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Abstract

Brain development involves precisely orchestrated genetic, biochemical, and mechanical

events. At the cellular level, neuronal proliferation in the innermost zone of the brain followed

by migration towards the outermost layer results in a rapid increase in brain surface area,

outpacing the volumetric growth of the brain, and forming the highly folded cortex. This work

aims to provide mechanistic insights into the process of brain development and cortical fold-

ing using a biomechanical model that couples cell division and migration with volumetric

growth. Unlike phenomenological growth models, our model tracks the spatio-temporal

development of cohorts of neurons born at different times, with each cohort modeled sepa-

rately as an advection-diffusion process and the total cell density determining the extent of

volume growth. We numerically implement our model in Abaqus/Standard (2020) by writing

user-defined element (UEL) subroutines. For model calibration, we apply in utero electropo-

ration (IUE) to ferret brains to visualize and track cohorts of neurons born at different stages

of embryonic development. Our calibrated simulations of cortical folding align qualitatively

with the ferret experiments. We have made our experimental data and finite-element imple-

mentation available online to offer other researchers a modeling platform for future study of

neurological disorders associated with atypical neurodevelopment and cortical

malformations.

Author summary

Brain development and cortical folding is a highly dynamic process that results from the

interaction between gene expression, cellular mechanisms, and mechanical forces. Here,

we expand on existing mathematical models of brain development and cortical folding to

capture the behavior of multiple different subpopulations of neurons. By calibrating our

biomechanical model to our novel experiments on ferrets, we can track the distribution of

neurons over time and observe how the brain grows and develops its characteristic folds.

Our calibrated model captures interactions between cell behavior and tissue deformation
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and offers more detailed information about the orchestrated migration of neuronal sub-

populations. This work offers new mechanistic insights into brain development and opens

the door to future investigations of atypical brain development caused by disrupted neu-

ronal activities, particularly those alterations associated with injury, exposure, or treat-

ment at a specific location or time during development. Finally, our experimental data

and numerical implementations are provided as a resource online for the use of other

researchers.

1 Introduction

Cortical folding—a process that turns smooth fetal brains into convoluted adult brains—maxi-

mizes the cortical area while minimizing the length of axonal connections for a given brain

volume. It is a hallmark of advanced brain function and intelligence [1, 2], offering gyrence-

phalic mammals superior information processing capabilities than other species with smooth

or lissencephalic brains [3]. Atypical neurodevelopment and cortical malformation are associ-

ated with neurological disorders such as autism spectrum disorder [4], schizophrenia [5], and

epilepsy [6]. Hence, a deeper understanding of neurodevelopment is of great interest and

could prove to be essential for increased understanding, improved diagnostics, and effective

treatments of developmental disorders.

During early neurodevelopment, radial glial cells in the ventricular zone undergo multiple

rounds of asymmetric cell divisions. As a result, intermediate progenitor cells are produced

and then migrate into the subventricular zone, where they further proliferate to produce post-

mitotic neurons (Fig 1, left). The enlarged subventricular zone, featuring inner and outer

regions, serves as one of the characteristic features in mammalian brains [7]. Eventually, the

neurons migrate through the intermediate zone towards the pial surface along the scaffolding

of radial glial fibers. Finally, neurons accumulate at the cortical plate to form a six-layered cor-

tex. They follow an inside-out fashion [8–10], meaning that the younger neurons bypass their

older counterparts to reside near the pial surface (Fig 1, top). The early phase of neuronal

migration is accompanied by a radial expansion (thickening) of the cortex, while the later

accumulation of neurons results in tangential expansion of the cortical plate. The onset of cor-

tical folding (Fig 1, right) is consistent among species, occurring after most neurons have been

born and have completed their migration. In ferrets, this is approximately P6–P10 (day 6–10

after birth, where P0 is the day of birth) (Fig 2, top). Neuronal connectivity and axon forma-

tion become increasingly active around P5, and the cortical organization becomes stable one

month after birth [11, 12]. The fan-like distribution of radial glial fibers induced by the buck-

ling is consistently observed in gyrencephalic brains, which is essential for regulating neuronal

migration and cortical folding [13, 14].

Multiple hypotheses of cortical folding have prevailed throughout history, and debates as to

whether biology or mechanics drives cortical folding are still ongoing [12, 15]. The earliest

hypothesis suggested that folding could be a passive consequence of mechanical forces acting

on the expanding brain, including cerebrospinal fluid pressure and the constraints from the

cranium [3]. However, experimental work by [16] showed that the forces primarily responsible

for folding reside within the cortex. Nowadays, two major hypotheses are widely accepted by

the community. First, the differential growth hypothesis proposed by [17] suggests that the

growth rate mismatch between cortex and subcortex leads to a mechanical instability [18]. Sec-

ondly, the axonal tension hypothesis [19] suggests that the patterned axonal tension between

specific cortical regions drives cortical folding. Experimental evidence has challenged these
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theories; in the latter case, experiments and modeling have led to a revised theory that stress-

dependent axon growth and remodeling mediates, rather than drives, cortical folding [20].

However, it is likely that these phenomena work together to instigate and govern the develop-

ment of cortical folds.

A number of continuum models of cortical folding (e.g. [21, 22]) have been developed to

facilitate the in silico simulation of gyrification, leading to a deeper understanding of the forces

and fundamental features involved [23]. Recently, multifield models, which couple cell density

and tissue deformation, have enabled researchers to capture different aspects of brain develop-

ment, including cell proliferation, migration, and diffusion, and their effects on tissue growth.

The earliest papers in this field explored particularly the effects of velocity orientation [24] and

cortical-subcortical stiffness and growth ratios [25]. Later, this general approach was extended

to include the dependence of tissue stiffness on cell density [26] and to investigate the effect of

signaling molecules on cell migration [27]. In this paper, we build on this multifield contin-

uum framework to develop a computational model of the migration of multiple distinct

cohorts of neurons in the developing brain, and to calibrate it using images of ferret brains in

early development (Fig 2, bottom).

Ferrets are an ideal animal model for the study of cortical folding because of their resem-

blance to human brain structure and their conveniently short gestational period. Most impor-

tantly, unlike humans, where cortical folding takes place in utero during gestation, ferret

brains fold postnatally [28, 29]. The sequence of developmental events are quite similar,

although the timing varies considerably between species, primarily attributed to interspecies

differences in the lengths of gestation [12, 30].

