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Extracting entangled qubits from 
Majorana fermions in quantum dot 
chains through the measurement 
of parity
Li Dai1, Watson Kuo1,2 & Ming-Chiang Chung1,3

We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support 
zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends 
of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through 
tunneling and pairing interactions between them. The detailed form of the entangled state depends 
on both the parity measurement (an even or odd number) of the boundary-site electrons in each 
chain and the teleportation between the chains. The parity measurement is realized through 
the dispersive coupling of coherent-state microwave photons to the boundary sites, while the 
teleportation is performed via Bell measurements. Our scheme illustrates localizable entanglement 
in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental 
conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and 
quasi-particle poisoning.

Majorana fermions (MFs), first considered by Ettore Majorana in 1937 for decomposing Dirac fermi-
ons into a superposition of real fermions1, are hypothetical particles which are their own antiparticles. 
In particle physics, no elementary particles are MFs except the neutrino whose nature is not explicitly 
resolved2. In condensed matter physics, however, MFs have been proposed as quasi-particle excitations 
of the v = 5/2 fractional quantum Hall state3, at the surface of a topological insulator coupled with a 
s-wave superconductor4, in the quantum wells or quantum wires5–8, and in cold atoms9. Generally, three 
elements are needed for the realization of MFs10,11: strong spin-orbit interaction to generate position or 
momentum dependent spin directions, superconductivity to induce electrons pairing effect, and Zeeman 
magnetic field to lift the spin degeneracy. Several experiments have been performed which can be inter-
preted as emergenc e of MFs12–15.

MFs are interesting not only due to their fundamental properties but also in the aspect of their poten-
tial applications such as topological quantum computation16,17, quantum state transfer18, quantum mem-
ory19 and fault-tolerant quantum random-number generation20. The unique feature of these applications 
is the topological phase of matter for which the manipulations in the degenerate ground state subspace 
are protected against local perturbations that respect the characteristic symmetries of the system e.g. the 
particle-hole symmetry, and thermal excitations are suppressed by a sizable energy gap21–23. However, the 
perturbation that does not respect the symmetries of the system (e.g. unpaired electrons in superconduc-
tors) may induce undesirable transitions within the ground state subspace. This is the phenomenon of 
quasi-particle poisoning24,25 which can cause bit-flip errors and decoherence in quantum computation. 
Therefore, it is important to devise a scheme of quantum computation that not only benefits from the 
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topological properties of the system but also shows robustness against quasi-particle poisoning. This is 
the motivation of our work.

In this work we propose a scheme for extracting entangled qubits from Majorana fermions through 
the measurement of parity. The scheme utilizes the topological properties of the system and is also robust 
against quasi-particle poisoning. The system we consider is two parallel chains of quantum dots as shown 
in Fig.  1. Each chain is divided into two subchains. We shall demonstrate that, under realistic exper-
imental conditions, each sub-chain encompasses a zero-energy edge mode composed of two unpaired 
Majorana fermions. The edge mode corresponds to two degenerate ground states, each of which has a 
definite parity (an even or odd number of electrons). When considering their structure, we find that 
the inner sites of the sub-chain (the bulk) are generally entangled with the boundary sites (the edges). 
Moreover, the states for the bulk part in this bulk-edge entangled state also have a definite parity, while 
for the edges they are themselves (maximally) entangled states between the boundary sites (the parity 
is definite as well). We propose employing coherent microwave photons to interact dispersively with 
the edges. In this way, the parity of the edges is measured so that maximally entangled edge states can 
be extracted. The extraction is robust against quasi-particle poisoning24,25, as will be shown later in the 
subsection “Measurement scheme”. It can be seen that our proposal illustrates localizable entanglement26 
in a fermionic system. Originally, localizable entanglement is concerned with spin systems and is defined 
as the maximum amount of entanglement that can be created, on average, between two spins in a spin 
chain by performing local measurements on other spins. It provides a method to transfer the many-body 
entanglement to two localized spins. In our work, the spins are replaced by the fermionic sites of quan-
tum dots, and the measurement on other spins is replaced by the coherent parity measurement on the 
target fermionic sites (the two boundary sites). However, the edge states are not good entangled qubits, 
because the basis for one subsystem of the states is encoded in a single fermionic site, so that a superpo-
sition between the basis states is difficult27. We propose a scheme to transform the edge states into two 
useful entangled qubits encoded in the boundary sites of the parallel chains so that the superposition 
of the basis states of the qubit is allowed. The scheme involves a swap operation between the sites of 
different edge states, and teleportation through the edge states. Figs 2 and 3 show the flow diagram and 
principal pulse sequence of our scheme. The fidelity for the entangled qubits can be as high as 0.9 in the 
presence of the decoherence induced mainly by the noise of the electrical gate bias28,29. Another common 
source of decoherence is the environmental charges trapped in the insulating substrate or at the interface 
of the heterostructure30. These random charges interact with the electrons in the quantum dot, which 
causes severe decoherence. New growth methods for materials with low trapped charge density31, as well 
as the charge echo techniques32, can alleviate the decoherence.

