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Abstract

Purpose: Although the mortality rate of breast cancer was reduced with the introduction of
screening mammography, many women undergo unnecessary subsequent examinations due
to inconclusive diagnoses. Superposition of anatomical structures especially within dense breasts
in conjunction with the inherently low soft tissue contrast of absorption images compromises
image quality. This can be overcome by phase-contrast imaging.

Approach:We analyze the spatial resolution of grating-based multimodal mammography using
a mammographic phantom and one freshly dissected mastectomy specimen at an inverse
Compton x-ray source. Here, the focus was on estimating the spatial resolution with the sample
in the beam path and discussing benefits and drawbacks of the method used and the estimation of
the mean glandular dose. Finally, the possibility of improving the spatial resolution is investi-
gated by comparing monochromatic grating-based mammography with the standard one.

Results: The spatial resolution is constant or also higher for the image acquired with mono-
chromatic radiation and the contrast-to-noise ratio (CNR) is higher in our approach while the
dose can be reduced by up to 20%.

Conclusions: In summary, phase-contrast imaging helps to improve tumor detection by advanced
diagnostic image quality. We demonstrate a higher spatial resolution for one mastectomy speci-
men and increased CNR at an equal or lower dose for the monochromatic measurements.
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1 Introduction

According to the World Health Organization, cancer is the second leading cause of death glob-
ally with 9.0 million deaths of all noncommunicable diseases deaths, where breast cancer is the
most common type of cancer under the age of 60 worldwide.1,2 As a result of this, the reliable
early detection of breast cancer is an important prerequisite for effective treatment. Several stud-
ies underline the successful introduction of the mammography screening program.3–5 But values
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such as the specificity (between 78% and 95%) and the sensitivity (between 69% and 94%)
reveal the need of improvement of this imaging technique.6,7 One of the main issues that also
leads to low values in the above-mentioned criteria is the superposition of anatomical structures
within the breast especially for women with dense breast tissue. In those cases and due to the low
soft tissue contrast, palpable masses or other suspicious findings are not always detected in the
standard mammography screening.

Different approaches exist that are capable of improving standard mammography in terms of
image quality and diagnostic image content. First, the brilliant monochromatic radiation pro-
vided by the synchrotron facilities can be exploited. This has the advantage that x-ray photons
are eliminated that mainly contribute to the applied mean glandular dose (MGD) but not to image
contrast. As a consequence, monochromatic radiation enables increasing the spatial resolution
while the MGD is reduced. In breast imaging, the spatial resolution is an important factor
especially for the detection of microcalcifications where a high resolution depending on several
different aspects8 is desirable. Several published studies show the successful application of
propagation-based phase-contrast mammography at synchrotrons with special focus on dose
and improved diagnostic image content.9–13 However, this approach benefits from increasing
spatial resolution and reducing dose but suffers from high costs, limited availability, and high
infrastructure requirements. The second approach deals with the improvement of the soft tissue
contrast to overcome the weak absorption contrast in conventional mammography, which can
be improved by the above-mentioned image modalities or by grating-based phase-contrast im-
aging, which provides three signals simultaneously: The attenuation-based, the differential
phase, and the dark-field signal.14,15 Several studies about grating-based phase-contrast mam-
mography underline the benefit of this approach for the detection and classification of micro-
calcifications with the dark-field image16–18 and for improved soft tissue contrast with the
phase-contrast image.19–24

Another way to overcome the current limitations of projection-based mammography is to
expand to computed tomography. Several previous studies published the benefits and the tech-
nical feasibility of three-dimensional imaging of the breast.25–28 The latest work of Kalender
et al.29,30 showed the clinical dose compatibility for this imaging method. They recently pre-
sented the first results of clinical in vivo imaging.31 As already mentioned, the attenuation-based
signal suffers from low soft tissue contrast that should be improved by phase-contrast imaging.
But for this application, the applied MGD remains a challenging topic that needs to be inves-
tigated and reduced for tomography applications of the breast as–for grating-based phase-
contrast imaging–it is above the maximum allowable clinical MGD and only investigated with
small but representative tissue sections of a mastectomy specimen.32–34 In contrast to that, other
studies using the propagation-based phase-contrast approach have already successfully shown
the feasibility of low-dose breast-computed tomography with synchrotron radiation.35–38

Therefore, the analysis of the applied MGD within this work and its possible dose reduction
is of fundamental importance and represents some kind of preliminary work for grating-based
phase-contrast-computed tomography of the female breast.