Experimental investigations of the genetic, biochemical, anatomical, and mechanical char-

acteristics of developing brains have helped to advance our understanding of

Fig 1. Schematic of neurodevelopment as represented in the proposed model. Intermediate progenitor cells (light

green) proliferate in the subventricular zone and mature into neurons before migrating outwards along radial glial

fibers (orange) to arrive at the cortical plate. There, they arrange themselves into layers, with younger neurons (dark

green) bypassing existing layers to reach the pial surface (top). The radial and tangential expansion of the cortical plate

results in cortical folding (right). In the proposed model, the total deformation throughout development is described

by the deformation gradient F, which can be decomposed into components that describe the local growth as a result of

cellular proliferation and migration (Fg) and the passive physical deformation that accompanies cortical folding (Fe).

The orientation of radial glial cells in undeformed and deformed states are denoted as unit vectors N and n,

respectively. For detailed explanations of these variables, please refer to Section 4.4.

https://doi.org/10.1371/journal.pcbi.1010190.g001
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Fig 2. Experimental data used for calibration of the computational model. Top: time alignment between experiments and simulations. Ferrets were in
utero electroporated between E31 and E37, and brain sections were prepared and imaged between E39 and P16; these dates correspond to simulation times

between 0 and 27 days (0 d to 27 d). Images of ferret brains are reproduced from [34]. Bottom: regions of interest (ROI) taken at consistent locations in N = 8

typically developing ferret brains, grouped based on their imaging timepoint (E39–40, P5–6, and P16). For each timepoint, we show neuron cohorts born at

different embryonic times (E31, E33–34, and E36–37) labeled with EGFP (bright green). As expected, younger neurons occupy the outermost of the cortex’s

six laminae. For consistency, the data marker used in the results is shown for each of the eight samples; color indicates the cohort (cohort 1 is blue, cohort 2 is

purple, and cohort 3 is red) while color saturation indicates the imaging timepoint (with lighter and darker colors representing earlier and later imaging,

respectively). Scale bar, 500 μm. For detailed methods on the experimental approach, please refer to Section 4.2.

https://doi.org/10.1371/journal.pcbi.1010190.g002
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neurodevelopment and cortical folding. Although various techniques, ranging from magnetic

resonance imaging to microdissection and nanoindentation [20, 31–33] have been utilized,

our knowledge about the molecular mechanisms underlying formation, function, pathophysi-

ology, and evolution is still limited. Genetic manipulation techniques, on the other hand, offer

a novel means of measuring, monitoring, and modifying the process of development [35–37].

Our recent work [38] has established a method to express genes of interest in ferret neurons

via in utero electroporation (IUE). This has several advantages over other conventional meth-

ods [39]. First, it takes only a few hours to perform on ferret embryos; ferret kits expressing

transgenes can be obtained after a couple of days. Secondly, the expression of transgenes in the

embryo is still detectable several months after the birth. Thirdly, the location of the transfected

area can be controlled by conducting IUE at different embryonic dates. For example, transgene

expression in deep cortical and superficial cortical neurons could be achieved by IUE at E31

and E37 (embryonic days 31 and 37), respectively (Fig 2, bottom). Because of these advantages

and the rich experimental evidence produced, IUE is a powerful aid for the validation and cali-

bration of theoretical and computational modeling.

This paper’s contributions are threefold. First, we refine previous multifield models of brain

development [24–26] by incorporating multiple cohort neurons with neuronal migration of

each cohort modeled as an advection-diffusion process. Secondly, we calibrate and validate

our novel biomechanical model of neuronal migration using our innovative experimental

approach for labeling and tracing neurons in the developing ferret in vivo. The model calibra-

tion is done via a genetic algorithm. Finally, we numerically implement the model by writing a

user element subroutine (UEL) for the finite element program Abaqus/Standard (2020) [40]

and provide them online for the community.

2 Results and discussion

First we observe and quantify the behavior of neuronal subpopulations in brain development

and their effect on cortical folding; then we use this data for the calibration of a numerical

model of the spatiotemporal evolution of neuron cell densities and cortical folding. Our intent

is the following: 1) to understand cortical folding from a cellular perspective; 2) to demonstrate

a robust numerical model of cortical folding; 3) to investigate the effect of material parameters

on neuronal migration and cortical folding; and 4) qualitatively compare our model results to

observed trends.

2.1 Experimental data captures both tissue growth and cell migration

To confirm that our experimental setup captures the known pattern of cortical development,

we performed IUE experiments on ferret embryos (for detailed methods, please refer to section

4.2). We followed our well-established procedure for expressing GFP in the neurons of the fer-

ret cerebral cortex [38, 41], and for subsequent sacrifice and imaging [42, 43]. Using IUE, we

defined and tracked three distinct cohorts of neurons born at different embryonic stages. The

first cohort, labeled at E31, went on to form the inner layers of the cortex (5/6), the second

cohort, labeled at E33–34, formed the middle layers (3–5), and the last cohort, labeled at E36–

37, formed the outer layers (2/3) [38] (Fig 2, bottom). Here we consider N = 8 brain sections,

organized into three imaging timepoints (timepoint 1 (E39–40), timepoint 2 (P5–6), and time-

point 3 (P16)) and three cohorts of neurons, representing different IUE timepoints (cohort 1

(IUE at E31), cohort 2 (IUE at E33–34), and cohort 3 (IUE at E36–37)).

From visual inspection of the resulting image, we see that the distance from the subventri-

cular zone to the cortical plate increases from timepoint 1 to 3 (Fig 2, bottom). Averaging
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across all images in each timepoint, the lengths increased from lexpt1 ¼ 1390mm to lexpt2 ¼

1997mm to lexpt3 ¼ 2390mm.

Furthermore, the GFP-positive neurons, representing the cohort of neurons that was

labeled by IUE at a given time, are seen to occupy successively further regions of the cortical

plate. This is in agreement with the known pattern of cortical formation, where younger neu-

rons bypass older neurons to form outer layers [8–10].