Our scheme serves as a quantum repeater when combined with the purification protocols which 
further increase the entanglement33. The extracted entangled qubits are a useful entanglement resource 
in the teleportation-based quantum computation (TQC) which is equivalent to the one-way quantum 
computation34,35. TQC can be used as a supplement to the standard charged-based quantum computing 
(CQC)28 in the situations where quantum gates between remote qubits are needed, with the other ingre-
dients: two- and three-qubit measurements realized by CQC. Our proposal allows for finite temperature 
effect, as the ground state of the chain is protected by a substantial energy gap induced by the supercon-
ducting proximity effect. Also, it is only required to finely tune the system parameters close to the edges, 
while small disorders of the system in the bulk of the chain is allowed. Moreover, our scheme is robust 

Figure 1. The schematic diagram of the experimental setup for extracting entangled qubits from two 
parallel chains that support Majorana fermions. The quantum dots (dark yellow ellipsoids) and the 
superconducting grains (blue cuboids) are grown on a dielectric slab (silicon nitride). In the back of the slab, 
there are electrical gates (golden bars) for controlling the confining potential of the quantum dots as well as 
the couplings between the quantum dots and the superconducting grains. Each of the two parallel chains are 
labeled as two connected chains. The chemical potential of their boundary sites are controlled by the front 
gates (purple). A magnetic field B is applied perpendicularly to the chains to induce spin-split levels in the 
quantum dots.
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against quasi-particle poisoning as mentioned in the previous paragraph. Therefore, our proposal can be 
implemented under realistic experimental conditions.

Results
The model. For convenience of discussion, each chain in Fig.  1 is re-labelled as two connected 
sub-chains so that there are four sub-chains C1,C1′,C3,C3′, with respective boundary sites being (1,2), 
(1′ ,2′ ),(3,4),(3′ ,4′ ). The partition scheme is not unique, as long as the sites 2 and 3 are aligned to allow 
a controllable coupling between them. The system of a single chain has already been proposed by Sau 
and Sarma for realizing MFs36. We briefly review the experimental realization of the chain. The linear 
chain with N sites is composed of N quantum dots. The two adjacent quantum dots are coupled through 
a s-wave superconducting grain which induces pairing interaction in the quantum dots37. A Zeeman 
magnetic field B is perpendicularly applied to the chain, lifting the spin degeneracy, so that only a single 
quantum level effectively participates in the interaction between neighboring quantum dots. The chemi-
cal potential of each quantum dot is tuned by applying gate voltages individually, in order to resonantly 
couple the lower spin-split level of quantum dots to the Fermi level of superconductors. The lack of 
inversion symmetry in quantum dots induces Rashba spin-orbit interaction in the quantum dots, which 
results in spin texture in the quantum level indispensable for generating proximity effect in the neighbor-
ing sites5,6. The chain is shown36 to support a zero-energy Majorana edge mode for a wide range of system 
parameters with disorders. The edge mode is topologically protected against local perturbations on the 
bulk of the chain and thermal noise is also suppressed due to the substantial energy gap of the system22,23.

We study one sub-chain first. This corresponds to switching off the couplings between any two of the 
four sub-chains through performing appropriate electrical gating operations. The effective Hamiltonian 
is36,38

H w c c c c h c c c
1j

N

j j j j j j
j

N

j j j
1

1

1 1
1

( )∑ ∑μ= − + Δ + . . − ,
( )=

−

+ +
=

† †

where the operator cj
† (cj) creates (annihilates) an electron in the Fermi level (the lower spin-split level 

with a chemical potential μj) of the jth quantum dot, wj and Δ j are the tunneling and pairing amplitudes 
between the jth and (j +  1)th quantum dots, and h.c. denotes the Hermitian conjugation of its previous 
two terms. The subscripts here only describe the quantum dots in a sub-chain. Their meanings are dif-
ferent from the labelling for the boundary sites in Fig. 1. The parameters wj, Δ j and μj can be different 

Figure 2. The flow diagram (a) → (d) for extracting entangled qubits from two parallel chains that 
support zero-energy edge modes. (a) The two parallel chains, divided into four sub-chains, are initialized 
in the respective ground states. (b) The microwave is employed to measure the parity of the edges of each 
sub-chain, in order to collapse the wave function into an entangle state of the boundary sites (see Fig. 5 for 
details). Here the hollow grey lines indicate that the boundary sites are decoupled from the inner sites. (c) 
A swap operation between the site 2 and 3 is performed, resulting in a bipartitie entangled state where the 
two subsystems are (1,3) and (2,4). (d) Two Bell measurements are performed in order to teleport the state 
of 3 to 1′  and that of 2 to 4′ . In this way, entangled qubits are formed in the overall ends of the two parallel 
chains.
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from site to site, due to the limited precision in fabricating and controlling quantum dots. We assume 
wj >  0, as the phases of wj can be eliminated by an appropriate transformation c c ek k

i k→ θ . Also, Δ j is 
chosen to be a real number with a fixed sign (all positive or all negative) through carefully tuning the 
phases of the superconducting grains36.