In order to further enhance contrast in x-ray breast imaging at lower MGD and higher spatial
resolution compared to conventional mammographic imaging, we combined dose-compatible
grating-based phase-contrast mammography with a brilliant inverse Compton x-ray source
(ICS). The evaluation of several mastectomy specimens from a clinical point of view has already
been published by Eggl et al.39 In contrast to that, this work now describes in detail the dose and
resolution determination for the x-ray source and discusses its benefits and drawbacks by ana-
lyzing the data. In this study, we wanted to directly compare the spatial resolution of different
image modalities (grating-based, clinical and monochromatic absorption-contrast images). Here,
we followed the approach proposed by Modregger et al.,40 where a power spectrum analysis is
performed on the acquired images in order to retrieve the spatial resolution in linepairs per
millimeter (lp/mm). Increased spatial resolution is clinically relevant only as long as the applied
dose remains at clinically applied levels. For assessing the MGD, it is important to take the
different measurement parameters into account that affect the flux at the sample position.
Correspondingly, this work presents an analysis of the MGD together with the estimation of
the spatial resolution including a discussion of the advantages and disadvantages of the two
chosen analysis approaches.
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2 Materials and Methods

2.1 Study Protocol and Clinical Imaging

The mammography study was conducted with freshly dissected mastectomy specimens accord-
ing to the Declaration of Helsinki and after the approval of the local ethics committee. After
a detailed explanation of the study protocol, the patients gave their written consent before par-
ticipating in the study. Before the experimental measurements and for a better comparison of the
results, clinical in vivo and ex vivo images were acquired. The clinical ex vivo measurements
were performed in a cranio-caudal (CC) or anteroposterior (AP) position with the specimen fixed
in a metal-framed specimen holder to simulate breast compression. The clinical in vivo and
ex vivo mammography images were both taken with a device by Hologic (Marlborough,
USA) called Selenia Dimensions whose pixel size is 70 × 70 μm2.

2.2 Working Principle of the MuCLS

The Munich Compact Light Source (MuCLS) is the first installation of an ICS focussing on
x-ray applications. The compact light source (CLS, developed by Lyncean Technologies
Inc., Fremont, USA) forms the MuCLS together with an imaging beamline developed in-house
at the Technical University of Munich. A schematic drawing of the CLS and the experimental
setup is shown in Fig. 1. Electrons are generated in a radiofrequency photocathode gun, accel-
erated to relativistic energies in the electron linear accelerator and injected into a small electron
storage ring. A laser pulse is stored in an optical enhancement laser cavity.41–43 At the interaction
point, where electrons collide head-on with the counterpropagating infrared laser pulse at a rep-
etition rate of about 65 MHz, quasimonochromatic x-ray photons are produced with the x-ray
energy Ex:

EQ-TARGET;temp:intralink-;e001;116;427Ex ≈ 4γ2EL; (1)

where EL is the energy of the laser photons and γ ¼ Ee∕E0 is the ratio of the electron energy Ee

to the electron rest energy E0. The x-ray energy Ex of the MuCLS is tunable from 15 to 35 keV.
The opening angle of the x-ray beam is 4 mrad, the x-rays are partially coherent and the flux is
3 · 1010 ph∕s for an x-ray energy of 35 keV with a horizontal and vertical r.m.s. source size of
50 × 50 μm2.44 The beamline includes two experimental end stations. The measurements of this
study have been conducted in the far end station, which is located 15 m away from the source
point where the elliptic shape of the x-ray beam is 62 × 74 mm2 in size.43

Fig. 1 Schematic drawing of the experimental setup at the MuCLS (not to scale): the CLS is a
storage ring-based ICS. Therefore, x-rays are generated by the collision of electrons accelerated
to relativistic energies with a counterpropagating laser pulse stored in an enhancement cavity. The
measurements were performed at an experimental station that is located about 15 m away from
the interaction point.
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2.3 Image Acquisition at the MuCLS

