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The transmembrane Na+-/K+ ATPase is located at the plasma membrane of all

mammalian cells. The Na+-/K+ ATPase utilizes energy from ATP hydrolysis to extrude

three Na+ cations and import two K+ cations into the cell. The minimum constellation

for an active Na+-/K+ ATPase is one alpha (α) and one beta (β) subunit. Mammals

express four α isoforms (α1−4), encoded by the ATP1A1-4 genes, respectively. The α1

isoform is ubiquitously expressed in the adult central nervous system (CNS) whereas

α2 primarily is expressed in astrocytes and α3 in neurons. Na+ and K+ are the

principal ions involved in action potential propagation during neuronal depolarization.

The α1 and α3 Na+-/K+ ATPases are therefore prime candidates for restoring neuronal

membrane potential after depolarization and for maintaining neuronal excitability. The

α3 isoform has approximately four-fold lower Na+ affinity compared to α1 and is

specifically required for rapid restoration of large transient increases in [Na+]i. Conditions

associated with α3 deficiency are therefore likely aggravated by suprathreshold neuronal

activity. The α3 isoform been suggested to support re-uptake of neurotransmitters.

These processes are required for normal brain activity, and in fact autosomal dominant

de novo mutations in ATP1A3 encoding the α3 isoform has been found to cause

the three neurological diseases Rapid Onset Dystonia Parkinsonism (RDP), Alternating

Hemiplegia of Childhood (AHC), and Cerebellar ataxia, areflexia, pes cavus, optic

atrophy, and sensorineural hearing loss (CAPOS). All three diseases cause acute onset

of neurological symptoms, but the predominant neurological manifestations differ with

particularly early onset of hemiplegic/dystonic episodes and mental decline in AHC,

ataxic encephalopathy and impairment of vision and hearing in CAPOS syndrome and

late onset of dystonia/parkinsonism in RDP. Several mouse models have been generated

to study the in vivo consequences of Atp1a3modulation. The different mice show varying

degrees of hyperactivity, gait problems, and learning disability as well as stress-induced

seizures. With the advent of several Atp1a3-gene or chemically modified animal models

that closely phenocopy many aspects of the human disorders, we will be able to reach

a much better understanding of the etiology of RDP, AHC, and CAPOS syndrome.

Keywords: α3 sodium ion pump, neurons, rapid onset dystonia parkinsonism (RDP), alternating hemiplegia of

childhood (AHC) and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS),

mouse models
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THE NA+/K+ ATPases: EXPRESSION AND
FUNCTION

The Na+/K+ ATPases are transmembrane ion-pumps located at
the plasma membrane of all mammalian cells. With each pump
cycle, the Na+/K+ ATPases utilize the energy from hydrolysis of
one adenosine triphosphate (ATP) to extrude three Na+ ions and
import two K+ ions into the cell. The minimum constellation of
an active pump consists of an alpha (α) and a beta (β) subunit
(Kaplan, 2002; Bublitz et al., 2011; Palmgren and Nissen, 2011).
The α subunit is responsible for the catalytic and pharmacological
properties (Blanco et al., 1994) whereas the β and optional γ

subunits may have regulatory functions (Jaisser et al., 1994;
Béguin et al., 1997; Hilbers et al., 2016).

Mammals express four Na+/K+ ATPase α isoforms (α1−4)
of which α1−3 are expressed in the CNS. While α1 is expressed
ubiquitously and considered to maintain housekeeping cellular
functions, the α2 isoform is expressed primarily in astrocytes
and developing neurons and α3 isoform is restricted to neurons
(McGrail et al., 1991; Bøttger et al., 2011). Thus, the cell
type-specific distribution of the α isoforms suggests that each
isoform has a particular function. Several suggestions have been
made to elaborate on the specific role of the α3 isoform in
neurons (Reviewed in Dobretsov and Stimers, 2005). Although
the α3 isoform is expressed in many CNS neurons, several
neuronal subsets lack the expression of this isoform (Hieber
et al., 1991; McGrail et al., 1991; Bøttger et al., 2011). The
ongoing hypothesis is thus that while the ubiquitously expressed
α1 isoform maintains neuronal housekeeping functions, the α3
isoform serves as a reserve pump that only becomes activated
when the intracellular Na+ concentration [Na+]i is high, e.g.,
after repeated action potentials (Brodsky and Guidotti, 1990;
Jewell and Lingrel, 1991; Munzer et al., 1994; Blanco et al.,
1995; Zahler et al., 1997; Monteith and Blaustein, 1998; Crambert
et al., 2000), supported by the fact that the kinetics between the
different isoform favors this scenario (Reviewed in Dobretsov
and Stimers, 2005).