The Majorana operators are defined as follows

d c c

d i c c j N1 2 2

j j j
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It can be seen that they resemble Pauli spin operators but anticommute for different fermionic sites 
(d d d d d d d1 0j j j j k k j

2= , = , + =†  for j ≠ k). Eq. (1) can be written in terms of the Majorana operators,
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We notice that when

w w0 4N N N1 1 1 1 1μ μ= = , Δ = , Δ = , ( )− −

the Majorana operators d1 and d2N will be absent from Eq. (3). The two operators form a zero-energy 
edge mode with its annihilation operator

Figure 3. The schematic diagram of the principal pulse sequence of our scheme for illustrative purposes 
only. (a) shows the process of measuring the parity of the boundary-site electrons of one sub-chain. It 
corresponds to Fig. 2(b). Here the microwave initially in the coherent state α  and the sub-chain C1 will go 
through three interactions U e UitHin, ,−†  designated by Eq. (12). B is the Zeeman field. Decreasing it by 
170 mT is to tune the gap of boundary-site electrons into resonance with the microwave for realizing U†,U. φ 
is the phase of the electron-microwave interaction in Eq. (11) and M is the waveform of the microwave. (b) 
corresponds to Fig. 2(c,d). Here Vjk is the gate voltage between the site j and k. Increasing it will decrease 
the potential barrier, which induces an interaction between the relevant sites.
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where η =  detW0 with W0 being a (2N− 2) ×  (2N −  2) real orthogonal matrix that block diagonalizes the 
coefficient matrix in Eq. (3) (its dimension is reduced by 2 due to the absence of d1,d2N), and η2 =  1. The 
remaining Majorana operators dj, (2 ≤  j ≤  2N −  1) form Dirac modes b k N1 1k, ( ≤ ≤ − )  with gener-
ally non-zero energies. See Fig. 4. The introduction of η in Eq. (5) is to ensure that the parity operators 
of the respective Dirac modes are equal: c c b b1 2 1 2j

N
j j j
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† † . Here the parity opera-

tor has two eigenvalues ± 1. The eigenvalue 1 means the number of electrons (or quasi-particles for b bj j
 

† ) 
is even, while − 1 means the corresponding number is odd. The Dirac modes bk

  diagonalize Eq. (3): 
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† . See Supplementary Materials for a detailed discussion.
We assume λk ≠ 0, so that the chain has only one zero-energy mode and the degeneracy of the ground 

states is two. It can be numerically verified that the assumption is valid when Δ j,wj ≠ 0, Δ j ≈  wj and 
μj ≈  0 throughout the chain. The experimental realization of Eq. (4) is feasible, as the chemical potential 
can be finely tuned through varying the gate voltage while the tunneling and pairing interactions can 
be adjusted through applying local tilted magnetic fields to the boundary sites37,39. See also Ref. 40 for 
alternative implementations of a quantum-dot chain with different tuning methods.

The zero-energy mode b bN N
 

†
 corresponds to two-fold degenerate ground states with definite parity:
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They satisfy b G b G k N0 1 2 1k k1 2= = , ( = , , , − )�� � , b G 0N 1 = , and b G 0N 2 =

†
. In realistic 

situations, the chain of quantum dots is coupled to a reservoir that is composed of various sources such 
as phonons, superconducting grains, noisy electric gates, etc. The reservoir may induce transitions 
between different quantum states of the chain. This is the phenomenon of quasi-particle poisoning24,25. 
Suppose the perturbation from the reservoir is sufficiently weak as compared with the energy gap of the 
system. The effect of the perturbation will only be to induce transitions between the two ground states, 
which can cause bit-flip errors and decoherence in quantum computation when the qubits are encoded 
using these states. The density matrix of the chain can be written as

Figure 4. The Majorana representation of the chain. A quantum-dot chain with N fermionic sites (N =  5) 
is represented by 2N MFs (each site by two MFs). The two boundary MFs are unpaired for the parameters in 
Eq. (4). They form a zero-energy mode, while all the other MFs are fused to form N −  1 new fermions. The 
lines of different colors connecting MFs represent the bonding strength according to Eq. (3).
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q G G q G G1 71 1 2 2+ ( − ) , ( )

where q depends on the details of the system-reservoir coupling mechanism (0 ≤  q ≤  1). Note that the 
density matrix is diagonal in the basis of G1  and G2 because the superposition between the two basis 
vectors differing by fermionic parity is not allowed25. One can use Josephson junctions to determine 
whether the ground state is G1  or G2  through measuring its parity41–43.

By using b G 0N 1 =  and b G 0N 2 =

†
, it is not difficult to find out the forms of the two ground states 

in real space of the chain (the details are presented in Supplementary Materials).
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where the states 00 11 2N N N1 1 1( )ηΦ = + /η( )
, , ,

 and 10 01 2N N N1 1 1( )ηΨ = + /η( )
, , ,

 are 
maximally entangled states between the boundary sites 1 and N, Se  and So  are some states in general 
forms for the sites from 2 to N −  1, and x0, x1 are coefficients to be determined x x 10

2
1

2( + = ). For 
N =  2, there are no inner sites and the two degenerate ground states are reduced to 

N1Φ η( )
,

 and 
N1Ψ η( )
,

, 
which has been considered in Ref. 37. The four sub-chains in Fig. 1 will have four respective states in the 
form of Eq. (7). We shall employ some schemes (discussed in subsequent subsections) to extract 

N1Φ η( )
,

 
or 

N1Ψ η( )
,

, and further to transform them into two useful entangled qubits. The parameter η is deter-
mined by wj,Δ j,μj in Eq. (3). When η =  1, the process of diagonalizing (3) corresponds to a proper rota-
tion with the real orthogonal matrix W0 acting on the vector d d d d N2 3 2 1

→
= ( , , , )−

. The case of 
η =  − 1 is an improper rotation which includes a reflection operation on d

→
. It is numerically found that 

when Δ j ≈  wj >  0, μj ≈  0, we have η =  1. This is the parameter regime that we would like to consider, 
while the case η =  − 1 involves changing the signs of an odd number of wj and Δ j (a reflection operation) 
which is not a typical situation in experiments. Therefore, without loss of generality, we shall assume 
η =  1.

