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ABSTRACT
Started as an academic curiosity more than two decades ago, the idea that ion channels can 
regulate cellular processes in ways that do not depend on their conducting properties (non-ionic 
functions) gained traction and is now a flourishing area of research. Channels can regulate 
physiological processes including actin cytoskeletal remodeling, cell motility, excitation- 
contraction coupling, non-associative learning and embryogenesis, just to mention some, through 
non-ionic functions. When defective, non-ionic functions can give rise to channelopathies 
involved in cancer, neurodegenerative disease and brain trauma. Ion channels exert their non- 
ionic functions through a variety of mechanisms that range from physical coupling with other 
proteins, to possessing enzymatic activity, to assembling with signaling molecules. In this article, 
we take stock of the field and review recent findings. The concept that emerges, is that one of the 
most common ways through which channels acquire non-ionic attributes, is by assembling with 
integrins. These integrin-channel complexes exhibit broad genotypic and phenotypic heteroge-
neity and reveal a pleiotropic nature, as they appear to be capable of influencing both physio-
logical and pathological processes.
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Non-ionic functions of ion channels

Ion channels comprise a fundamental class of inte-
gral membrane proteins spanning all three domains 
of life. Channels make the lipid membrane perme-
able to ions and for this reason they are present in 
virtually any cell type [1]. Historically, channels have 
been considered in light of their conducting proper-
ties that range from shaping electrical impulses in 
excitable cells, to controlling cell volume, secretion, 
acidification, and other functions in non-excitable 
cells. However, during the last two decades, we and 
others, put forward the concept that channels can 
affect cellular processes in ways that do not depend 
on their conducting properties (non-ionic functions) 
[2–9]. Much progress has been achieved, and it is 
now established that channels possess non-ionic 
functions that they exert through a number of dif-
ferent mechanisms.

In skeletal muscle fibers, voltage-gated L-type cal-
cium channels CACNA1S (Cav1.1) operate as voltage 
sensors of excitation-contraction (EC) coupling. The 
CACNA1S channels are physically, and functionally 

paired, to the ryanodine receptors type 1 (RyR1, 
Figure 1(a)) [10–12]. Thus, CACNA1Ss promote sar-
coplasmic calcium increase through two distinct 
mechanisms: by conducting a calcium current–the 
effective contribution of which to EC is controversial 
(see ref. [13]); and by favoring the release of calcium 
from the stores through their physical, and thus non- 
ionic, coupling to the RyR1s. Notably, L-type calcium 
channels and ryanodine receptors are also function-
ally coupled in the neurons of the brain. The forma-
tion of these macromolecular structures is, in turn, 
helped by delayed rectifier and voltage-gated potas-
sium channel sub-family 2 member 1 (KCNB1, 
Kv2.1) that acts as scaffolding agent [14–17]. 
KCNB1 is expressed in several neuron types in the 
brain and in other organs including eyes, pancreas, 
gastrointestinal tract, kidney, and female reproductive 
system, where it presumably carries an important 
repolarizing potassium current [18]. However, 
KCNB1 exhibits a broad range of non-ionic functions, 
such as acting as scaffold protein as noted above that 
will be discussed throughout this review.
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Ion channels have a wide repertoire of mechan-
isms through which to exert non-ionic functions. 
For example, the transient receptor potential 
cation channel melastatin-subfamily, member 7 
(TRPM7), a non-selective channel, has enzymatic 
properties (Figure 1(b)) [3]. The C-terminus of 
TRPM7 contains a serine/threonine kinase trace-
able to the α-kinases family [19,20]. TRPM7 can 
phosphorylate several substrates, including pro-
teins involved in actin dynamics, embryogenesis, 
and neuronal transmission, underscoring the pro-
minent physiological role of TRPM7 [21–24]. In 
addition, the α-kinase of TRPM7 indirectly regu-
lates the channel’s ionic properties by modulating 
its sensitivity to magnesium ions and to magne-
sium nucleotides [25].