NEURONAL ACTIVITY AND α3

In the CNS, the Na+ and K+ gradients across the plasma
membrane are essential for regulating neuronal excitability, and
for multiple cellular functions, including cell volume regulation
and Na+-coupled secondary transport. The distinguishing
feature of α3 Na+/K+-ATPases is their several-fold lower
affinity for activation by cytoplasmic Na+ compared to that
of α1 Na+/K+-ATPases (Crambert et al., 2000). In rapidly
firing neurons, therefore, when action potentials increase the
intracellular Na+ concentration, [Na+]i, beyond saturating levels
of the “housekeeping” α1 Na+/K+-ATPases, activation of α3
Na+/K+-ATPases continues to increase as [Na+]i rise. The α3
isoform thus protects neurons against catastrophic elevation
of [Na+]i (Dobretsov and Stimers, 2005), and also of [Ca2+]i
(because Na+/Ca2+ exchange is weakened) and general loss
of the Na+ electrochemical gradient. As the α3 isoform is
detected in several basal ganglia neuronal subsets (McGrail et al.,

1991; Bøttger et al., 2011), reduced α3 activity may therefore
interfere with reuptake of neurotransmitters such as glutamate,
γ-aminobutyric acid (GABA) and dopamine (Kristensen et al.,
2011), in those neurons.

The neurotransmitter transporters (NTTs) use ion gradients
for the active transport, generally by co-transport of Na+ and
Cl−. As an example, the glycine transporters are functionally
coupled to the Na+ electrochemical gradient, which is actively
generated and maintained by the Na+/K+-ATPases. The glycine
transporter, GlyT2 cotransports three Na+ and one Cl− for every
glycine (López-Corcuera et al., 1998), generating large rises in
[Na+]i that must be efficiently reduced by the Na+/K+-ATPase
to preserve ion homeostasis, which is absolutely necessary for
synaptic transmission and neuronal excitability. The α3 co-
localize and interacts with GlyT at the synapse in spinal cord
neurons (de Juan-Sanz et al., 2013). As GlyT belongs to the solute
carrier 6 (SLC6) family of highly homologous NTTs, it is possible
that the transporter for dopamine, norepinephrine, serotonin,
and GABA can affected by Na+/K+-ATPase activity loss
(Kristensen et al., 2011). It is well-documented that dopamine
increases the activity of the Na+/K+-ATPase in an organ-specific
manner (Reviewed in Zhang et al., 2013). Moreover, evidence
of direct interaction between Na+/K+-ATPase and dopamine
receptors has also been reported (Hazelwood et al., 2008).
Dopamine modulates the Na+/K+-ATPase by affecting both
dopamine and other hormones. It has been shown that the D2
receptor stimulates striatal Na+/K+-ATPase activity after a short-
term morphine treatment, in contrast to a long-term morphine
treatment that inhibited striatal Na+/K+-ATPase activity (Wu
et al., 2007).

Failure of the Na+/K+-ATPase to maintain Na+ and K+

gradients will cause a decrease in Na+ and K+ currents (through
voltage-dependent channels). This will lead to a decrease in the
membrane potential, action potential and most likely a loss of
neuronal excitability. This will further affect sodium-coupled
co- and counter-transport. Moreover, it can also affect Na+/H+

and Na+/Ca2+ exchange, essential for cellular functions, and
could lead to increased intracellular Ca2+ and acidification. Not
surprisingly, mutations in the ATP1A3 gene have been associated
with neurological disorders.

ATP1A3-RELATED DISEASES

Mutations in the ATP1A3 gene are associated with three related
rare neurological disorders, Rapid-onset Dystonia-Parkinsonism
(RDP) (de Carvalho Aguiar et al., 2004), Alternating Hemiplegia
of Childhood (AHC) (Heinzen et al., 2012; Rosewich et al.,
2012), and recently, Cerebellar ataxia, Areflexia, Pes cavus, Optic
atrophy, and Sensorineural hearing loss (CAPOS) syndrome
(Demos et al., 2014).

Presently 12 ATP1A3 missense mutations have been
associated with RDP (Heinzen et al., 2014). Classical RDP
patients typically develop stress-induced permanent dystonia
and Parkinsonism in late adolescence or early adulthood.
Other 59 different ATP1A3 de novo missense mutations are
associated with AHC (Heinzen et al., 2014; Rosewich et al.,
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2014; Sasaki et al., 2014; Ulate-Campos et al., 2014; Yang
et al., 2014; Panagiotakaki et al., 2015; Viollet et al., 2015).
AHC is characterized by onset of hemiplegic/quadriplegic
episodes within 18 months of birth. Other, more variable
neurological abnormalities of AHC include choreathosis,
ataxia, developmental delays, seizures, and high incidence of
neuropsychiatric disorders (Demos et al., 2014).

Recently, the mutations causing RDP and AHC were mapped
according to their amino acid position in the α3 isoform showing
their location and the number of patients identified that harbors
these mutations (Heinzen et al., 2014).

So far, only a singlemissensemutation inATP1A3 is associated
with CAPOS syndrome (Demos et al., 2014; Heimer et al., 2015).
CAPOS patients show onset of symptoms at the age of 6 months
to 5 years. CAPOS syndrome is characterized by episodes of
ataxic encephalopathy, weakness, and loss of hearing and sight
(Brashear et al., 2014).

Interestingly, a recent report identified a G316S mutation
in the α3 isoform associated with Adult Rapid-onset Ataxia
(Sweadner et al., 2016). The clinical examination notedmost RDP
symptoms except dystonia.