Here we note that the small peaks seen in the experimental data for cohorts 1 and 2 at the

first timepoint, which are not predicted by our model, represent GFP-positive fibers, not neu-

rons, and should be ignored.

2.2 Radial cell density profiles show that younger neurons form successive

outer layers of the cortex

To gather experimental data for our model calibration we analyzed images resulting from our

IUE experiments. From each image, we selected a region of interest (ROI) consisting of a rect-

angular region spanning from the inner subventricular zone to the marginal zone, whose

length coincides with the radial direction of the brain, such that neuronal migration is domi-

nant in only one direction (Fig 3). We then used ImageJ [44] to count the GFP-labeled neu-

rons, calculate their density at each location, average this density across the width of the

region, and normalize it along the length, to determine a one-dimensional radial cell density

profile (Fig 3, right). Note that while the profile only varies along the radial position, we deter-

mined the cell density per unit volume by using information about the width and the assumed

depth of the image. Collectively, these data capture both the overall expansion of the brain and

the careful inside-out arrangement of neurons, from oldest to youngest, in the cortex. These

data were used for our model calibration.

Fig 3. Workflow of cell density calculation. The ferret brain sections could be divided into five anatomical zones: marginal zone (MZ), cortical plate (CP), intermediate

zone (IZ), outer subventricular zone (OSVZ), and inner subventricular zone (ISVZ). First, we select an ROI aligned radially, such that cell migration along radial glial

fibers consistently occurs along the length of the domain. Secondly, the high-resolution image is imported into ImageJ [44] and neurons are segmented based on the color

threshold. Each neuron and its coordinates are then labeled and recorded automatically. Thirdly, we post-process the data in Matlab to generate a neuron density plot by

counting neurons in each subcell. Finally, the cell density profile along the y-axis is generated by averaging the data in the x-axis direction. Here we note that the small

peak seen in the OSVZ represents GFP-positive fibers, not neurons. Scale bar, 500 μm. For detailed methods on the image analysis, please refer to Section 4.3.

https://doi.org/10.1371/journal.pcbi.1010190.g003
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2.3 Our model captures the behavior of three distinct neuronal populations

To capture the behavior seen in our experimental data, we extend previous multifield models

[24–26] to consider three cell types, here representing cohorts of neurons electroporated at a

specific time, and track their cell density ci(x, t) as a function of space and time (please refer to

Section 4.4 for detailed methods). The cell density changes as a result of neurogenesis, cell

migration, and volume change. Neurogenesis varies spatiotemporally, while cell migration,

volume growth, and mechanical properties vary spatially throughout the domain, governed by

a set of parameters (Table 1).

To determine the best parameters to represent ferret neurodevelopment, we calibrate our

model against the cell density profiles obtained from experimental images (Fig 2, bottom). We

considered a three-dimensional slender bar in our simulation to represent the experiment

best; as an approximation, we let results of this simulation only vary along the length of the bar

(i.e. a 1-D solution). This was chosen for its simplicity and its compatibility with the definition

of the model parameters (e.g., per unit volume).

For calibration, we use a genetic algorithm—an adaptive heuristic search algorithm capable

of handling optimization problems with highly nonlinear, discontinuous, and multi-purpose

objective functions. The genetic algorithm borrows the idea of natural selection and gene evo-

lution from biology, including inheritance, selection, crossover, and mutation [49]. We define

an objective function, fobj, which effectively sums the errors in displacement and cell density

between the simulations and experimental data (please refer to Section 4.6 for more details).

Table 1. Summary of material parameters.

predefined parameters

parameter [units] value source

threshold cell density c0 [μm−3] 1.0 × 10−6

sensitivity of activation αc [−] 0.1

initial radius R0 [μm] 239.0 [34]

length of ventricular zone δx [μm] 0.2R0 [25]

smoothing parameter αG [−] 0.05

electroporation time d
t
i ½d� [0, 3, 6] protocol

smoothing parameter � [d] 2.0

smoothing parameter αv [−] 0.05

tangential-radial growth ratio βk [−] 1 [25]

location of growth mode transition δk [μm] 0.93R0

smoothing parameter αk [−] 1.0

subcortical shear modulus μs [kPa] 1.0 [45]

Poisson’s ratio ν [−] 0.45 [45]

stiffness ratio βμ [−] 3 [46]

location of stiffness transition δμ [μm] 0.93R0

smoothing parameter αμ [−] 1.0

calibrated parameters

parameter [units] value source range

baseline division rate constant Gc [μm−3 d−1] 1.41 × 10−5 [25] 1.0 × 10−6–1.5 × 10−5

baseline velocity constant vi [μm d−1] 1472.2 [47] 230.0 − 4752.0

final destination d
v
i ½mm� [191.6, 210.7, 222.7]

diffusion coefficient D [μm2 d−1] 31612.6 [48] 25000.0–35000.0

subcortical growth parameter ks [μm3] 202950

https://doi.org/10.1371/journal.pcbi.1010190.t001
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Fig 4. Convergence and sensitivity analysis of model calibration. A) the objective function fobj as a function of generation. B)

sensitivity study of objective function fobj with respect to baseline division rate constant Gc, diffusion coefficient D, baseline

velocity constant vi, and subcortical growth parameter ks. The red dots in each 2-D parameter space denote the calibrated

parameter set.

https://doi.org/10.1371/journal.pcbi.1010190.g004
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We obtain the optimal set of parameters when the objective function fobj is minimized and no

longer altering with the generation (Fig 4A).

Here we focus on calibrating seven material parameters: the baseline division rate Gc, which

affects the proliferation of neurons in the subventricular zone; baseline velocity vi, which

describes the velocity of migrating neurons throughout their journey; final destination d
v
i ,

which defines each cohort’s terminal location in the cortical plate; diffusion coefficient D,

which controls the neurons’ tendency to spread out; and subcortical growth constant ks, which

describes the volumetric growth in the subcortex. When based on calibrated material parame-

ters (Table 1), our results show a good agreement between experiments and model (Fig 5), par-

ticularly by capturing both the overall change in the tissue geometry due to growth, and also

the specific behavior of each of the three neuronal cohorts.