The ground states (8) are a topological phase of the chain. This is because their structure depends only 
on the boundary conditions (4), not on the details of the inner sites, as in (4), wk,Δ k,μk in the bulk of 
the chain are arbitrary. However, their values will influence x0,x1 and the details of S Se o,  in (8), and 
also the energy gap Min 2 j( )( )Δ~  on condition that Δ j ≈  wj and μj ≈  0 throughout the chain, see Ref. 
36). As discussed earlier, we assume the degeneracy of the ground states is always two, otherwise addi-
tional ground states may recombine with (8), thus changing their structure. For instance, consider two 
chains that each chain has a zero-energy mode with two degenerate ground states. So, there are four 
ground states if the two chains are viewed as a single chain. The states with the same parity can be freely 
transformed within their subspace, and (8) is one possible result but not the only one.

Finally, we shall show that the ground states are protected against perturbations that respect charac-
teristic symmetries of the chain. The Hamiltonian (1) in general has two symmetries21,36: the 2  symme-
try (the parity operator P c c1 2j

N
j j1 ( )= ∏ −=
†  commutes with H, [P,H] =  0), and the particle-hole 

anti-symmetry (H changes to − H +  constant when cj changes to cj
†). In addition, the system has another 

symmetry when the condition (4) is fulfilled. We notice from Eq. (3) and (4) that d H d H[ ] [ ] 0N1 2, = , = . 
In fact, d1,d2N realize the particle-hole transformation on the boundary sites: d c d c1 1 1 1=† †, 
d c d cN N N N2 2 = −

† † . Define a unitary operator X =  d1d2N. We have [X,P] =  [X,H] =  0, Xc X c1 1= −† †, 
Xc X cN N=† † , while X c X c] [ 0j j


 , = ,  =

†  for 2 ≤  N −  1. Namely, X realizes the particle-hole transforma-
tion on the two boundary sites simultaneously. Therefore, the eigenvalues of P,X can be used to classify 
the eigenstates of H. In particular, X G i G k1 1 2k

k
k

1 η= (− ) , = ,+ . Consider a perturbation Hp 
(static or time-dependent) whose energy scale is much smaller than the energy gap of the chain, so that 
the induced transition to excited states can be neglected and Hp effectively only acts on the ground-state 
subspace23. In this situation, either [Hp,X] =  0 or [Hp,P] =  0 will guarantee the stability of the ground 
states (namely G H G 0p2 1 = ). In our system, [Hp,X] =  0 corresponds to Hp in general not acting on 
the edges of the chain (unless Hp involves only d2,d2N−1,iX of the edges), which is a topological condition 
of Hp. Hence the protection of the ground states is said to be topological. [Hp,P] =  0 corresponds to Hp 
typically containing no hopping or paring interactions with environment, which offers an extra possibil-
ity of protecting the ground states when the topological condition of Hp is not fulfilled.

In addition to the topological protection mentioned above, another interesting property of the system 
is that from Eq. (7) and (8) the reduced state of the two boundary sites can be calculated as

r r1 9N N N N1 1 1 1Ψ Ψ + ( − ) Φ Φ , ( )
η η η η( )
,

( )
,

( )
,

( )
,
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where r q q x1 2 0
2= + ( − ) . It can be seen that the probability distribution (r,1 −  r) of the two maxi-

mally entangled states depends on the system-reservoir coupling through q and the inner part of the 
system through x0. However, the states 

N1Ψ η( )
,

 and 
N1Φ η( )
,

 with distinct parities are independent of 
these factors. This indicates that the states of the boundary sites with a definite parity are robust against 
quasi-particle poisoning as well as the disorders of the bulk, on condition that the perturbation from the 
reservoir is much smaller than the energy gap of the system. Note here that η is fixed for a specific sys-
tem, provided the same condition is fulfilled.

Measurement scheme. The expression (9) motivates us to extract the entangled states of the bound-
ary sites with a definite parity. The entangled states can be viewed as a charge qubit in an equal super-
position of its two basis vectors 00 N1,

 and 11 N1,
, or 10 N1,

 and 01 N1,
. We shall show in the next 

subsection that four such qubits can be used to prepare two entangled qubits. At this juncture, we would 
like to remark that these qubits are different from the topological qubits which are encoded in the degen-
erate ground state subspace of two chains (i.e. the encoding basis vectors are G G1 1  and G G2 2 , or 
G G1 2  and G G2 1 , cf. Eq. (6)). Although our qubits are no longer topologically protected against the 
environmental noise, there are still advantages over the topological qubits. For example, the topological 
qubit is susceptible to the quasi-particle poisoning24,25 which induces transitions between G1  and G2  
causing bit-flip errors and decoherence in quantum computation. Suppose the topological qubit is in the 
state G G G G 2q 1 2 2 1ψ = ( + )/  encoded in two chains. The reservoir is simulated using a min-
imal model24: an additional fermionic site in the vacuum state 0  and coupled to the first chain with 
the Hamiltonian24,44 H c c c c b bd ( )ε κ= + ( − ) + 