Functional ion channels are seldom the result of 
a single-gene product. Typically, they are composed 

of pore-forming or α-subunits, which assemble 
together to form the pathway for ions (pore) and 
thus, a conducting channel, and accessory or β- 
subunits that modulate the properties of the α- 
subunits. Several accessory subunits of potassium 
(K+) channels, including mammalian Kvβ2, 
Drosophila melanogaster slowpoke channel-binding 
protein SLOB, and Caenorhabditis elegans MiRP K+ 

channel accessory Subunit (MPS-1) have enzymatic 
attributes [2,4,5]. MPS-1 is an integral membrane 
protein, homolog to mammalian KCNEs, that has 
a cytoplasmic domain capable of serine/threonine 
kinase activity [26,27]. MPS-1 forms complexes with 
multiple pore-forming subunits including K+ chan-
nel Voltage-Sensitive Subunit 1 (KVS-1) and K+ 

channel Habituation to Tap subunit 1 (KHT-1) in 
the nervous system of the worm [9,27]. MPS-1 
phosphorylates the α-subunits to decrease their 

Figure 1. Ion channels exercise non-ionic functions through multiple mechanisms (a) Channels perform non-ionic functions 
through physical coupling with other channels, or posses enzymatic domains in their α-subunits (b), or β-subunits (c). In addition to 
playing canonical regulatory roles, the β-subunits of Nav channels act as adhesion molecules that help forming cell-to-cell contacts, 
or link the actin cytoskeleton to the extracellular matrix, (d).
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open probability. This mechanism plays an impor-
tant role in the context of non-associative learning, 
a universal behavior whereby an organism learns to 
ignore stimuli that are not important. In the 
mechanosensory neurons of C. elegans, MPS-1 
forms a tripartite complex with KHT-1 and with 
the acid phosphatase ACP-2, which maintains 
KHT-1 in a basal, de-phosphorylated state 
(Figure 1(c)) [9,28]. These tripartite complexes med-
iate the neurons’ response to mechanical stimuli, 
such as taps to the Petri dish. When the taps are 
repeated at constant frequency, the animals habitu-
ate. The repetitive stimulus triggers the disengage-
ment of ACP-2 from the complex, allowing MPS-1 
to phosphorylate KHT-1. This results in a decrease 
of K+ efflux that delays touch-neuron repolarization 
and, as a consequence, produces temporary desen-
sitization to the mechanical stimuli. Notably, in the 
neurons of the gigantocellular reticular nucleus, the 
ACP-2 mammalian homolog, prostatic acid phos-
phatase (PAP) dephosphorylates KHT-1 homolog, 
murine KCNC1b, where it may probably underlie 
adaptation responses [28].

Voltage-gated sodium channels (Nav) acquire 
non-ionic functions through their β-subunits. 
These proteins not only modulate the ionic 
properties of the α-subunits; they also mediate 
cell-to-cell adhesions by acting as molecular lin-
kers that bridge the actin cytoskeleton to neigh-
boring cells. Thus, the β-subunits connect the 
Nav with the outside, through interacting with 
proteins such as neurofascins, N-cadherins, and 
connexins and with the inside, by attaching to 
the actin cytoskeleton via assembly with ankyr-
ins (Figure 1(d). The β-subunit promotes direct 
bonding of Ankyrin G to the Nav α-subunit) 
[6,29–32]. This non-ionic function likely contri-
butes to the distribution of Nav channels in 
zones where they accumulate at high densities 
such as the node of Ranvier and the hillock, and 
to neuritogenesis, as some β-subunits (β1) aug-
ment, whereas others (β2) inhibit neurite’s out-
growth in cerebellar granule neurons [33].

Integrin-ion channel complexes

A number of ion channels form physical con-
nections with the actin cytoskeleton and with the 
external environment. However, rather than 

through their accessory subunits, channels typi-
cally achieve those non-ionic functions by inter-
acting with integrins. These are adhesion 
molecules that connect the extracellular matrix 
(ECM) to the actin cytoskeleton to regulate the 
shape, orientation, and movement of cells 
[34,35]. In addition, integrins engage intracellu-
lar signaling pathways, to control cell prolifera-
tion (in the absence of integrin-mediated 
adhesion and growth factors, cells do not com-
mit to enter the cell cycle, [36]), differentiation, 
survival, and death (anoikis) [37].