2.4 Our model predicts P16 results based on data from E39–40 and P5–6

timepoints

For the purpose of validating our model, we adopted a leave-one-out approach—calibrating

the model to incomplete data first and then using the rest of the data for validation. Here, we

focus on validating time predictions for our model. First, the model was calibrated to the first

two imaging time points of E39–40 and P5–6, and then we compared the model’s prediction

with the third time point of P16 (Fig 6A–6C). The original calibration at time 3 was included

for the sake of comparison (Fig 6D). We also compared the calibrated parameter set with the

original set in Table 2. It shows that the new set is similar to the original set and our model can

predict the data reasonably well given incomplete data in time.

2.5 A three-cohort model largely mimics a single-cohort model, with

additional microscale resolution

To highlight the superiority of the multi-cohort over the single-cohort model in capturing the

experimental data, we simplified our model to account for a single neuronal cohort, which was

calibrated to data that sums up all three neuronal cohorts (Fig 7A). The calibration shows that

the single cohort model could capture the data reasonably well except for the spatial distribu-

tion of cell density in time point 3, which the three-cohort model is capable of capturing (Fig

7B). We also compared the calibrated parameters with the original set in Table 2. Note that the

baseline division rate constant increases over twofold, which is expected as the same number

of cells have to be produced over the same period. The diffusivity is also increased to make the

cell more spread out in space, a feature that naturally results from our three-cohort model.

2.6 Our model calibration is robust to a large increase in parameter ranges

The convergence of a genetic algorithm is case-sensitive and strongly depends on how far the

initial guess is away from the optimized parameter set. For this reason, we restricted some of

the calibrated parameters a range of reasonable values based on the literature. In particular, the

baseline rate constant Gc has been found to be between 1 × 10−6 − 15 × 10−6μm−3 d−1 [25], the

diffusion coefficient D between 25000–35000 μm2 d−1 [48], and the baseline velocity constants

vi between 230–4752 μm d−1 [47].

To determine the sensitivity of our calibration to the initial guess, we experimented with

larger bounds for this range of reasonable values. We reran the calibration several times,

increasing the initial range for each parameter, within which the initial guesses are generated

randomly, by 50%, 75%, 100%, and 125% (Fig 4A). All runs converged to very similar values

within the original range. As we expected, a larger parameter bound makes it more difficult for
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Fig 5. Neuronal cell density as a function of distance from the subventricular zone, compared between experiments (circles)

and simulations (lines). Results are organized both by neuronal cohort (left column) and imaging timepoint (right column). Note

that colors represent neuronal cohorts based on IUE dates, while different markers and line styles differentiate imaging timepoints.

https://doi.org/10.1371/journal.pcbi.1010190.g005
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Fig 6. Model validation via leave-one-out approach. Our model was first calibrated to time points of A) E39-40 and B) P5-6, then used to predict the

third time point of C) P16. D) The original model calibration at time 3 for the sake of comparison.

https://doi.org/10.1371/journal.pcbi.1010190.g006

Table 2. Comparison of parameters between the original three-cohort model calibrated to the full set of experimental data, the model validation where the third

timepoint was omitted, and the single-cohort model. Percent differences relative to the original three-cohort model for the latter two models are shown. �The single-

cohort model only has a single destination parameter, δv; here we compare it individually to the three separate destination parameters from the three-cohort model.

parameter three-cohort model model validation single-cohort model

value value % diff. value % diff.

Gc [μm−3 d−1] 1.41 × 10−5 1.4 × 10−5 0.7 3.3 × 10−5 134.0

vi [μm d−1] 1472.2 1553.4 5.5 1473.8 0.1

d
v
1
½mm� 191.6 199.9 4.3 209.4� 9.2

d
v
2
½mm� 210.7 207.9 1.3 209.4� 0.6

d
v
3
½mm� 222.7 222.9 0.8 209.4� 5.9

D [μm2 d−1] 31612.6 25059.2 20.7 34600.7 9.4

ks [μm3] 202950 215408 6.1 244743 20.5

https://doi.org/10.1371/journal.pcbi.1010190.t002
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the genetic algorithm to converge (Fig 4A). This suggests that the ranges found in the literature

reflect the physiological bounds of these quantities, as even random initial guesses within those

bounds reflect our experimental data better than cases where the limits were expanded, even

after multiple generations. We also present the details of the parameters’ evolution as a func-

tion of the genome in S1 Appendix. Overall, our results show that the genetic algorithm is

robust for solving our complex optimization problem.

2.7 Our model is most sensitive to neuronal proliferation and velocity

In order to determine which model parameter most strongly influence our model predictions,

we performed a sensitivity study. In particular, we investigated the sensitivity of our objective

function to the model parameters of baseline division rate constant Gc, diffusion coefficient D,

baseline velocity constant vi, and subcortical growth parameter ks (Fig 4B). Our results suggest

that the calibrated sets are mainly located at the local minimum in all subplots. Moreover, the

objective function fobj is strongly sensitive to the baseline division rate constant Gc and baseline

velocity constant vi, moderately sensitive to subcortical growth parameter ks, and mildly sensi-

tive to the diffusion coefficient D.

2.8 Our simulations qualitatively recapitulate the typical development of

the ferret brain

In order to understand the cortical folding behavior predicted by our model, we simulated the

typically developing ferret brain with the calibrated parameters obtained previously. Note that

we do not intend to have a quantitative full-field comparison between our cortical folding sim-

ulations and real ferret brains, but rather present a qualitative study based on a reasonable set

of parameters.

Fig 7. Comparison between A) the single-cohort model and B) the three-cohort model in capturing the experimental data. In both cases, data points

represent summed cell densities across all three neuronal cohorts, c ¼
P3

i¼1
ci. For comparison, the total cell density of the three-cohort model is calculated

similarly, representing the sum of the different colored lines in Fig 5, right.

https://doi.org/10.1371/journal.pcbi.1010190.g007
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Our simulations are qualitatively in line with our experiments (Fig 8). As expected, cohorts

of neurons generated at E31, E33-34, and E36-37 gradually reside at the cortex’s lower,

medium, and upper layers, respectively. Furthermore, the onset of mechanical buckling is

around P6, when cortical folding begins in healthy ferret brains [32]. While these results are

similar to those seen in previous work [24–26], our model additionally contains information

on the behavior of three distinct neuronal populations. In the future, we expect this difference

to be even more important as we expand into the study of abnormal development, where spa-

tiotemporal changes in neuron behavior (for example, due to a local injury or a drug exposure

at a certain point in gestation) could be modeled and their effect on brain development

predicted.