At the MuCLS, mammography images were acquired once with and once without the grating
interferometer for a better comparison to the clinical images. For grating-based phase-contrast
imaging, a Talbot interferometer was set up 16 m away from the source point of the MuCLS.
The intergrating distance of the interferometer was about 25 cm. The periods of the phase grating
and the analyser grating are 4.9 μm and 5:0 μm, respectively. The visibility of the interferometer
was between 45% and 50%. The measurements were performed at an x-ray energy of 25 keVand
with a Dexela 1512 flatpanel detector (PerkinElmer Inc., USA) equipped with a Gd2O2S scin-
tillator with an effective pixel size of 71 × 71 μm2. The breast specimen is fixated in the sample
holder in order to keep its relative position in the holder constant, thereby ensuring comparability
of all measurements. Due to the size of the sample, scanning the sample and stitching the images
were required in order to obtain a full image of the breast specimen. The acquisition parameters
are listed in Table 1 where the number of steps refers to the phase stepping of the grating-
interferometer.

2.4 Dose Calculation

The MGD of the clinically acquired mammography images is automatically registered by the
imaging device. They are listed in Table 2 together with the x-ray tube settings and the com-
pressed breast thickness. For the ex vivomeasurements, the measured thickness was corrected for
the contribution of the shape of the sample holder.

For the MGD calculation, one needs conversion factors between air kerma KðEÞ and the
MGD. Several conversion factors are tabulated in the literature, which are mostly used either
in Europe45–47 or in the United States.48,49 These conversion factors are only tabulated for certain
x-ray spectra but not for the MuCLS spectrum. As an alternative, the monoenergetic normalized
glandular dose coefficientsDgNðEÞ proposed by Boone et al. can be used to convert air kerma to
MGD for any arbitrary spectrum. In addition, these coefficients depend on the breast thickness
and the glandularity, which has been assumed as a 50%/50% distribution of adipose and glan-
dular tissue for all samples. First, the air kerma KðEÞ has to be determined. Knowing the photon
flux ΦðEÞ at the sample position, the energy-dependent air kerma KðEÞ for the known MuCLS
spectrum43 can be calculated as50

EQ-TARGET;temp:intralink-;e002;116;355KðEÞ ¼ E · ΦðEÞ ·
�
μen
ρ

ðEÞ
�
air

; (2)

Table 2 Acquisition parameters of the clinical in vivo and ex vivo measurements.

Sample X-ray tube settings
MGD civAC-Mx

(mGy)
MGD cevAC-Mx

(mGy)
Compressed
thickness (cm)

I 30 kVp (W/Rh), 100 mAs 2.9 1.4 (AP) 4.5

Phantom 28 kVp (W/Rh), 200 mAs — 2.0 4.5

Table 1 Acquisition parameters whereby the exposure times always refer to the MGD in the
column to the left. The exposure times are given for the whole acquisition including all steps and
all stitching scans.

Sample
Energy
(keV)

MGD mAC-Mx
(mGy)

Exposure
time (s)

MGD mgb-Mx
(mGy)

Total exposure
time (s)

Number of
steps Stitching

I 25 0.3 75 0.9 275 11 5 × 5

Phantom 25 1.0 to 2.0 40 to 80 0.7 to 1.8 28 to 72 7 or 9 2 × 2
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and depends additionally on the mass energy attenuation coefficient of air ðμen∕ρÞairðEÞ.51
Considering the efficiency of the silicon sensor of the single photon-counting Pilatus 200 K
detector (Dectris AG, Baden, Switzerland),52 which was used for the flux reference measure-
ments, the x-ray spectrum, and the distance between detector and sample position, the photon
flux per energy bin ΦðEÞ was calculated. The flux is defined as

EQ-TARGET;temp:intralink-;e003;116;675Φ ¼
Pilatus counts

mm2 frame
QEPilatus · Tair

¼ Photon fluence

mm2 frame
: (3)