Integrin signal transduction is complex and 
extensively interconnected; therefore, a detailed 
discussion is beyond the scope of this review 
(for further readings, we direct the reader to 
refs. [34,35]). Briefly, in response to anchorage- 
dependent signals, integrins recruit and/or 
associate with, the integrin adhesome–a cytoske-
letal and signaling complex–to control 
a multitude of cellular functions [38–40]. 
Integrins do not possess enzymatic attributes. 
A fundamental step is the recruitment of Focal 
Adhesion kinase (FAK), which autophosphory-
lates Tyr397, creating a binding site for Src 
kinases. Then, Src, alone or with FAK, phosphor-
ylate several substrates, thereby transducing 
integrin signals into biochemical events. 
Integrins promote cell migration by recruiting 
cytoskeletal linkers, including Talin, and 
Vinculin, and scaffold/adaptors such as Paxillin 
and Integrin-linked kinase (ILK) that connect the 
cytoplasmic tail of integrins to actin filaments. In 
addition, integrins support cell survival, differen-
tiation, and proliferation, by engaging Ras 
GTPases, via guanosine-triphosphate exchange 
factor mSOS. Ras activates several signaling path-
ways including Mitogen Activated Protein kinase 
(MAPK) cascades and Phosphoinositide 3 kinase- 
Protein kinase B-mammalian target of rapamycin 
(PI3K-Akt-mTOR) signaling that lead to the 
phosphorylation of cytoplasmic targets and to 
the enhancement or repression of nuclear 
transcription.

Integrin-channel relationships play prominent 
roles in disease, primarily cancer, given that 
several aspects of these pathologies, for instance, 
tumor invasion, differentiation, and metastasis 
involve cellular functions that require the 
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coordinated action of integrins (Figure 2(a)). In 
addition, the expression of channels or integrins 
may adjust the expression of one another to 
maintain cellular homeostasis. In these cases, 
increased integrin expression may be associated 
with channel’s recruitment to the plasma mem-
brane and/or boosted channel activity and vice 
versa. It is also possible that in extreme and/or 
pathological conditions the increased presence of 
one may compensate for the absence of the 
other [41–43]. The first example of cooperation 
between ion channels and integrins comes from 
L-type calcium channels expressed in smooth 
muscle cells of small blood vessels. In rat arter-
ioles, integrin signaling favors vasoconstriction 
by potentiating CACNA1C (Cav1.2) channels 
[44–46]. Integrin ligands induce the assembly 
of integrins α5β1 with CACNA1C channels to 
form macromolecular complexes with protein 
kinase A (PKA), and c-Src tyrosine kinases 
[47]. Following integrin engagement, c-Src 

phosphorylates CACNA1C leading to current 
potentiation that facilitates vasoconstriction 
[48]. Interestingly, α5β1 integrins modulate 
large conductance, calcium-activated K+ (BK) 
channels in the same vessels, through largely 
similar mechanisms [49,50]. The mechanosensi-
tive ion channel PIEZO1 provides an example of 
a channel regulating integrin signaling [51]. 
PIEZO1 is overexpressed in aggressive cancers 
at focal adhesions where it augments tissue stif-
fening and tumor cell proliferation [52,53]. An 
increase in PIEZO1 current causes the activation 
of integrin-FAK signaling that reinforces tissue 
hardening. In turn, the firmer mechanical 
microenvironment boosts PIEZO1 expression 
and promotes tumor cell proliferation in a sort 
of auto-catalytic process [54]. Another example 
of a channel able to modulate integrin function 
is chloride intracellular channel, CLIC1. This 
protein promotes integrin-mediated, cell-matrix 
adhesion and the signaling for cytoskeleton 

Figure 2. Non-ionic functions of integrin channel complexes (a) A widespread mechanism by which channels acquire non- 
ionic functions is by forming macromolecular complexes with integrins. Generally, these integrin-channel complexes regulate 
the shape, orientation, and movement of cells through the integrin machinery. In addition, they modulate cell proliferation, 
differentiation, survival and death, and are therefore implicated in a variety of oncogenic processes of different etiologies. (b) 
Integrin-α5-KCNB1 complexes operate in the neurons of the brain (for simplicity the ECM is not depicted). Under conditions of 
oxidative stress, the KCNB1 channels form oligomers that trigger apoptosis. The molecular steps underlying this process include 
the engagement of FAK and Src by the integrins, followed by the activation of a canonical Ras-MAPK cascade. Killer kinases, 
such as JNK and p38 and caspases execute the apoptotic program. At the same time, these IKCs neutralize a major mechanism 
of cell survival by sequestering Akt, that cannot be activated (phosphorylated) and released into the cytoplasm, to phosphor-
ylate its multiple substrates including BAD.
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extension during tumor cell migration and inva-
sion [55]. Integrins signal through FAK and the 
critical role of this protein kinase in promoting 
cell motility is well established [56,57]. In some 
cancer types, however, FAK activity is decreased 
and with that, cellular proliferation and invasion. 
This inhibition of FAK activity is mediated by 
the formation of tripartite FAK, integrin-β4, and 
calcium-activated chloride channel protein 
(mCLCA1) complexes. Thus, overexpression of 
the same leads to phosphorylation and inhibition 
of FAK and ERK proteins [58].