2.9 Stiffness ratio and tangential-radial growth ratios affect the onset of

buckling and resulting wavelength

In order to understand the effects of the gray-white stiffness ratio βμ and the tangential-radial

growth ratio βk, we varied these parameters around their initial assumed values. Specifically,

we consider different combinations of βμ = [3, 5, 7, 9] and βk = [1, 1.5, 2] (Fig 9). Note that

each contour plot of true strain ln (λ) in Fig 9A is captured at the buckling point. We addition-

ally show the buckling point quantitatively (Fig 9B), showing that buckling occurs earlier as

both stiffness ratio βμ and growth ratio βk increase—that is, when the cortex is relatively more

stiff compared to the subcortex, and when tangential growth dominates more over radial

growth in the cortex. We also measured the wavelength of each simulation and normalized it

by the initial radius R0. It shows that the wavelength correlates positively with stiffness ratio βμ

Fig 8. 2-D and 3-D simulations of cortical folding from 0d to 27d (corresponding to E31 to P16 in ferret development), with contour plots

showing cell density ci for three cohorts of neurons. Note that the time between shown timepoints is not consistent, as timepoints were selected on the

basis of biological relevance.

https://doi.org/10.1371/journal.pcbi.1010190.g008
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and negatively with the tangential-radial growth ratio βk (Fig 9C). Moreover, crease formation

is more energetically favorable at a smaller stiffness ratio βμ, as is reported by the literature [18,

46, 50–52]. Finally, we made a comparison between the three-cohort model with the single-

cohort one in terms of buckling point, showing that they share a similar trend when calibrated

to the same set of experimental data Fig 9D).

2.10 Radial glial fiber distribution and orientation occurs naturally from

cortical folding

By visualizing the direction of the deformed radial vector n, we can see how radial glial fibers,

which are initially aligned perfectly radially along unit vector N, deform through the process of

cortical folding. In our simulations, we see a fan-like distribution of these fibers, diverging

drastically towards the pial surface in gyri (Fig 10). This is of interest because this distribution

is consistently observed in gyrencephalic species and is vital in distributing neurons within the

cortex [13]. It has even been proposed that the orientation and distribution of radial glial fibers

regulate cortical folding [13, 14]. Our simulations show that the fan-like distribution of radial

glial fibers arises naturally from the mechanical instabilities.

Fig 9. Factors that influence buckling point and wavelength in 2-D simulations. The cortical-subcortical stiffness ratio βμ and

tangential-radial growth ratio βk influence the contour plots of A) true strain ln(λ), B) the onset of buckling, and C) the

normalized wavelength. Note that each simulation shown in A) is taken at the buckling point. D) The three- and single-cohort

models predict similar buckling points, with only small differences.

https://doi.org/10.1371/journal.pcbi.1010190.g009
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3 Concluding remarks

In this work, we have developed a biomechanical model for numerical simulations of brain

development. The current study extends pioneering multifield models of brain development

[24, 25]. Our proposed model extends this earlier work to account for the spatial-temporal

development of multiple cohorts of neurons, each modeled as an advection-diffusion process.

The model was implemented numerically by writing customized finite elements in the com-

mercial finite-element program Abaqus/Standard (2020) [40]. The user-element subroutines,

as well as representative Abaqus input files, are available online (https://github.com/mholla/

neuronal_migration). We also conducted novel experiments on ferret brains via IUE, which

was used for model calibration. We have studied typical cortical folding in ferret brains by

integrating experiments and numerical simulation capabilities. Our simulations qualitatively

agree with the experiments on ferret brains.

Our results suggest significant opportunities for further extensions and improvements in

future work. First, the current work accounts for only three cohorts of neurons for simplicity,

while in reality, neurons are continuously generated within the ventricular zone. There are

also other components of brain tissue, such as glial cells, that are also believed to play an

important role in brain development [53]. Secondly, we assumed constant mechanical proper-

ties throughout the brain. However, brain tissue exhibits rich and complex mechanical interac-

tions, such as the tendency for axons to grow under tension [54], and cells to migrate

following mechanical cues such as the gradient of stiffness and stress state [55]. These features

are not yet captured in our model. Finally, experiments of genetic manipulation via IUE have

shown the important role of a number of genes in the normal development of cortical folds

[56–58], and that disruption of these genes can drastically alter the resulting brain morphol-

ogy. In particular, we have shown that altering deep and superficial neurons leads to different

effects [56]. Our model is uniquely capable of capturing the effects of neuronal subpopulations

on cortical folding. Thus, our model could enable the study of spatiotemporal events in neuro-

development, where the behavior of some neuronal population is changed by an injury, expo-

sure, or treatment at a specific location or time during development. For instance, our

previous experiments have shown that the loss of gene Cdk5, which is expressed in post-

mitotic neurons, affects upper-layer neurons (like our cohort 3) differently than in inner-layer

neurons (like our cohort 1) [56]; folding proceeds normally in the latter case, while the former

results in impaired cortical folds in ferrets. This behavior can’t be captured in a single cohort-

Fig 10. Simulated 3-D radial glial fiber orientations at 0d and 27d with contour plots showing total cell density c.

https://doi.org/10.1371/journal.pcbi.1010190.g010
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model, where all neurons are grouped in a single population with the same behaviors. In the

future, our model can be adapted and calibrated to this experimental, and used for the design

of new experiments, in silico testing of mechanistic hypotheses, and perhaps even predictions

of effective treatments. Adapting our computational framework to account for these features

will be the focus of future work.

4 Materials and methods

4.1 Ethics statement

We purchased normally pigmented sable ferrets (Mustela putorius furo) from Marshall Farms

(North Rose, NY). Ferrets were maintained as described in our previous works [38, 59, 60]. All

procedures were performed following a protocol approved by the Animal Care Committee of

Kanazawa University.