The transmitted intensity T can be obtained with

EQ-TARGET;temp:intralink-;e004;116;608T ¼
PEmax

E¼Emin
SðEÞ × exp

�
− μ

ρ · ρ · d
�

PEmax

E¼Emin
SðEÞ ; (4)

where SðEÞ is the normalized intensity of the spectrum, μ∕ρ is the materials absorption coef-
ficient, ρ is the density, and d is the traversed thickness. The quantum efficiency for the Pilatus
detector QEPilatus ¼ 1 − TSi follows from this equation. To allow accurate calculation of the air
kerma for each scan, the incident photon flux was recorded during measurements with a scin-
tillation counter that had previously been cross-calibrated with the Pilatus detector. By summing
up all energy bins E, the MGD can be calculated according to the following equation adapted
from Boone et al.:25

EQ-TARGET;temp:intralink-;e005;116;471MGD ¼
X
E

KðEÞðmGyÞ · κ
�

R

mGy

�
· DgNðEÞ

�
mGy

R

�
; (5)

but modified with the commonly used unit air kerma KðEÞ instead of the older unit exposure
since the adjusted equation for exposure given in Ref. 25 is incorrect.53 The corresponding con-
version factor between the units Röntgen and Gray for the quantities exposure and air kerma
is κ ¼ 0.114 R=mGy.

2.5 Analysis of the Image Quality

This work focuses on the estimation of the spatial resolution with the sample in the beam path.
This is an important point to consider in breast imaging, where microcalcifications have to be
detected and distinguished. The spatial resolution of an image depends, among others, on the
focal spot size, the sample movement, the scintillator thickness, and the pixel size.8 According to
the Nyquist limit of 0.5 lp/px, the maximal achievable spatial resolution depends on the effective
pixel size of the detector. In order to obtain the spatial resolution in linepairs per millimeter, an
analysis of the power spectrum has been performed with the method proposed by Modregger
et al.40 This approach is an objective criterion for the estimation of the resolution of an image
with the sample in the beam path. For the estimation, the squared norm of the Fourier
transformed images was calculated and afterward filtered with a Savitzky–Golay instead of
a Gaussian filter as proposed by Modregger et al. to reduce large uncertainties. Then, the spatial
resolution is determined by the maximal spatial frequency where the spectral power of the signal
equals twice the spectral power of the noise baseline.40 In Fig. 2, a visualization of the spectral
power analysis for the determination of the resolution is shown. In order to calculate the spatial
resolution in linepairs per millimeter, the current unit of linepairs per pixel of the x axis has to be
converted. Therefore, we take the conversion of the units from lp/px to lp/mm with a pixel size
xdetector from the detector, which is defined as

EQ-TARGET;temp:intralink-;e006;116;1381
lp

px
¼ 1 lp

xdetector
: (6)

In our case, with an effective pixel size of 71 μm for the Dexela detector and an effective
pixel size of 68 μm for the clinical device, this results in the following unit conversion factors for
the x axis of the plotted spectral power analysis:
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EQ-TARGET;temp:intralink-;e007;116;461

Dexela conversion∶ 1
lp

px
¼ 1lp

71 μm
¼ 14.09

lp

mm

Clinical conversion∶ 1
lp

px
¼ 1lp

68 μm
¼ 14.71

lp

mm
: (7)

In addition to the spatial resolution analysis, the contrast-to-noise ratio (CNR) is defined as
the difference of two average signals s1 and s2 divided by the standard deviation σBG within
a region of interest of a background region:

EQ-TARGET;temp:intralink-;e008;116;362CNR ¼ ðs1 − s2Þ
σBG

: (8)

3 Results

This study comprises the measurements of a mammographic phantom and one freshly dissected
mastectomy specimen. The breast specimen investigated in this study has a multicentric lobular
invasive carcinoma (G2) and a lobular carcinoma in situ with a maximal tumor diameter size
of 51 mm.

