-seq experiments (N= 9081), copy
number variation data (N = 8785), tumor purity data (N= 8149), somatic mutation
data (N= 6162), clinical information data (overall survival, N= 8522), and
microsatellite status of tumors (N= 1103) were included in analyses. Among
TCGA data set, we excluded data for brain lower grade glioma due to indolent
behavior and kidney chromophobe renal cell carcinoma due to rare incidence and
far different tumor biology to other renal cell carcinoma. Altogether, samples of 30
major cancer types (N= 9081) were included in the final analysis (Supplementary
Data 3). Somatic mutation data of HLA-A, HLA-B, and HLA-C genes were
obtained from previous study that used the algorithm Polysolver65, HLA somatic
mutations were available in 6162 patients for our analysis. Viral presence status and
number of predicted neoantigen of TCGA samples (N= 3658) was obtained from a
previous publication30. Genetic and molecular subtypes of skin cutaneous mela-
noma, thyroid cancer, head and neck squamous cell carcinoma, breast cancer,
stomach adenocarcinoma, lung adenocarcinoma, lung squamous cell carcinoma,
and bladder urothelial cell carcinoma were obtained from previous TCGA pub-
lications36–43. Of 472 patients with skin cutaneous melanoma, 78 patients treated
with immunotherapy which purpose is not indicated by “adjuvant” with appro-
priately annotated survival data were included in progression-free survival analysis.

Analysis of the data, IS scores, and CIN scores. For the number of total somatic
mutations, multiple somatic mutations including non-synonymous mutation,
insertion-deletion mutation, and silent mutations were respectively counted and
summated, but germline mutation was excluded. Gene expression data from micro-
arrays was normalized using a robust multiarray averaging method66. The BRB-
ArrayTools software program (http://linus.nci.nih.gov/BRB-ArrayTools.html) was
used to analyze gene expression data67. A heatmap was generated using the Cluster
and TreeView software programs68. Other statistical analyses were performed in the R
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language (http://www.r-project.org) or using STATA version 12 (StataCorp LP,
College Station, TX, USA). To select genes that were differentially expressed between
responder and non-responder of the training cohort (GSE35640)24, we applied
stringent cutoff of P< 0.005 (Student’s t-test) and
1.5-fold difference and identified 105 genes. The signature was used to stratify patients
in a validation cohort of GSE6355728, human melanoma treated with
anti-CTLA-4 antibody29, and TCGA data. Of 105 genes of the training set, 27, 6, and
6 genes were excluded during validation with GSE63557 data, Van Allen et al. data,
and TCGA data, respectively, due to difference in number of probes in microarray
platforms or RNA-seq data (Supplementary Data 1). Gene expression data for the
training and test sets were re-normalized by centralizing the gene expression level
across the tissues. Briefly, expression data for 105 immune signature genes in the
training set were combined to form a classifier according to a Bayesian compound
covariate predictor (BCCP)69. The BCCP classifier estimated the likelihood that an
individual patient had either a high immune signature or a low immune signature,
according to a Bayesian probability of IS score cutoff of 0.5, which was optimized by
comparing previously reported response rates to immunologic agents7, 9–11 and the
results of the current analysis of Receiver operating characteristic to predict the
responder of a training cohort and a separate validation model by which cutoff is set
by maximal point of sum of sensitivity and specificity70. To assess the degree of copy
number variation which was calculated by Gistic 2.044, we defined “CIN score” as the
summation of square of gene-level gistic 2 values. Adjusted CIN scores were com-
puted by multiplying purity score (in range from 0 to 1) to original CIN scores.

Canonical signaling pathways enriched in IS score. Pathway analysis was carried
by using Ingenuity Pathways Analysis and genes from the data set that were
associated with a canonical pathway in the Ingenuity Pathways Knowledge Base
were considered for the analysis. The significance of the association between
immune signature and the canonical pathway was measured Fischer’s exact test
(P< 0.001). Among identified significant pathways, top 30 pathways were only
reported in Supplementary Fig. 6. To estimate relative proportion of 22 types of
infiltrated immune cells in tumor mass, online analytical platform CIBERSORT
(https://cibersort.stanford.edu/) was used35.

Survival analysis. Using IS score to dichotomize the patients into two subgroups
(cutoff of 0.5), the prognostic significance was estimated using Kaplan−Meier plots
(log-rank tests) and Cox proportional hazards regression analysis and then
adjusted and stratified by cancer type. Prognostic significance of the continuous
value of IS score was also calculated by Cox proportional hazards regression
analysis. P-value < 0.05 was considered as a significant difference. Overall survival
was gathered from TCGA clinical data, “days_to_last_follow-up” (CDE_ID:
3008273) if censored, or “days_to_death” (CDE_ID: 3165475) if dead. Progression-
free survival (PFS) was measured from “days_to_drug_therapy_start” (CDE_ID:
3392465) until “days_to_drug_therapy_end” (CDE_ID: 3392470). PFS event was
gathered from “therapy_ongoing” (CDE: 3103479).

Significance of IS score according to genomic alterations. The significance of
global correlation between IS scores and number of mutations or CIN scores was
estimated by linear regression analysis or generalized additive models (GAM) using
R-Project statistical package. The significance of IS score difference according to
clinicopathologic features such as the presence of virus, and mutation was esti-
mated by Wilcox rank-sum test or analysis of variance (if more than three groups
were compared). For each cancer type, we performed logistic analysis with IS score
as the independent variable, and dichotomized status in genomic data such as
higher or lower than median mutation number or CIN scores as the dependent
variables. P< 0.05 was considered a significant difference.

To find specific mutations significantly associated with IS scores, Wilcoxon rank-
sum tests were applied to the mean difference of IS score according to each mutation
status (mutated versus wild-type). Likewise, significant difference of IS score by
amplified or deleted genes were also identified by Wilcoxon rank-sum tests. To
facilitate analysis, we limited analysis with previously recognized 373 driver genes47

for mutation analysis and 87 amplified and 123 deleted genes53 for CIN analysis. To
estimate the significance of correlation in each cancer type, subgroup analysis of
logistic regression was carried out to compute odds ratio (OR) of mutation rate or
CIN score. False discovery rates were applied to control type I errors.

Data availability. The genomic data that support findings of this study are
available from the NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE35640, GSE63557, and GSE78220.
Genomic data from TCGA project are available from the National Cancer Insti-
tute’s Genomic Data Commons (https://gdc.cancer.gov/). All other data supporting
the findings of this study are available within the article and its supplementary
information files or from the corresponding author upon reasonable request.
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