Thus, it appears that the ATP1A3-related disorders arise
from autosomal dominant mutations with variable penetrance
(Demos et al., 2014). Affected patients typically present in the
context of an acute onset of paroxysmal, episodic neurological
symptoms that may include hemiplegia, dystonia, ataxia, or
seizures. Some symptoms may persist after resolution, such
as neurodevelopmental delays, attention deficits, hyperactivity,
trunk instability, dystonia, or ataxia (Mikati et al., 2000; Shafer
et al., 2005; Panagiotakaki et al., 2010; Heinzen et al., 2012, 2014;
Sweney et al., 2015). Although the ATP1A3-related neurological
disorders are considered clinically distinct, the phenotypic
spectrum of each disease continues to expand (Heinzen et al.,
2014; Rosewich et al., 2014; Sweney et al., 2015). In support,
there have recently been identified patients with intermediate,
non-classical symptoms (Sasaki et al., 2013; Termsarasab et al.,
2015).

GENOTYPE-PHENOTYPE—AFFECT
PROTEIN FUNCTION—CAUSE SYMPTOMS

A recent case study of 35 AHC patients showed relatively
mild symptoms in patients carrying the D801N mutation,
whereas the E815K mutation was associated with far more
severe symptoms (Sasaki et al., 2014). In fact, the same
ATP1A3 mutation may result in quite different time of
onset and disease progression (Dobyns et al., 1993; Oblak
et al., 2014), emphasizing that other factors, such as genetic
background and epigenetic regulation play a large role in disease
penetrance.

Recent functional studies suggest that most RDP mutations
do not reach the cell surface (Heinzen et al., 2012). In contrast,
the majority of AHC mutant proteins exert dominant negative
effects on the wild type protein at the cell surface (Clapcote et al.,
2009; Li et al., 2015), thus explaining the more severe phenotypes
associated with AHC. The majority of AHC mutations (>70%)

are located within the transmembrane helices of the Na+/K+-
ATPase protein (Heinzen et al., 2012). Homology modeling of
the two most common mutations, D801N and E815K suggested
different mutational consequences: In the D801N mutation, a
positive dipole was formed, which through electrostatic repulsion
directly affected passage of K+ ions (Kirshenbaum et al., 2013).
In contrast, the E815K mutation prevented inward H+ currents
through the Na+/K+-ATPase. Intracellular H+ currents through
the Na+/K+-ATPase were recently identified (Vedovato and
Gadsby, 2014) and are known regulators of neuronal excitability
(Takahashi and Copenhagen, 1996), thus suggesting a correlation
between severity and loss of H+ transport. The significance of
this discovery however remains to be determined in vivo.

ATP1A3-MODIFIED MOUSE MODELS

Four genetically modified mouse models targeting the Atp1a3
gene has been reported, and have been extensively used to
study in vivo functions of the α3 isoform (Table 1). A detailed
comparison of mouse models looking at clinical features in AHC
and Atp1a3mouse models, as well as behavioral testing has been
reported (Hunanyan et al., 2015).

The Atp1a3tm1Ling/+ was produced by introducing a single

base pair mutation in intron 4 (α
+/KOI4
3 ), causing an aberrant

splicing of Atp1a3, effectively knocking out the allele (Moseley

et al., 2007). The α
+/1E2−6
3 was generated by an eGFP-Atp1a3

gene replacement strategy, knocking out one Atp1a3 allele

(α
+/1E2−6
3 ) (Ikeda et al., 2013). The Myshkin mouse (α

+/I810N
3 )

(Clapcote et al., 2009) expressed the I810N AHC mutation

(Panagiotakaki et al., 2015). The Mashlool mouse (α
+/D801N
3 ,

Mashl+/−) (Hunanyan et al., 2015) was generated to study the
effects of the most common mutation in AHC, D801N (Heinzen
et al., 2012).

The cardiotonic steroids (CTS) constitute a group of organic
compounds that show high binding affinity toward Na+/K+-
ATPases and inhibit the catalytic activity by stabilizing the
enzyme’s phosphorylated E2-P state (Yatime et al., 2011; Laursen
et al., 2013). CTS such as ouabain have been used for more
than 50 years to study the function of Na+/K+-ATPases in
vitro and in acute animal models. An ouabain-perfused mouse
model presumably targeting the α3 isoform in cerebellum and
basal ganglia (Calderon et al., 2011) supplements the findings
summarized in Table 1.

BASIC CHARACTERIZATION

Hippocampal lysates showed a significant reduction in α3 protein

expression in the α
+/KOI4
3 mice and a compensatory upregulation

of α1 expression but not of α2 (Moseley et al., 2007). In
contrast, whole brain lysates from the Myshkin mice (Myk/+
and Myk/Myk) showed no changes in protein expression levels
of the α1, α2, and α3 isoforms relative to wild type, suggesting
that theMyshkinmutation is a functional null allele of theAtp1a3
gene, which encodes a normally expressed, but inactive enzyme,
as revealed by reduced total ATPase activity (Clapcote et al.,
2009). In support of this, the authors observed normal plasma
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TABLE 1 | Atp1a3 gene modified animals.