3.1 Spatial Resolution Analysis with a Mammographic Accreditation Phantom

This section presents a quantitative analysis based on the calculation of the spatial resolution (as
described in Sec. 2.5) and the CNR of a mammographic accreditation phantom (Mammo 156™
Phantom, Sun Nuclear Coorporation, Middleton, USA). The spatial resolution and the CNR of
the monochromatic measurements at the MuCLS, both with and without grating interferometer,
are compared to those of the measurements at the conventional mammography device. Images at
the MuCLS were acquired with different exposure times whereas the clinical images are taken
with the automated exposure control of the clinical device. The results for the classical absorp-
tion measurements are shown in Fig. 3 and the grating-based images in Fig. 4. The results of the
analysis of the CNR for the different test objects (Nylon fibrils, simulated microcalcifications,
and tumor-like masses) and of the spatial resolution are listed in Tables 3 and 4, respectively.

(a) (b)

Fig. 2 Spectral power analysis for the determination of spatial frequency: (a) Visualization of the
resolution criterion. The maximal spatial frequency is defined as the frequency where the spectral
power S of the signal s equals the spectral power of the noise μs. In experimental data, only
the total signal, including noise, is measured. The maximal spatial frequency is then given by the
intersection of the spectral power C of the experimental signal c and the double of the spectral
power of the noise baseline. (b) Example for the determination of the maximal spatial frequency on
the experimental data. The smallest and highest spatial frequencies where the noisy spectra
power curve intersects the 2μs line is given by the black, vertical dotted lines. Then, the calculation
of the mean value results in the actual spatial resolution of the image. Subfigure (a) adapted from
Ref. 40.
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According to the American College of Radiology (ACR), a minimum of four fibrils, three
groups of microcalcifications, and three tumor masses have to be resolved for the standard
criteria of clinical image quality.54 This criterion is met by the following absorption-contrast
images: clinical ex vivo absorption-contrast mammography (cevAC-Mx) [cf. Fig. 3(A)],
monochromatic absorption-contrast mammography (mAC-Mx) [cf. Figs. 3(B) and 3(C)], and
monochromatic grating-based absorption-contrast mammography (mgbAC-Mx) [Fig. 4(A)].

(a) (c)(b)

Fig. 3 Absorption-only radiographs of the mammographic accreditation phantom: (a) clinical
mammography (cevAC-Mx) with an MGD of 2.0 mGy, (b) mAC-Mx with an MGD of 2.0 mGy, and
(c) with an MGD of 1.6 mGy. All images were scaled for maximum detail visibility.

(a) (b) (c)

Fig. 4 Monochromatic grating-based phase-contrast imaging showing (a) mgbAC-Mx,
(b) mgbDPC-Mx, and (c) mgbDFC-Mx for an MGD of 1.8 mGy. All images were scaled for
maximum detail visibility.

Table 3 CNR calculated for a quantitative analysis with the mammographic accreditation phan-
tom. The numbers have been chosen so that the small numbers refer to the largest structures and
the large numbers to the smaller structures.

Modality MGD (mGy)

Fibers Calcifications Tumor masses

1 4 1 3 1 5

cevAC-Mx 2.0 2.51 1.99 36.84 13.89 5.92 0.53

mAC-Mx 1.0 3.16 0.11 30.86 11.94 8.64 1.50

mAC-Mx 1.6 3.51 1.61 38.47 15.60 10.70 2.73

mAC-Mx 2.0 4.71 1.39 44.11 16.85 12.19 2.67

mgbAC-Mx 1.8 4.46 0.15 25.32 13.25 7.14 0.89

mgbDFC-Mx 1.8 0.65 0.16 6.50 10.42 15.00 9.59
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The comparison of the absorption-only radiographs without gratings in the beam in Fig. 3 reveals
that on the one hand, the mAC-Mx at the same MGD slightly outperforms the cevAC-Mx image
in terms of the CNR for almost all structures (except fiber structure 4). On the other hand, the
MGD can be reduced by up to 20% while retaining the same CNR as in the cevAC-Mx image.
Comparing the calculated spatial resolution of the mammographic accreditation phantom and
considering their uncertainties, the spatial resolution of the monochromatically taken images for
the absorption-contrast imaging does not exceed the cevAc-Mx image. It can also be noted that
the spatial resolution of the dark-field image is higher than that of the absorption-based images.
This makes sense since the dark-field image is sensitive to scattering at material interfaces, thus
tending to emphasize edges more and thus sharpening the image.