4.2 Experimental methods

We followed our well-established procedure for IUE to express transgenes in the neurons of

the ferret cerebral cortex [38, 41]. First, pCAG-GFP was prepared according to the protocols

used in our previous work [61]. Plasmids were purified using the Endofree plasmid Maxi kit

(Qiagen, Valencia, CA). Before IUE, plasmid DNA was diluted to 0.5 − 3.0 mg mL−1 in 1×
phosphate-buffered saline (PBS), and Fast Green solution was added to a final concentration

of 0.5% to monitor the injection. While body temperature was maintained with a heating pad,

the uterine horns of pregnant ferrets were exposed and kept wet by adding drops of PBS inter-

mittently. The location of embryos was visualized with transmitted light delivered through an

optical fiber cable. The pigmented iris was visible, and this enabled us to assume the location

of the lateral ventricle. Approximately 2 μL to 5 μL of DNA solution was injected into the lat-

eral ventricle at the indicated ages using a pulled glass micropipette. Each embryo within the

uterus was placed between tweezer-type electrodes with a diameter of 5 mm (CUY650-P5;

NEPA Gene, Japan). Square electric pulses (50–150 V, 50 ms) were passed five times at one-

second intervals using an electroporator (ECM830, BTX). Care was taken to quickly place

embryos back into the abdominal cavity to avoid excessive temperature loss. We then sutured

the wall and skin of the abdominal cavity and allowed embryos to develop normally.

After IUE, ferrets were sacrificed and imaged at various embryonic ages and postnatal

dates, following the procedure used in our previous works [42, 43]. Animals were deeply anes-

thetized and transcardially perfused with 4% paraformaldehyde (PFA) before brain removal.

The brains were then cryoprotected by overnight immersion in 30% sucrose and embedded in

OCT compound. Sections of 50 μm thickness were incubated with 1 μg mL−1 Hoechst 33342,

washed, and mounted before epifluorescence imaging.

4.3 Image analysis

Here we consider N = 8 brain sections, covering different IUE dates corresponding to distinct

“cohorts” of neurons, and imaging timepoints (Fig 2, bottom). We organized them into three

imaging timepoints: timepoint 1 (E39-40), timepoint 2 (P5-6), and timepoint 3 (P16). We also

organized them into three IUE groups, each representing a different cohort of neurons: cohort

1 (IUE at E31), cohort 2 (IUE at E33-34), and cohort 3 (IUE at E36-37).

We considered a region of interest (ROI) in each brain, consisting of a rectangular region

spanning from the marginal zone to the inner subventricular zone, in which the neuronal

migration is dominant in one direction (y-axis) (Fig 3).
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We imported high-resolution images of each ROI into ImageJ [44] for cell counting. For

consistency, the length of each ROI was averaged within each imaging group (lexpt1 ¼ 1390 mm,

lexpt2 ¼ 1997mm, and lexpt3 ¼ 2390 mm) and location data were normalized by this length. The

neurons were segmented by converting the images into a binary format based on the color

threshold (Fig 3). Each neuron was then labeled, and its location was recorded automatically

via a built-in particle analysis function in ImageJ [44]. Next, the data containing neuron coor-

dinates were imported into Matlab for cell density calculation. We divided each ROI into

numerous subcells with a dimension of 45.1 μm × 49.3 μm × 50 μm and then counted the

number of neurons within each subcell accordingly (Fig 3). Since we restrict our attention to

cell density along the y-axis, the cell density across the x-axis is averaged for the final plot. We

repeated the process on all N = 8 ferret brains to obtain the 1-D cell density profiles, and this

set of data was used for our model calibration (Fig 5, circles).

4.4 Mathematical model

4.4.1 Kinematics. Consider a body BR identified with the region of space it occupies in a

fixed reference configuration, and denote by xR an arbitrary material point of BR. The referen-

tial body BR then undergoes a motion x ¼ wðxR; tÞ to the current deformed body Bt with

deformation gradient given by

F ¼ rw; such that J ¼ det F > 0 ; ð1Þ

wherer denotes the gradient with respect to the material point xR in the reference configura-

tion. To take growth-related changes in volume within the region into account, we follow [62]

in adopting the multiplicative decomposition of the total deformation gradient,

F ¼ FeFg; ð2Þ

where Fg is the irreversible growth part of the deformation measuring from reference configu-

ration BR to the intermediate stress-free configuration Bg denoted by �x, while Fe is the revers-

ible elastic part of the deformation measuring from the intermediate to the current

configuration Bt (Fig 1). Similarly, the volumetric change J can be decomposed into elastic and

growth part, i.e.,

J ¼ det F ¼ JeJg: ð3Þ

Unlike most phenomenological models of growth, here we will define the growth tensor Fg as

a function of local neuron density; its form will be specified in Section 4.4.4. The elastic tensor

can then be found as Fe = FFg−1, and the elastic left and right Cauchy-Green tensors are given

by

Be ¼ FeFe> and Ce ¼ Fe>Fe: ð4Þ

4.4.2 Balance of cell density. Previous models of coupled cell density and volume growth

have considered a single parameter that describes the number of cells per volume throughout

the domain [24–26]. Here, to align with our experiments, we extend the model to consider

three cell types, representing cohorts of neurons electroporated at a specific time point. We

define the spatial cell density ci(x, t) as the number of cells in the ith cohort per unit current

volume. The referential form of balance of cell density for each cohort of neurons in an unde-

formed body BR is given by _c0i ¼ Fc
i þ DivQi, where c0i = Jci is the referential cell density, Fc

i

and Qi are cell source and cell flux in reference state, respectively. We now rewrite the balance
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of cell density in the spatial form,

_ci þ ci
_J
J
¼ f ci þ divqi ; ð5Þ

where all referential quantities are written in terms of their spatial counterparts, i.e., Fc
i ¼ Jf ci ,

Qi = JF−1qi. It is worth noting that the second term on the left-hand side in Eq (5) is the change

rate of cell densities associated with the volumetric changes. We will specify spatial cell source

f ci and spatial cell flux qi later in Section 4.4.4.

4.4.3 Equilibrium. Neglecting inertial effects and body forces, the balance of forces and

moments in the deformed body Bt are given by

divT ¼ 0 and T ¼ T>; ð6Þ

respectively, where T is the Cauchy stress. The external surface traction on an element of the

deformed surface @Bt is given by

t̆ðnÞ ¼ ½½T��n; ð7Þ

where [[T]] = Tin − Tout across the boundary @Bt, and n denotes the outward surface normal

at the boundary.