Mouse model*a Atp1a3 genetic alteration Major behavioral observations References

Atp1a3tm1Ling/+ (α
+/KOI4
3 ) Deletion targeting intron 4 Increased locomotor activity Moseley et al., 2007; DeAndrade et al.,

2011; Kirshenbaum et al., 2011b

Increased methamphetamine response

Intact grip strength

Spatial learning impairment

• Stress-induced symptoms

• Motor deficits

• Sensory system defects

• Impaired novel object recognition

• Despair

• Anhedonia

• Increased anxiety

• Reduced learning and memory

• Reduced sociability

α
+/1E2−6
3 Deletion targeting exon 2–6 Increased locomotor activity Ikeda et al., 2013; Sugimoto et al., 2014

Increased dystonic response to intracerebellar

kainate injections

Enhanced inhibitory neurotransmission

Intact grip strength

Enhanced motor balance

Stress-induced motor deficits

Myshkin (α
+/I810N
3 ) Single nucleotide substitution causing

a single amino acid substitution

(I810N)

Increased locomotor activity Clapcote et al., 2009; Kirshenbaum et al.,

2011a, 2012, 2013

Increased methamphetamine response

Spontaneous epileptic seizures

Neuronal hyperexcitability

Reduced learning and memory

Ataxia

Mania-like behavior

Mashl+/− (α
+/D801N
3 )

(Mashlool)

Single nucleotide substitution causing

a single amino acid substitution

(D801N)

Increased locomotor activity Hunanyan et al., 2015

Spontaneous epileptic seizures

Neuronal hyperexcitability

Reduced learning and memory

Ataxia

Dystonia

Hemiplegia

*a Two Atp1a3 knock-out (KO) and two knock-in (KI) mice have been described. For all four models, only heterozygous animals are viable after birth.

membrane localization of the Myskhin α3 isoform expressed in
COS cells with only small amounts retained in the ER (Clapcote
et al., 2009).

AHC patients tend to be smaller and weigh less—presumably
due to eating difficulties (Neville and Ninan, 2007; Panagiotakaki
et al., 2010). Although abilities to chew and swallow have not
been addressed for any of the mouse models, it is interesting
that the Myshkin and male Mashl+/− mice were reported to
have smaller body sizes (Clapcote et al., 2009; Hunanyan et al.,
2015). Myshkin mice crossed with mice expressing a bacterial
artificial chromosome expressing wild typeAtp1a3 (Atp1a3 BAC)

regained approximately 80% of wild type total Na+/K+-ATPase
activity and showed normal body size, thus supporting the theory
that Na+/K+-ATPase activity loss correlates with symptoms
(Clapcote et al., 2009).

EFFECTS ON MOTOR FUNCTION,
BALANCE, AND COORDINATION

The motor dysfunction in RDP and AHC i.e., ataxia, dystonia,
unsteady gait, and tip-toing are reflected in motor function,
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balance problems, and gait disturbances (Brashear et al., 1997;
Linazasoro et al., 2002; Svetel et al., 2010).

Combined, the Atp1a3tm1Ling/+ and α
+/1E2−6
3 mouse models

displayed mild motor symptoms, whereas the Myshkin and
the Mashl+/− mice recapitulated a much broader spectrum of
ATP1A3-disease related symptoms. Motor tests showed these
defects were caused by dyscoordination rather than lack of
muscle strength as grip strength was intact (Kirshenbaum et al.,
2013; Hunanyan et al., 2015), and thus corresponds to reports of
AHC patients.

Adult Atp1a3tm1Ling/+ and α
+/1E2−6
3 mice displayed normal

motor function when tested on the balance beam and accelerated
rotarod (DeAndrade et al., 2011; Sugimoto et al., 2014).
However, restraint caused a stress-induced deterioration of
motor performance of mice on the balance beam and rotarod and
a significant drop in ATPase activity from 85 to 67% (DeAndrade
et al., 2011).

Similarly, restraint stress significantly reduced the hanging

times of the α
+/1E2−6
3 mice (Sugimoto et al., 2014). In contrast

toAtp1a3tm1Ling/+ and α
+/1E2−6
3 mice, distinct motor symptoms

were apparent in naïve Myshkin and the Mashl+/− mice: Both
strains showed ataxia and tremor on the balance beam but only
the Myshkin mice performed poorly on the accelerated rotarod
(Kirshenbaum et al., 2013; Hunanyan et al., 2015).

Both Myshkin and the Mashl+/− mouse strains showed
abnormal stride length (Kirshenbaum et al., 2013; Hunanyan
et al., 2015). A similar phenotype was induced by restraint stress

in the α
+/1E2−6
3 mice (Sugimoto et al., 2014).