† † † , where c†,c b b( ), 

†  are the creation and annihila-
tion operators of the fermionic site (the zero-energy edge mode of the first chain), and ε is the energy 
of the fermion. With the time evolution e 0it H

q
d ψ− , the topological qubit will be entangled with the 

reservoir, which destroys the coherence of the qubit (for special parameters e.g. t0 2ε π κ= , = /  the 
qubit gets disentangled with the reservoir with a flip in half of the encoding basis: G1  and G2  of the 
first chain are interchanged). In contrast, our qubit before extraction is in the state (9) for which the 
quasi-particle poisoning only affects the probability distribution of the two types of encoding for the 
qubit 

N1( Ψ η( ) ,  or 
N1 )Φ η( )
,

, while the coherence of the qubit (i.e. the superposition between the encod-
ing basis vectors) remains intact. Therefore, the state (9) can be regarded as a quantum memory for 
preserving the qubits (or entanglement) encoded in the two boundary sites. As will be shown later in the 
present subsection, during the extraction the boundary sites are isolated from the environment (except 
the microwave) through increasing the confining potential for them. Thus the quasi-particle poisoning 
is not an issue in this process.

To extract the entangled states of the boundary sites, one could first determine the ground state 
through measuring its parity41–43. This is sufficient to achieve the extraction for N =  2. For N >  2, it is 
necessary to further measure the parity of all the inner-site electrons in order to collapse the ground state 
(8) into a configuration that the boundary sites are either in 

N1Ψ η( )
,

 or in 
N1Φ η( )
,

. This measurement 
can be performed by using single-electron detectors to directly probing the electron in each of the inner 
sites. The summation of all the measurement results (0 or 1 for each inner site) gives an even or odd 
number representing the parity of all the inner-site electrons. However, the method requires the inner 
sites to be decoupled from each other, otherwise the detector will only couple to the eigen modes of the 
chain and fail to measure the electron of the individual sites. The requirement can be fulfilled through 
increasing the confining potential for each inner site, which is complex for a long chain. A simpler way 
is to directly measure the parity of the boundary-site electrons. The measurement should be coherent, 
not by counting the electrons in the boundary sites. Namely the reduced state (9) should be collapsed to 
one of its two terms when the measurement is done. To this end, one could couple a microwave disper-
sively to the boundary sites in order to measure their parity. There are three ways of realizing the disper-
sive coupling. (1). A microwave cavity (the transmission line resonator, TLR) can be designed with 
protrusions45,46 in the region of the boundary sites of the sub-chain in order to concentrate the electro-
magnetic field locally, as shown in Fig.  5. The interaction of the microwave with the inner part of the 
sub-chain is neglected. (2). A local magnetic field39 can be applied adiabatically to the boundary sites, in 
order to increase the energy gap between the spin-split levels of the boundary-site electrons which will 
be off-resonant with the inner part of the sub-chain. In this way, the microwave, when applied to the 
entire sub-chain, will interact only effectively with the boundary sites (i.e. the microwave is off-resonant 
with and thus decoupled from the inner part of the sub-chain). (3). The quantum state of each boundary 
site can be transferred to an ancillary site through hopping of electrons (e−itH, H w c c c c1 2 2 1= − ( + )† † , 
t

w2
= π ). The ancillary sites are not aligned with the chain, and the parity measurement will be performed 

on them. They can even form the new boundaries of the original chain, with the overall state described 
by Eq. (7). The advantage of the third scheme is that the interaction of the microwave with the inner part 
of the chain is completely eliminated. Here we only discuss the first scheme. Apparently, the discussion 
when slightly modified applies to the other two schemes as well.
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We shall show that after a proper time of interaction, the boundary sites initially in the state (9) and 
TLR initially in the coherent state α  will evolve to

r r1 10N N N N1 1 1 1α α α αΨ Ψ ⊗ − − + ( − ) Φ Φ ⊗ , ( )
η η η η( )
,

( )
,

( )
,

( )
,

where α±  are the coherent states of TLR with the respective amplitude ± α, and other symbols are 
those in Eq. (9). It can be seen that the state of the boundary sites will collapse to 

N1Φ η( )
,

 or 
N1Ψ η( )
,

 
through measuring the coherent states of the microwave, provided the coherent states are orthogonal. 
The orthogonality can be achieved to a good approximation when the amplitude α is sufficiently large 
so that e 12 4 2

α α− = α−


. The two coherent states can be measured through homodyne detec-
tion by means of parametric amplifiers and mixers47.