4.4.4 Constitutive equations. Here we specify the constitutive equations for neurogen-

esis, neuron density flux, growth deformation kinematics, and mechanical free energy.

Neurogenesis. Unlike previous work [25, 26], in which the cell source is only a function of

space, we add a time component to represent the neurons that are affected by IUE performed

at a given timepoint, i.e.,

f ci ¼ GcGxðxRÞGt
iðtÞ; ð8Þ

where Gc is the baseline division rate constant, Gx(xR) is the spatial distribution, and Gt
iðtÞ is

the temporal distribution for ith cohort of neurons.

Neuron density flux. Following [25], the neuron density flux qi for each cohort of neurons

in Eq 5 is an overall consequence of cell advection and diffusion,

qi ¼ � ciĤðci � c0; acÞviðxÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

advection term

þD � gradci
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
diffusion term

;
ð9Þ

where the advection term on the right-hand side characterizes how neurons migrate along a

specific direction, while the diffusion term describes how neurons spread out in space.

First, as to the advection term, the activation of neuronal migration is controlled by a

smoothed Heaviside function [26],

Ĥðci � c0; acÞ ¼
eacðc� c0Þ

1þ eacðc� c0Þ
; ð10Þ

where c0 and αc are threshold value and sensitivity parameter, respectively. The neuronal

migration is halfway activated when the current cell density ci reaches the threshold value c0,

and parameter αc controls the sensitivity of activation to the cell density (Fig 11A). The magni-

tude and direction of the neuronal migration are characterized by a velocity field

viðxÞ ¼ v̂iðxÞn=knk; ð11Þ

where v̂iðxÞ is the velocity magnitude, and n is the direction of the glial fibers in the current

state, n = FN (Fig 1).
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Fig 11. Distributions of model parameters. A) Heaviside function Ĥ as a function of normalized cell density (ci − c0)/c0, B) Heaviside function Gx as a function of

normalized distance r/R0, C) delta function Gt
i as a function of normalized time t/τ, D) the normalized velocity profile v̂ i=vi, E) the normalized coupling parameter k/

ks profile, and F) the normalized shear modulus μ/μs profile.

https://doi.org/10.1371/journal.pcbi.1010190.g011
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Next, as to the diffusion term, we adopt the standard Fick’s first law, in which the cell den-

sity flux depends linearly on the cell density gradient. Additionally, the diffusivity tensor D is

assumed to have a spherical form, i.e., D = D1 where D denotes the diffusion coefficient.

Growth kinematics. According to the literature [63, 64], neurons that migrate along glial

fibers (defined in our model as radial unit vector N) at the early stage contribute to radial

expansion, while the tangential expansion in the cortical plate occurs later when neurons reach

their destinations. Thus, we take the growth deformation gradient as a linear combination of

radial and tangential deformation [25],

Fg ¼ W
k
ðcÞðN� NÞ þ W?ðcÞð1 � N� NÞ; ð12Þ

where ϑk(c) and ϑ?(c) are independent scalar growth parameters that describe the radial

growth parallel to and tangential growth normal to the glial fiber direction N (Fig 1). The cou-

pling between growth parameters and cell density are given by

W
k
ðcÞ ¼ 1þ kkc and W

?
ðcÞ ¼ 1þ k?c; ð13Þ

where kk and k? are radial and tangential growth parameters. Note that c ¼
P3

i¼1
ci in Eqs (12)

and (13) is the total cell density.

Mechanical free energy. The ferret brain is modeled as standard neo-Hookean material, as

is the case for most of the literature [46, 50–52],

cRðC
e; JeÞ ¼

m

2
trðCeÞ � 3 � 2 lnðJeÞ½ � þ

L
2
ln2
ðJeÞ; ð14Þ

where μ and L denote Lamé constants, which may vary spatially, and only elastic deformation

induces stress. The Cauchy stress is thus given by

T ¼
2

Je
Fe @cR

@Ce F
e> ¼

1

Je
mBe þ L ln Jeð Þ � μð Þ1½ �: ð15Þ

4.4.5 Model description and parameter distributions. For calibration of our model, we

first simulate cell migration and tissue deformation along a slender bar similar to the ROI used

in our experimental analysis. Then, we simulate cortical folding in a plane-strain half circle

and a one-eighth sphere. Each domain has an initial radius of R0 = 239 μm, which is an aver-

aged value measured from ferret brains sacrificed at E31 [34]. All of our simulations cover a

duration of τ = 27 d starting from E31, chosen as it coincides with the earliest day of the exper-

imental procedure (Fig 2, top). We begin with a stress-free state with no neurons, and we fol-

low three cohorts of neurons generated at t = [0, 3, 6] d migrating from the ventricular zone to

their destinations in the cortical plate.

The properties of the model vary temporally and spatially, with their distributions described

below. Note that distributions only vary radially; because of this, the slender bar yields a 1-D

solution, the plane-strain half circle yields a 2-D solution, and the partial sphere leads to a fully

3-D solution. For simplicity, we refer to them as 1-D, 2-D, and 3-D models, although it should

be noted that the geometry in each is three dimensional and the meaning of all parameters is

conserved (i.e. that cell density is defined per unit volume). Values and ranges for the neces-

sary material parameters are taken from the literature and from our experimental procedure

(Table 1). Note that we use subscript c and s to differentiate the cortical and subcortical

regions, with a Heaviside function Ĥð�Þ of radial position r to describe the the smooth spatial

transition between them.
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Neurogenesis. We assume that the ventricular zone covers a region of 0.2R0 [25], such that

the spatial distribution Gx(r) is given by

GxðrÞ ¼ Ĥðr � dx; aGÞ; ð16Þ

where δx = 0.2R0 is the location of ventricular boundary, and αG is a smoothing parameter (Fig

11B). For the temporal distribution, we aim to capture the neurons that have been in utero
electroporated at different times as done in the experiment. Thus we define Gt

iðtÞ as a delta

function, viz.,

Gt
iðtÞ ¼

�2

ðt � dtiÞ
2
þ �2

; ð17Þ

where � controls the smoothness of the function (Fig 11C). Additionally, d
t
i ¼ ½0; 3; 6� d is the

electroporation time for three cohort of neurons.