THE CEREBELLUM-BASAL GANGLIA
CIRCUITRY

Dystonia, Ataxia, and Parkinsonism
Dystonia, ataxia, and Parkinsonism are core symptoms of RDP.
A recent study showed that dystonia and ataxia could be
reproduced by partially blocking the Na+/K+-ATPase in the
cerebellum of mice using ouabain whereas disruption of the basal
ganglia circuit caused Parkinsonism i.e., rigidity, akinesia, tremor,
and hunched posture (Calderon et al., 2011). The symptoms
induced by ouabain perfusion were shown to develop over several
days and to be highly dependent on the ouabain concentration
used. Interestingly, mice perfused with low concentrations
of ouabain into the cerebellum and basal ganglia developed
symptoms corresponding to high concentration of ouabain when
subjected to stress. Thus, reflecting the stress-sensitive nature of
ATP1A3-related diseases.

Cerebellar dysfunction has been observed in several rodent
dystonia strains (Lorden et al., 1992; LeDoux and Lorden, 1998;
Richter et al., 1998; Campbell et al., 1999; Fremont et al., 2014)
and in patients suffering from AHC (Saito et al., 1998; Yamashita
et al., 2005; Sasaki et al., 2009) and RDP (Oblak et al., 2014; Liu
et al., 2015).

The α
+/1E2−6
3 mice showed prolonged dystonic periods after

intracerebellar kainate injections (Ikeda et al., 2013). Despite
reduced motor performance of both naïve Myshkin and the
Mashl+/− mice, only theMash+/− mice were reported to develop

stress-induced generalized dystonia (Hunanyan et al., 2015).
Mild dystonia is common among AHC patients carrying the
Mashl+/− equivalent D801N mutation (Panagiotakaki et al.,
2015), whereas only one of two AHC patients known to carry
the Myskhin, I810N mutation, showed dystonia (Yang et al.,
2014; Panagiotakaki et al., 2015). Presently, it is therefore not
possible to determine if the differences observed can be attributed
specifically to the ATP1A3mutation or to genetic background.

The deep cerebellar nuclei (DCN) integrate inhibitory signals
from GABAergic Purkinje neurons and excitatory glutamatergic
mossy fibers and climbing fiber pathways and constitute the
majority output fibers from the cerebellum. The DCN connects
to premotor and motor nuclei in the basal ganglia (Faull, 1978;
Faull and Carman, 1978). Abnormal output from the DCN will
have profound effects on motor function. The Purkinje neurons
are the main output to the DCN and play a central role in DCN
signal integration and overall cerebellar function.

Purkinje neurons are characterized by a high Na+ channel
density and short spike duration during which large amounts of
Na+ ions enter the neurons, emphasizing the requirement for
functional a Na+/K+-ATPase (Llinás and Sugimori, 1980; Raman
and Bean, 1997; Carter and Bean, 2009). Cerebellar Purkinje
neurons only express the Na+/K+-ATPase α3 isoform (Peng
et al., 1997) and are therefore particularly sensitive to ATP1A3

mutations. Furthermore, in developing α
+/1E2−6
3 mice, reduced

Na+/K+-ATPase α3 expression caused a build-up of [Na+]i
and [Ca2+]i in the terminals of molecular-layer interneurons
resulting in enhanced inhibition of Purkinje neurons (Ikeda
et al., 2013). This observation is potentially very interesting, as
it offers a possible mechanism to explain how Na+/K+-ATPase
perturbations may affect neuronal plasticity and motor learning.

Although further experiments are required to determine the
extent of this observation, it is interesting, that cortical neurons
isolated from theMyshkinmice showed increased [Ca2+]i as well
(Kirshenbaum et al., 2011a). This observation could imply that
other neuronal populations may be affected. Indeed, Na+/K+-
ATPase α3 showed co-localization with markers for several
populations of GABAergic neurons in the rodent and human
brain (Bøttger et al., 2011; Ikeda et al., 2013; Paciorkowski
et al., 2015), suggesting these populations to be sensitive to
ATP1A3 perturbations as well. Supporting GABA dysfunction,
hippocampal neurons from the Myshkin and Mashl+/− mice
showed increased excitability in response to high frequency
stimulation (Clapcote et al., 2009; Hunanyan et al., 2015).

HEMIPLEGIA

Hemiplegia is specific to AHC (Sweney et al., 2015). The
mechanism driving this symptom is poorly understood. Single-
photon emission computed tomography (SPECT) scans of AHC
patients showed malperfusion leading up to or during events
in several cases (Kanazawa et al., 1991; Zupanc et al., 1991;
Aminian et al., 1993; Wong et al., 1993). However, there have
also been examples, where this phenotype was absent (Sweney
et al., 2009; Sasaki et al., 2011). Supporting a vascular phenotype,
the vasodilator, flunarizine is currently among the most widely
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used prophylaxis of hemiplegia in AHC (Casaer and Azou, 1984;
Bourgeois et al., 1993; Mikati et al., 2000). So far, there has
been no investigation of this mechanism in the current animal
models. Of the four mouse models, only the Mashl+/− mice were
reported to develop stress-induced episodes of hemiplegia and
quadriplegia (Hunanyan et al., 2015).