In Fig. 4, the images of mgb-Mx are presented for an MGD of 1.8 mGy. At a slightly lower
MGD for Figs. 4(a)–4(c) compared to cevAC-Mx in Fig. 3(a), the monochromatic grating-based
results outperform the clinical device in terms of the CNR for tumor masses and big fiber struc-
tures but not for the microcalcifications (cf. Table 3). Furthermore, we can not calculate a CNR
and perform a quantitative analysis of the monochromatic grating-based differential phase-con-
trast mammography (mgbDPC-Mx) images due to the differential nature of the signal. However,
it can be seen that all six fiber structures are detectable in mgbDPC-Mx, which is not possible in
any other image modality (absorption or dark-field contrast). Taking the calculated spatial res-
olution into account, one notices that the spatial resolution of the monochromatic grating-based
dark-field-contrast mammography (mgbDFC-Mx) image is lower than in the clinical absorption-
contrast image. All in all, grating-based imaging benefits from the simultaneous availability of
absorption-, differential-phase and dark-field contrast, thereby exceeding the ACR criteria.

3.2 Spatial Resolution Analysis on a Mastectomy Specimen

The specimen presented here was chosen because it incorporated tumorous lesions and thus
allowed demonstrating their improved detection with the grating-based phase-contrast imaging.
The results are shown in Fig. 5. The first row, Figs. 5(a)–5(c), displays the clinical and histology
images and the second row, Figs. 5(d)–5(f), the monochromatic images. The clinical history has
shown the following in the right breast: A palpable mass and also skin retraction that has been
verified by clinical in vivo absorption-contrast mammography (civAC-Mx) where an asymmetry
is visible in the respective region. In Figs. 5(d)–5(f), the mgbAC-Mx, the mgbDPC-Mx, and the
mgbDFC-Mx images of the mastectomy specimen are presented. Those measurements have
been performed in AP orientation, whereas the civAC-Mx image in Fig. 5(b) was measured
in CC position. The red and orange arrows indicate the mamilla and the tumor lesions, respec-
tively. Underlined by the calculated values presented in Table 4, the spatial resolution of the
monochromatically acquired image modalities exceeds that of the cevAC-Mx. The resolution
of the mgbDPC-Mx image was not calculated due to the differential nature of the signal. In
addition to the increase of spatial resolution, an improved delineation of the tumor lesions is
also possible with monochromatic grating-based phase-contrast imaging. The mgbAC-Mx
image provides improved detection of cancerous lesions over the cevAC-Mx and civAC-Mx
images. Fine tumor branches that originate from the carcinoma and perfusing into the surround-
ing tissue to both sides of the tumor are clearly visible in the mgbDPC-Mx image as indicated by
the orange arrows. These tumor branches can also be identified in the mgbDFC-MX image but to
a reduced extent. The histopathologic analysis after applying hematoxylin–eosin (H&E) staining
proved the existence of the tumor spiculae originating from the main tumor [black arrows,
Fig. 5(c)].

Table 4 Spatial resolution calculated with an analysis of the noise power spectrum.

Sample cevAC-Mx (lp/mm) mAC-Mx (lp/mm) mgbAC-Mx (lp/mm) mgbDFC-Mx (lp/mm)

I 2.06� 0.34 2.90� 0.29 3.26� 0.05 4.13� 0.08

Phantom 3.22� 0.18 3.32� 0.01 3.35� 0.11 4.12� 0.11
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4 Discussion