Neuron density flux. As we reported previously [38, 56], neurons in deeper cortical layers

5/6 were born earlier (IUE at E31), neurons found in superficial cortical layers 2/3 were born

later (IUE at E37), and neurons born at the mediate time (IUE at E34) were consistently found

in the medium cortical layer 4 (Fig 5, circles). Similar observations in ferret brains have been

reported by [8], in which they used 3H-thymidine to trace cohorts of neurons over time. This

positioning is likely guided by a gradient of chemoattractant [65]. To capture this behavior, we

define the velocity magnitude in Eq (11) as

v̂iðrÞ ¼ viĤðd
v
i � r; avÞ � 0:5vi; ð18Þ

where vi is the baseline velocity constant, d
v
i is the final destination of ith cohort of neurons,

and αv is a smoothing parameter. It is worth noting that we shift the entire function vertically

by 0.5vi so that cell migration ceases at the location of zero velocities (Fig 11D). Unlike previ-

ous models [25, 26], the diffusion coefficient D is taken to be constant throughout the brain.

Growth parameters. As the literature suggests that the cortex expands more tangentially

than radially [11], the profiles of radial and tangential growth parameter are given by

kkðrÞ ¼ ks þ ksð1=bk � 1ÞĤðr � dk; akÞ and

k?ðrÞ ¼ ks þ ksðbk � 1ÞĤðr � dk; akÞ;
ð19Þ

where ks is the growth parameter of subcortex, δk is the location of growth mode transition,

and αk is the smoothing parameter (Fig 11E). Initially, we assume tangential-radial growth

ratio βk = 1 [25], but later consider a reasonable range of growth ratio factor βk = [1, 1.5, 2].

Mechanical properties. The profile of shear modulus μ in Eq (15) is given by

mðrÞ ¼ ms þ msðbm � 1ÞĤðr � dm; amÞ; ð20Þ

where βμ = μc/μs is stiffness ratio between cortex and subcortex, δμ is the location of modulus

transition, and αμ is the smoothing parameter (Fig 11F). The shear modulus for the subcortex

is μs = 1 kPa. The Poisson’s ratio is defined as ν = 0.45, such that the Lamé constant for the sub-

cortex is Ls = 9.3 kPa [45]. It has been shown that axon elongation makes subcortical tissue

more “compliant” on the timescales of folding [34, 46, 66], thus, we assume stiffness ratio βμ =

3, but later we consider a reasonable range of stiffness ratio of βμ = [3, 5, 7, 9].
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4.5 Numerical model

Our finite-element procedures are implemented in Abaqus/Standard (2020) [40]. We present

the details of numerical implementation and the code verification in S1 Appendix.

For model calibration, we take the computational domain as a 3-D slender bar with an ini-

tial length/radius of R0 = 239 μm, consisting of 60 brick elements (U3D8) in Abaqus/Standard

(2020) [40]. This was chosen to represent the ROIs analyzed from our experimental data. One

end is fully fixed, while the long edges are assigned symmetry boundary conditions such that

the solution only varies in 1-D, along the length. The entire bar is free to move along the x-

axis, which coincides with the direction of cell velocity, N = [1, 0, 0]>. For simplicity, we do

not consider any tangential growth, i.e., k? = 0 in Eq (13).

In cortical folding simulations, both the plane-strain half circle and one-eighth sphere are

discretized into 1147 four-noded quadrilateral elements (UPE4) and 361 eight-noded brick

elements (U3D8) in Abaqus. In both domains, the cut faces or edges are assigned symmetry

boundary conditions, while the curved exterior faces or edges are traction-free and allowed to

self contact. Thus, the plane-strain half circle simplifies to a 2-D solution field, while the partial

sphere yields a fully 3-D solution. For biological boundary conditions, zero cell density flux are

prescribed at all boundaries. The neuronal migration is radially aligned with the unit vector

fields of N = [x, y, 0]> and N = [x, y, z]> for 2-D and 3-D cases, respectively.

4.6 Genetic algorithm

The genetic algorithm is used along with Python scripts to generate input files, execute jobs,

and access the output database automatically in Abaqus (Table 3). It generates 10 genomes in

every generation, each with a corresponding Abaqus input file with the current set of material

parameters. After running the simulation, we collect the simulated results from the Abaqus

output database, including domain lengths at the three preparation times flsimt1 ; l
sim
t2 ; l

sim
t3 g and

eight cell density vectors fcsim
1;t1; c

sim
2;t1; c

sim
1;t2; c

sim
2;t2; c

sim
3;t2; c

sim
1;t3; c

sim
2;t3; c

sim
3;t3g that store the density of each

cohort across the domain’s length at each preparation time. We define an objective function

that measures normalized errors between the simulations and experiments,

fobj ¼ w1

�
kcsim

1;t1 � cexp1;t1k

kcexp1;t1k
þ
kcsim

2;t1 � cexp2;t1k

kcexp2;t1k
þ
kcsim

1;t2 � cexp1;t2k

kcexp1;t2k
þ
kcsim

2;t2 � cexp2;t2k

kcexp2;t2k

þ
kcsim

3;t2 � cexp3;t2k

kcexp3;t2k
þ
kcsim

1;t3 � cexp1;t3k

kcexp1;t3k
þ
kcsim

2;t3 � cexp2;t3k

kcexp2;t3k
þ
kcsim

3;t3 � cexp3;t3k

kcexp3;t3k

�

þw2

�
klsimt1 � lexpt1 k

lexpt1
þ
klsimt2 � lexpt2 k

lexpt2
þ
klsimt3 � lexpt3 k

lexpt3

�

; ð21Þ

Table 3. Algorithm for the calibration of our model parameters using a genetic algorithm.

generate initial parameter genomes

if not converged:

for each genome in the generation

generate Abaqus input file

execute Abaqus job

obtain deformations and cell densities from output database

compute objective function fobj

end for

check convergence

end if

https://doi.org/10.1371/journal.pcbi.1010190.t003
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where two weights w1 = 11/8 and w2 = 11/3 are used to balance the contributions of density

and displacement errors to the objective function.

Supporting information

S1 Appendix. Details of finite element implementation, code verification, and the robust-

ness of the genetics algorithm.

(PDF)
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