NEUROPSYCHIATRIC
SYMPTOMS—MANIA

Previous studies have shown intracerebroventricular (ICV)
injections of ouabain in high concentrations to be CNS
stimulatory and convulsive (Doggett and Spencer, 1971;
Davidson et al., 1978; Corazzi et al., 1985; Haglund and
Schwartzkroin, 1990; Lees et al., 1990; Yu, 2003). In rats,
this approach was used to induce mania (El-Mallakh et al.,
2003; Riegel et al., 2009). Episodes mimicking manic periods
of bipolar mood disorder are common among AHC patients.
Especially the manic episodes are particularly detrimental, as the
children are at high risk of injury (Personal communications, see
Acknowledgement).

There is a strong link in literature between Na+/K+-
ATPase dysfunction and bipolar mood disorder (el-Mallakh
and Wyatt, 1995). Bipolar patients showed reduced Na+/K+-
ATPaseATP1A2 gene expression in isolated erythrocytes (Hokin-
Neaverson and Jefferson, 1989a,b; Looney and el-Mallakh,
1997) and in the temporal cortex (Rose et al., 1998) and
reduced Na+/K+-ATPase ATP1A3 expression in prefrontal
cortex (Tochigi et al., 2008).

A prominent feature of manic episodes is hyperactivity.
Although direct comparison of hyperactivity levels is impossible,
all Atp1a3 mouse models showed open field hyperlocomotion
(Kirshenbaum et al., 2011a; Ikeda et al., 2013; Hunanyan et al.,
2015).

Exploration-based anxiety tests revealed all Atp1a3 mouse
strains to be less anxious, to have increased impulsivity and risk-
taking and a reduced habituation, all of which are symptoms of
mania (Moseley et al., 2007; Kirshenbaum et al., 2011a; Ikeda
et al., 2013; Hunanyan et al., 2015; Termsarasab et al., 2015).

In further support of mania-like behavior, the Myshkin mice
showed changes to circadian rhythm (Kirshenbaum et al., 2011a).
These symptoms, along with hyperactivity were reversed by
treating theMyshkinmice with the mood stabilizers, lithium and
valproate (Kirshenbaum et al., 2011a).

ICV injection of ouabain in rats caused phosphorylation
of ERK and AKT in the hippocampus (Ruktanonchai et al.,
1998; Kim et al., 2008; Yu et al., 2010). Similar increases in
phosphorylated ERK and AKT were observed in the Myshkin
mice. Both signaling pathways have been implicated in the
control of behavioral excitement in rodents (Prickaerts et al.,
2006; Creson et al., 2009; Engel et al., 2009; Ackermann
et al., 2010), making them potential targets for future mood
stabilizers. Correspondingly, open field hyperactivity and open
arm visits were reduced after administration of the ERK inhibitor,
SL327 (Kirshenbaum et al., 2011a). The Atp1a3-BAC transgenic
Myshkin showed a Na+/K+-ATPase activity increase from 58

to 74% relative to wild type levels and a partial normalization
of AKT phosphorylation (Clapcote et al., 2009; Kirshenbaum
et al., 2011a). Correspondingly, treating the mice with the
ouabain inhibitor, rostafuroxin, had a normalizing effect on
hyperlocomotion (Kirshenbaum et al., 2011a).

Although the manic phase seems most prevalent in all mouse
models, there have been examples of the Atp1a3tm1Ling/+ mice
being able to recapitulate the depression-like symptoms of
bipolar disorder. When subjected to a chronic variable stress
protocol, the mice showed prominent symptoms of anxiety,
including reduced exploration of open areas and attention
deficits during novel object and sociability tests. At this point,
the mice showed a Na+/K+-ATPase activity of 67% relative
to wild type levels (Kirshenbaum et al., 2011b). Interestingly,
these symptoms did not occur in wild type mice, suggesting that
ATP1A3mutations may increase vulnerability to stress.

EPILEPSY

Epilepsy and bipolar disorder share a common pathophysiology
(Mazza et al., 2007) and is often comorbid in human patients
(Mula et al., 2010). According to a recent study, approximately
half of all AHC patients experience at least one epileptic seizure
(Panagiotakaki et al., 2010).

Reduced Na+/K+-ATPase activity has been reported in
genetic animal models of epilepsy and in hippocampal tissue
from epileptic patients (Brines et al., 1995; Fernandes et al., 1996;
Vaillend et al., 2002) and have been proposed as a causal factor
in myoclonus epilepsy and ragged red fibers disease, a rare form
of inherited epilepsy (McNamara, 1994). Also, Na+/K+-ATPase
activity was decreased in the brain of rodents after chemical
induction of seizures using the convulsant, pentylenetetrazol
(Schneider Oliveira et al., 2004;Marquezan et al., 2013). Recently,
two children with catastrophic early life epilepsy were shown to
carry novel ATP1A3mutations (Paciorkowski et al., 2015).

As described, ouabain is convulsive when administered to
rodents intraventricularly in sufficiently high concentrations
(Doggett and Spencer, 1971; Davidson et al., 1978; Corazzi et al.,
1985; Haglund and Schwartzkroin, 1990; Lees et al., 1990; Yu,
2003; Alonso et al., 2013).