The remaining part of the subsection will concentrate on the derivation of Eq. (10), and based on 
it another measurement scheme is mentioned in the last paragraph. First, we suddenly increase the 
strength of the confining potential in the direction along the chain for the boundary sites so that they 
are decoupled from the inner sites. This is a process of quantum quench. The effective Hamiltonian 
(including the measurement setup in Fig. 5) with rotating-wave approximation is

H f f f f Je a f c f c h c
2 11in N N

i
N N1 1 1 1( ) ( )δ

. .= + + + + , ( )
φ† † † †

where δ =  Ω  −  ωm is the detuning between the resonant frequency (Ω ) of the quantum dots (the energy 
gap of the spin-split levels) and the frequency (ωm) of the microwave photons, c cj j,

† are defined in Eq. 
(1), f fj j( )†  is the annihilation (creation) operator for the upper spin-split level of the jth quantum dot 
around the Fermi level (see Fig. 5), a†, a are the creation and annihilation operators of the microwave 
photons, J is the spin-photon coupling strength induced by the spin-orbit interaction in the quantum 
dots48 (see Supplementary Materials for the estimation of J), J 1δ/ 

 (the dispersive coupling regime), 
h.c. denotes the hermitian conjugation of its previous terms, and φ is a tunable phase. The Hamiltonian 
is written in the interaction picture with the free part H a a f f f fm N N0

1
2 1 1( )ω= + + +† † † , and the 

chemical potentials of the boundary sites are finely tuned to zero.
The Hamiltonian (11) essentially describes the interaction between photons and two-level atoms, if 

we define the raising and lowering operators for the two-level atoms as f cj j jσ =† † , c fj j jσ = † . The 
anti-commutator f f c c f f c c2 1j j j j j j j j j j j jσ σ σ σ+ = + − =† † † † † †  is fulfilled when there is exactly one 
electron in the two spin-split levels around the Fermi level. However, when there is no electron around 
the Fermi level of some boundary site, the above anti-commutator equals 0 and thus is not well-defined. 
In this situation, the microwave will not effectively interact with that specific site. Therefore, the number 
of the two-level atoms (denoted as N0) in the essential TC model is not fixed; it depends on the number 

Figure 5. The schematic diagram of the parity measurement. A microwave transmission line resonator is 
employed to measure the parity of the boundary-site electrons of a sub-chain, with f cj j/

† † (j =  1,N) the 
creation operator of the upper/lower spin-split energy level (red line) of the boundary quantum dots. Here 
the interaction of the boundary sites with the inner part of the chain has already been switched off through 
increasing the confining potential for the boundary sites. The gemometry of the setup allows the 
electromagnetic field to be concentrated on the boundary sites, and its interaction with the inner part of the 
chain is neglected. See also Ref. 45,46 for similar geometric designs where plunger gates/protrusions are 
used to concentrate the electromagnetic field. The accuracy of this scheme can be enhanced through 
applying local magnetic fields to make the boundary sites off-resonant with the inner part of the chain.
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of electrons around the Fermi levels of boundary sites. The parity of this number is what we want to 
measure.

Next we apply a unitary transformation U a aexp J
j j j( )σ σ= 


∑ − 

δ
† †  to the Hamiltonian (11) for 

φ =  0. Expanding to second order in J/δ, we have47,49

H U H U J J a a J

12
in in

j
j j

j
j
z

j k
j k j k

2 2 2

( )∑ ∑ ∑δ
δ

σ σ
δ
σ

δ
σ σ σ σ′ = ≈





+






+ + + ,
)≠

† † † † †

where j
z

j j j jσ σ σ σ σ= −† †. The terms proportional to J3 are neglected for an initial coherent state of the 
microwave with its amplitude α satisfying J2α δ/( )

.
We notice that the initial state of the N0 atoms is always in the lower spin-split levels, so that the last 

summation in Eq. (12) is essentially 0. For the microwave initially in a coherent state α  and the number 
of the boundary-site electrons to be N0 (in a number state created by cj

†’s), the state for a time evolution 
T =  πδ/J2 becomes e N N1iTH N

0 0
in 0α α′ = (− )− , where 1 N0α(− )  is a coherent state of the micro-

wave with amplitude 1 N0α(− ) . It can be seen that this result is consistent with Eq. (10). We also notice 
that U,U† in Eq. (12) can be realized through adiabatically tuning the gap of the boundary-site electrons 
into resonance with the microwave and then adjusting the phase φ to be π/2, − π/2 respectively for a 
time evolution t =  1/δ (see Eq. (11) and Fig. 3(a)). The microwave is stored in a quantum memory50,51 in 
the process of tuning the gap of the boundary-site electrons. Hence the derivation is finished. 
Experimentally36, ωm/(2π) ~ 114.31 GHz, Ω /(2π) ~ 120.74 GHz (0.5 meV), J/(2π) ~ 214 MHz, α ~ 1.5 and 
T ~ 70 ns. If we choose T =  πδ/(2J2) instead of πδ/J2, the state will evolve to i NN

0
0α( )  which can still 

be used to measure the parity of N0. However, despite the advantage of shorter time, measuring the 
corresponding four coherent states will involve higher error rates as the overlap among them increases.

Another method for measuring the parity of the boundary-site electrons is through measuring the 
transmission spectrum of TLR47. As can been seen from Eq. (12), the TLR frequency is shifted by 
J j j

z2 δ σ( / )∑  which depends on the state of the boundary sites. The shift is − J2/δ for 
N1Ψ η( )
,

 and − 2J2/δ 
for 11 N1,

 (no shift for 00 N1,
). If we drive TLR at the frequency ωm −  J2/δ, the photon will be transmitted 

for 
N1Ψ η( )
,

 and reflected for 
N1Φ η( )
,

. To make this method accurate, the photon loss of TLR, which 
causes spectral line broadening, need be reduced.