This work presents grating-based phase-contrast and classical absorption mammography images
of one breast specimen and a mammographic phantom measured at an ICS. The imaging per-
formance of this approach is compared to clinical mammography. Thereby, this work focuses on
the estimation of the spatial resolution with a sample in the beam path in linepairs per millimeter
for mammographic application employing a power spectrum analysis (cf. Table 4). We success-
fully demonstrate a higher spatial resolution for the MuCLS measurements within one mastec-
tomy sample for the absorption and dark-field contrast images at the same or reduced MGD
compared to conventional mammography. A higher spatial resolution can be obtained with
monochromatic radiation compared to conventional mammography for absorption and dark-
field contrast images of one mastectomy specimen while keeping the MGD constant or even
reducing it. However, for the mammographic accreditation phantom, the spatial resolution of
all images agrees within their uncertainties. Thus, we achieved nearly the same spatial resolution
for all the absorption-contrast images of the phantom but no significant improvement. In order to
further decrease the uncertainties, we have applied a Savitzky–Golay instead of a Gaussian filter
since the value of the spatial resolution would be more exact without large uncertainties. The
spatial resolution is mainly influenced by two different factors: On the one hand, it depends on
the source spot size of the imaging device. On the other hand, due to the limitation of the
Nyquist-frequency of 0.5 lp/px, the spatial resolution depends on the effective pixel size of the
setup, which was larger at the setup at the MuCLS (71 μm) than during the clinical measure-
ments (68 μm). Consequently, the highest theoretically achievable spatial resolution for the
clinical imaging system is 7.35 and 7.04 lp∕mm for the experimental setup at the MuCLS. These
two factors underline that the spatial resolution should mainly change by changing the imaging
device or setup. Furthermore, cancerous lesions, which have been verified by histopathology, can
be better detected in the differential phase-contrast image (cf. Fig. 5). The drawbacks and

(a) (b) (c)

(d) (e) (f)

Fig. 5 Advanced detection of tumor lesions. (a) The cevAC-Mx image in AP position, (b) civAC-Mx
image in crandio-caudal position, and (c) the histopathological analysis of the sample are depicted
in the first row. The second row presents the results acquired with grating interferometry at the
MuCLS including (d) the mgbAC-Mx, (e) the mgbDPC-Mx, and (f) the mgbDFC-Mx images. All
images in the second row are taken in AP position The red arrow depicts the mamilla, whereas the
orange arrows in the radiographs and the black arrows in the histopathology image depict the
cancerous lesions. All images were scaled for maximum detail visibility.
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benefits of the dose and spatial resolution analysis will be discussed in the following. The
calculation of the MGD depends on several different factors and is thus only an approximate
estimation. Accuracy of this method is limited by the determination of the glandular dose
coefficients DgNðE; t; gÞ, which depend on the energy E but also on the thickness t and the
glandularity g of the sample. Furthermore, the compressed breast thickness was measured when
the breast was in the specimen holder whose contribution had to be subtracted. In addition, the
glandularity was assumed to 50% adipose and 50% glandular tissue for both examined samples.
Moreover, the quantum efficiency as well as the tabulated values of the absorption coefficient
have uncertainties themselves that influence the accuracy of the calculation of the photon flux at
the sample position. The uncertainty of the photon-counting Pilatus detector, which was used in
this study, is 2%.52 All these factors have a significant influence on the MGD estimation and
thus could lead to uncertainties in its calculation. In the framework of this study, the calculated
air kerma is compared to air kerma values measured with a soft x-ray ionization chamber and
the resulting uncertainties were �10%. The calculated MGD calculation is therefore only an
approximation. The dose analysis, which serves as a kind of preliminary work for breast-
computed tomography, has shown that a dose reduction of about 20% is possible. Thus,
grating-based phase-contrast breast-computed tomography has potential for preclinical studies
in a dose-compatible range. The estimation of the spatial resolution is mainly based on the
above-mentioned spatial resolution criterion.40 One drawback of this approach is the averaging
of the high frequencies of the spectral power when the curve falls to a certain baseline. Thus,
the estimation of the spatial resolution is mainly influenced by the setting of the flat profile of
the noise baseline. Consequently, the estimation of the spatial resolution strongly depends on a
previously defined noise criterion. In order to prevent this disadvantage in prospective spatial
resolution analysis, another method has recently been proposed by Mizutani et al., which does
not depend on defining a noise criterion.55 Thus, the spatial resolution strongly depends on the
region that is chosen for averaging. However, this approach has several advantages: It can be
applied to any type of image modality that is not of a differential nature. One is able to calculate a
quantitative value for the spatial resolution with a sample in the beam path. This can be used to
directly compare the spatial resolution of images acquired with different imaging devices. In
conclusion, we demonstrate superior diagnostic image quality with a higher spatial resolution
and an increased CNR at equal dose or equal diagnostic quality at lower dose for the mono-
chromatic images compared to clinical ones.
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