Several mechanisms can explain why neurons are vulnerable
to ATP1A3 insults. Seizures are often associated with a loss
in metabolic energy (Araujo et al., 2014). Na+/K+-ATPases
are highly sensitive to such perturbations, as they require
approximately 50% of the energy available to the brain under
normal circumstances (Attwell and Laughlin, 2001). Reduced
Na+/K+-ATPase activity may cause hyperexcitability due to
increased [K+]o and membrane depolarization (Haglund and
Schwartzkroin, 1990; Somjen, 2002). Further effects arise from
the post-tetanic buildup of [Na+]i (Azarias et al., 2013) and
the following inhibition of the Ca2+/Na+ exchanger causing
accumulation of [Ca2+]i and subsequent effects on gene
transcription (Lyons and West, 2011), neurotransmitter release
(Neher and Sakaba, 2008), and synaptic plasticity (Zucker, 1999).

The Myshkin mice showed epileptic seizures and neuronal
hyperexcitability (Clapcote et al., 2009). Supporting the
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correlation between Na+/K+-ATPase α3 activity and seizure
resistance, the epileptic seizures did not occur in Atp1a3-BAC
transgenicMyshkinmice (Clapcote et al., 2009).

Furthermore, the link between ATP1A3-disease mutations
and epilepsy was observed in a Chinese 12-year old boy with
the I810N mutation, who was reported to have AHC with
developmental delay and epilepsy (Yang et al., 2014).

The Mashl+/− mice showed flurothyl-indiced seizures, focal
epileptogenesis (via kindling) and demonstrated spontaneous
recurrent seizures and neuronal excitability (Hunanyan et al.,
2015). Similar predisposition to epileptogenesis has been
observed in humans affected by AHC.

There have been no reports of epilepsy in either of the

Atp1a3tm1Ling/+ and α
+/1E2−6
3 mouse models (naïve or stressed),

although the α
+/1E2−6
3 mice showed increased sensitivity to

cerebellar kainate injections (Ikeda et al., 2013).
Epilepsy is associated with cognitive decline in human patients

(Bergen, 2006). Correspondingly, signs of hippocampal necrosis
and glial activation were initially reported for the Myshkin
mice maintained on the 129S1/SvImJ strain background.
Hippocampal pathology disappeared once the mice were crossed
into the C57BL/6NCr strain (Kirshenbaum et al., 2011a). Also,
once maintained in the C57BL/6NCr strain for 20 generations,
the Myshkin mouse strain no longer developed spontaneous
seizures (Kirshenbaum et al., 2011a). This observation parallels
previous publications identifying the 129S1/SvImJ and C57BL/6
strains as relatively resistant to kainate-induced seizures
whereas only the C57BL/6 strain was resistant to kainate-
induced cell death (Schauwecker, 2002; McLin and Steward,
2006).

MEMORY

In a comprehensive report of 157 AHC patients, mental
retardation was recorded in at least 92% of the cases
(Panagiotakaki et al., 2010). Likewise, cognitive decline has been
described in RDP patients (Cook et al., 2014).

Overall, naïve Myshkin and Mashl+/− mice displayed
poor memory performance, whereas the performance of the

Atp1a3tm1Ling/+ and α
+/1E2−6
3 mice to some degree was

dependent on stress. The Atp1a3tm1Ling/ mice thus showed no
learning in locating a hidden platform in the Morris water
maze (Moseley et al., 2007). In contrast the Atp1a3tm1Ling/+

mice performed normally in a novel object recognition test, but
showed significantly worse performance after subjection to a CVS
protocol (Kirshenbaum et al., 2011b).

The Myshkin mice performed significantly worse in
contextual- and cued-dependent fear conditioning tests.
In contrast, Mashl+/− mice showed impaired novel object
recognition, but intact cued-dependent fear memory (Hunanyan
et al., 2015).

The dorsal part of the hippocampus plays a central role in
learning and spatial memory, whereas the ventral hippocampus
primarily regulates emotional and motivated behaviors through
interaction with the amygdala (Fanselow and Dong, 2010).
Accordingly, ouabain injection into these brain regions caused

impairments in spatial learning (Zhan et al., 2004) and fear-
dependent memory, respectively (Mizumori et al., 1987).

This could suggest a difference in the performance of the
ventral hippocampus between the two Myshkin and Masl+/−

strains. However, the strong hyperactivity of the both strains may
have interfered with the readout of the conditioning tests, as
the tests rely on the ability to suppress movement. Furthermore,
the Myshkin mice showed reduced learning in a conditioned
taste aversion test, suggesting also hippocampus-independent
memory functions were affected (Reilly et al., 1993; Purves et al.,
1995).

Due to a high voltage dependency and a high permeability
for Ca2+, the N-methyl-D-aspartate receptors (NMDR) are
important for triggering several different forms of synaptic
plasticity, including long term potentiation and long-term
depression (Cull-Candy et al., 2001). The Atp1a3tm1Ling/+ mice
showed reduced hippocampal expression of the NMDA NR1
subunit (Moseley et al., 2007), suggesting increased neuronal
activity (Kvajo et al., 2004). Interestingly, NR1 expression was
unaffected in the Myshkin mice (Clapcote et al., 2009). This
observation is unexpected, as the Myshkin mice developed
spontaneous seizures. However, direct comparison is not possible
due to the FVB background of theMyshkinmice.