Useful entanglement resource. The entangled states extracted from (9) are not a useful entangle-
ment resource: e.g. one can neither test Bell inequalities52 nor perform quantum computing34 with these 
states. This is because the two levels of one subsystem of the entangled states are represented by the 
absence 0( )  and presence 1( )  of a fermion in a single site. There is no physical mechanism that could 
be used to prepare a superposition of the two levels differing by fermionic parity: 0 1α β+ , 

12 2α β( + = ). It’s required to use two fermionic sites27,28, e.g. 0 10 1 01≡ , ≡ . This is similar 
to the encoding of topological qubits. Indeed, we have already called the extracted entangled state a 
charge qubit rather than two entangled qubits in the previous subsection. An interesting question is 
whether or not it is possible to prepare two entangled qubits. This can be done through the following 
scheme. Suppose we have extracted an entangled state from each sub-chain shown in Fig. 2(a) and all 
the states are 

N1Ψ η( )
,

 with η =  1. Let us focus on the sub-chain C1 and C3 first. The state of the sites 
1,2,3,4 in Fig. 2(c) is

10 01
2

10 01
2 131234ψ =

+ +
( )

Then, we swap the states of the site 2 and 3 through the time evolution with the Hamiltonian 
H w c c c c23 2 3 3 2= − ( + )† † . Note that it H i iexp 00 00 11 11 01 10 10 0123(− ) = + + +  
when t

w2
= π . So we have

e
i i1

2
10

10 01

2
01

10 01

2 14
it H

1234 13
24 24

13
24 2423 ψ =














+ 



+






+ 











,

( )

−

where we have grouped the states of the site 1 and 3 together (and also for 2,4). The swap operation in 
Eq. (14), involving a phase factor i, is referred to as the i-swap. This is different from the ideal exchange 
operation (without the phase i), which was used e.g. in the spin system53 to simulate the Hanbury 
Brown-Twiss Interferometer in quantum optics (the i-swap can also be used but it is dispensable there). 
It can be seen that we have obtained a maximally entangled state with two qubits encoded by four fer-
mionic sites: the sites 1,3 for one qubit and 2,4 for the other. The logical basis are 0 101 13≡ , 1 011 13≡  
for the first qubit, and 0 102 24≡  1 012 24≡  for the second. In fact, the success of creating the 
entangled state is attributed to the phase factor i mentioned earlier; without it the above process is not 
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possible54. See Fig. 6 for the schematic diagram of the swap operation. One drawback of the entangled 
qubits is that the site 3 is far from the site 1 so that it is difficult to induce interaction between them 
(similar for the site 2 and 4). This problem can be solved by using the chain C1′ and C3′ as shown in 
Fig. 2 (a). Both of the chains are in the maximally entangled states as C1 and C3. Then, one can perform 
teleportation to transfer the state of the site 3 to 1′  and that of 2 to 4′ . The detailed scheme is discussed 
in Supplementary Materials. Finally, we obtain a useful maximally entangled state with two logical qubits 
encoded by the sites 1,1′  and 4,4′  respectively. See Fig. 2(d).

The above scheme is still feasible when the measurement result for the parity of the boundary-site 
electrons of C1 and/or C3 is even, with a little difference in the final entangled state. For instance, if the 
parity of the boundary sites of C1 is even, the logical basis for the qubit in the sites 1,1′  will be 0 001 11≡

′
, 

1 111 11≡
′
. In fact, the local gates for correcting the bit-flip errors or phase errors in the teleportation 

is dispensable for achieving the final entangled qubits. For instance, without performing the bit-flip gates, 
the basis of the relevant qubit will change from { 00 11 },  to { 10 01 },  (or reversely), but the entan-
glement is equivalent.

Decoherence. In realistic experiments, there are photon losses, and the quantum dots have dephasing 
due to the fluctuations of the electrical gate bias, in addition to the spontaneous emission. We use the 
master-equation approach to simulate the decoherence process.

d
dt

i H D a D n D n D

D n D n D

[ ] [ ]
2

[ ] 1 [ ] [ ]

2
[ ] 1 [ ] [ ] 15

in
z

N
z

N N N N N N

1 1 1 1 1 1 1

N

1ρ
ρ κ ρ

γ
σ ρ κ σ ρ κ σ ρ

γ
σ ρ κ σ ρ κ σ ρ

= − , + + + ( + ) +

+ + ( + ) + , ( )

φ

φ

†

†

where Hin is defined in Eq. (11), , κ is the photon decay rate 
of TLR, 

j
γφ  and γj are the dephasing rate and spontaneous emission rate of the boundary quantum dots 

(j =  1,N), and n e 1j
k T 1B R= ( − )Ω/ −  is the mean photon number at the reservoir temperature TR and 

the transition frequency Ω  between the spin-split levels of the jth quantum dot. Note that we have 
ignored the decoherence during the time evolution for realizing U†,U in Eq. (12), as their operation time 
~30 ps, much smaller than the typical decoherence time (~1 μs). Assume κ/2π~1 MHz, γj/2π ~ 0.2 MHz, 

2 0 5
j

γ π/ .φ ~  MHz29, TR =  10 mK, and we consider the time evolution according to Eq. (15). We calculate 
the fidelity of the reduced state of the two boundary sites with the ideal state 

N1Φ η( )
,

 or 
N1Ψ η( )
,

, when 
the microwave’s state is measured α( ± ). The fidelity between two states ρ and τ is defined55 as 
F tr 1 2 1 2ρ τ ρ τρ( , ) = / / . The numerical simulation shows that the better fidelity 0.97 is obtained when 
the microwave’s state is measured to be α−  (the other fidelity is 0.84 for the microwave’s state to be α
; the large difference between the two fidelities is attributed to the fact that the state 

N1Ψ η( )
,

 is less sus-
ceptible to the symmetric phase errors than 

N1Φ η( )
,

). The result indicates that our measurement scheme 
is feasible under realistic experimental conditions. If we ignore the further decoherence during the time 
evolution in Eq. (14), as it’s much shorter (~2 ps) than the decoherence time (~1 μs), the final fidelity for 
the entangled qubits is calculated to be as high as 0.9.

Figure 6. The schematic diagram of the swap operation . ξ′23 is the potential barrier between the quantum 
dot 2 and 3 (see Fig. 2(c)). The barrier is sufficiently high so that the coupling between the two quantum 
dots is switched off. When the barrier is suddenly decreased from ξ′23 to ξ23, the hopping interaction 
between the two sites is induced (see the green line with arrows). This interaction results in the swap 
operation as shown in Eq. (14). The decrease of the barrier is realized through increasing the gate voltage 
between the two sites. See Fig. 3(b). After the swap operation is finished, the barrier is restored to the higher 
value ξ′23 in order to switch off the interaction between the two sites.
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Discussion
We have shown that a pair of maximally entangled solid-state charge qubits can be extracted from two 
parallel chains of coupled quantum dots that support zero-energy edge modes. The edge mode is com-
posed of unpaired Majorana fermions. The extracted entanglement is a useful resource for quantum 
computing34. The details of the entangled state depends on both the parity measurement of the 
boundary-site electrons in each chain (see Eq. (9)) and the teleportation between the chains. Our scheme 
provides an illustration of localizable entanglement26, which is feasible under realistic experimental con-
ditions, as it allows for finite temperature effect and local noise. That is, the ground states of the chain, 
from which the entangled charge qubits are extracted, are protected against thermal excitations due to 
the substantial energy gap, and they are also protected against perturbations that either respect the 
particle-hole symmetry of the boundary sites (a topological protection) or respect the 2  symmetry of 
the chain. Even if the perturbation does not respect the symmetries of the system, it still cannot affect 
the extraction of the entangled qubits, as long as the perturbation is much smaller than the energy gap 
of the system. Namely, our scheme is robust against quasi-particle poisoning24,25. In addition, it is only 
required to finely tune the parameters close to the boundary sites (see Eq. (4)), while small disorders in 
the inner sites (the bulk of the chain) is allowed.

The fidelity for the entangle qubits can be as high as 0.9 for the decoherence that is mainly due to the 
noise of the electrical gate bias. As fluctuations of the environmental charges trapped in the insulating 
substrate or at the interface of the heterostructure may further reduce the coherence time30, new growth 
methods for materials with low trapped charge density31, as well as the charge echo techniques32, can 
alleviate the decoherence. Our scheme, when combined with the purification protocols33, serves as a 
quantum repeater for distributing entanglement. The distance of the distribution are restricted mainly 
by the noise which is required to be much smaller than the energy gap of the system. The total noise 
grows linearly with the distance assuming independent and identical reservoirs for individual sites. The 
growth is less severe than the scheme for distributing entanglement through quantum state transfer, 
where the noise grows exponentially with the distance56,57. Furthermore, due to the advantage (over the 
implementation using quantum wires) that the coherence length of the electrons are only required to be 
longer than the width of the individual superconducting grains between the nearest-neighbour quantum 
dots36, the distance of the distribution can be increased promisingly to macroscopic scale (10−4 m). This 
scale is compatible with the wavelength of the microwave (~3 mm) for realizing the parity measurement. 
Different from the existing proposals of quantum repeaters where postselection of photon states are 
used58,59, our proposal involves manipulations of MFs (edge states).

Our proposal provides an experimental method for probing the structure of the topological ground 
states and might enable us to simplify the schemes of topological quantum computation using MFs. 
For instance, ancilla MFs are needed for realizing the topological two-qubit entangling gate, unless the 
four-MF interaction is realizable60. But the corresponding edge states can be used for extracting conven-
tional entangled qubits through the swap of Dirac fermions in our scheme (see Fig. 2(c)) without the aid 
of ancilla MFs. This difference can be further investigated, which helps to devise a way of removing the 
need for ancilla MFs in the process of performing the topological two-qubit entangling gate. In addition, 
future work can be pursued on the scenarios that the disorders close to the boundary sites are present 
and/or the disorders in the bulk are too large, in order to determine the range of parameters for a stable 
edge mode and the corresponding entangled qubits to exist.
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