EFFECTS ON NEUROTRANSMITTER
HOMEOSTASIS AND CIRCUITRY

As previously exemplified, decrease in Na+/K+-ATPase activity
is associated with neuronal hyperexcitability and the release
of neurotransmitters. Particularly dopamine, serotonin, and
norepinephrine are involved in regulating movement and
behavior (Perona et al., 2008).

In support of a dopamine phenotype, all naïve Atp1a3
mouse models displayed hyperlocomotion in the open field
test, which was further induced by amphetamine (Moseley
et al., 2007; Kirshenbaum et al., 2011a). High Performance
Liquid Chromatography (HPLC) analysis showed no changes in
striatal levels of dopamine, serotonin, or their metabolites in the
Atp1a3tm1Ling/+ mice (DeAndrade et al., 2011). In cerebrospinal
fluid (CSF) samples obtained from two RDP patients, low levels
of the dopamine metabolite, homovanilic acid, was reported
(Brashear et al., 1998). However, this observation remains to
be confirmed as a diagnostic criterion for RDP. A recent study
reported normal CSF neurotransmitter levels in AHC patients
(Fons et al., 2012).

ADDITIONAL NEUROLOGICAL
SYMPTOMS

Some ATP1A3-disease mutation related patients show additional
neurological symptoms that range from mild limb cramping
sometimes decades before developing RDP (Brashear et al.,
2007) to dysfunction of the autonomic nervous system with
cardiac repolarization problems (Novy et al., 2014; Jaffer et al.,
2015) excessive or lack of perspiration, skin discoloration,
gastrointestinal problems and changes in body temperature
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leading up to or during attacks in AHC patients (Mikati et al.,
2000; Fons et al., 2012).

The Myshkin mice showed increased systolic and diastolic
blood pressure, but normal heart rate (Kirshenbaum et al.,
2013). Most likely, this effect is related to ATP1A3 expression
in cardiomyocytes (Zahler et al., 1993). The Mashl+/− mice
and stressed female Atp1a3tm1Ling/+ mice showed delayed
temperature response (DeAndrade et al., 2011; Hunanyan et al.,
2015), suggesting impaired thermoception. The α3 Na+/K+-
ATPase expression was recently reported in dorsal root ganglion
γ motor neurons located in the spinal cord of mice (Edwards
et al., 2013). It is therefore very likely to have implications
for motor control also. Somatosensory evoked potentials (SEP)
during the interictal period showed abnormal recovery cycle in a
recent case report of seven AHC patients, suggesting multilevel
somatosensory system hyperexcitability (Vollono et al., 2014).
Sensory abnormalities have been proposed to play a role in the
pathophysiology of dystonia as the basal ganglia and other motor
areas are heavily connected to the somatosensory system (Tinazzi
et al., 2003). Future studies may elucidate if a similar interaction
affects the pathophysiology of ATP1A3-related diseases.

SUMMARY

The current Atp1a3mouse models recapitulate to a large part the
symptoms of RDP and AHC.

Through the collaborative efforts of the ATP1A3-disease
research community, it has recently been possible to carry out
several studies on relatively large patient groups. Such studies
continue to be invaluable not only in the search for common
denominators but also for establishing the animal models for the
ATP1A3-diseases.

Previous studies using CTS to studyNa+/K+-ATPase function
suggest a strong correlation between reduced Na+/K+-ATPase
activity and severity of symptoms. The present Atp1a3 mouse
models seem to support this as the Atp1a3tm1Ling/+ and

α
+/1E2−6
3 mice (with mild Na+/K+-ATPase reduction) showed

relatively mild symptoms whereas the Myshkin and Mashl+/−

models carrying AHC mutations (with larger Na+/K+-ATPase
reduction), recapitulated most of the key phenotypes. As a proof
of concept, most symptoms of the Myshkin mouse were rescued
by increasing the Na+/K+-ATPase activity. Future experiments
will be required to establish if similar approaches can be
translated into a possible treatment.

Animal models represent valuable tools to study the pathology
of human diseases. The biological questions can be assessed
by different model system, depending on the nature of the
study. Different advantages and disadvantages for designing and
generating mouse models. Knock-out mouse models represent
loss-of-function studies of a gene, while knock-in allows to
explore the consequences of a single amino acid mutation
inroduced into the genome. Both knock-out and knock-in
models are can be designed as conditional models, allowing to
knock-out, or introduce a mutation (knock-in) in single cell
populations or organs, using the Cre LoxP system (Branda and
Dymecki, 2004). Blocking Na+/K+-ATPase activity by infusion

of ouabain (Fremont et al., 2014) or RNAi tools (Fremont et al.,
2015) into specific brain areas represent a another model to
investigate the function in specific brain areas in rodent models.

The highly variable nature of ATP1A3-disease related
symptoms are becoming increasingly apparent. Despite recent
advances in elucidating the etiology of individual ATP1A3
mutations, large variations are reported even for patients with
the same mutation. It is very likely that genetic background,
epigenetic as well as environmental factors play a central role in
disease penetrance.
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