Integrin-K+ channel complexes are widely 
expressed

Several macromolecular complexes formed by 
integrins and K+ channels, generically named 
Integrin-K+ channel complexes or IKCs, have 
been identified and characterized 
[41,43,49,57,59–73]. Arcangeli and colleagues 
were the first to reveal the existence of patho-
physiological links between integrins and K+ 

channels, when they showed that murine ery-
throleukemia cell adhesion to fibronectin, and 
neurite outgrowth of neuroblastoma cells were 
associated with a potassium current, later 
attributed to the voltage-gated K+ channel 
KCNH2 (synonyms, Kv11.1, HERG, and 
hERG1) [67,74–78]. Those initial findings were 
followed by a series of seminal studies that 
demonstrated that integrin-mediated cell adhe-
sion of KCNH2 promotes cell differentiation. 
Most importantly, the activation of KCNH2 
channels proceeds through integrin-β1 which 
was demonstrated to physically interact with 
the channel [70]. Overall, that body of work 
shows that integrin-β1-KCNH2 complexes inte-
grate the signaling evoked by cell adhesion to 
the ECM, with the cell differentiation machin-
ery. The pathological implications of integrin- 
β1-KCNH2 complexes are significant, when one 
considers that cell differentiation can play 
a role in oncogenesis. Accordingly, KCNH2 is 
highly conserved in tumors of different histo-
genesis, and integrin-β1-KCNH2 complexes 
play a central role in cancer formation and 
progression [72,74,76,79,80]. Furthermore, in 

colorectal cancer cell lines, the binding of fibro-
nectin and collagen I to integrin-β1 at the ECM 
level promotes the formation of a tripartite 
complex composed, other than of integrin-β1, 
of KCNH2 and of the Na+/H+ antiporter NHE1. 
The activity of this tripartite complex regulates 
the cytosolic pH of colorectal cancer cells, 
thereby contributing to the maintenance of 
tumor microenvironment [81].

The voltage-gated K+ channel KCNB1 forms 
stable complexes with integrin-α5 in neurons of 
the brain [62,64]. It is also likely that these 
complexes exist in other tissues, including the 
retina and the pancreas, where both KCNB1 and 
integrin-α5 are present. Studies carried out in 
heterologous expression systems indicated that 
the activity of KCNB1 is translated by the integ-
rins into biochemical events–mediated by FAK, 
Src, Ras GTPases, MAPKs, and protein kinase 
Akt–to advance the development of actin-rich 
cellular protrusions in Chinese hamster ovary 
(CHO) cells, stimulating their motility and to 
enhance neuritogenesis of neuroblastoma cells 
(Figure 2(b)) [57,62–65,82,83]. Accordingly, Src- 
mediated phosphorylation of KCNB1 at Tyr124 
is critical for the proliferation and myelination 
of murine Schwann cells [84,85]. These func-
tions are predominantly non-ionic in nature. 
Indeed, while certain non-conducting KCNB1 
variants implicated in severe epileptic syndromes 
engage integrin signaling and stimulate cell 
migration, other (non-conducting) variants that 
fail to activate the same cascades do not enhance 
cell migration [63]. Notably, all those variants 
are associated with large phenotypic heterogene-
ity [86]. Overall, it appears that integrin- 
α5-KCNB1 complexes translate membrane excit-
ability into intracellular signals important for 
cellular plasticity. This implies that when defec-
tive, integrin-α5-KCNB1 complexes could cause 
neurological disease through a variety of 
mechanisms ranging from impaired conduction 
to dysregulated integrin signaling. In fact, the 
non-ionic, pleiotropic, nature of integrin- 
α5-KCNB1 complexes becomes relevant in neu-
rodegenerative diseases, when neurons are sub-
ject to stressful conditions, namely oxidative 
stress.
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Integrin-α5-KCNB1 complexes trigger 
programmed cell death

The non-ionic functions of KCNB1 began to 
unravel after it was discovered that KCNB1 is 
a pro-apoptotic protein. Aizenman and colla-
borators showed that cells expressing KCNB1 
undergo apoptosis when challenged by oxidants 
[87]. Subsequent studies revealed that oxidative 
stress (an imbalance between the oxidants pre-
sent in the cell and its antioxidant defenses) 
correlated well with the activation of 
a number of protein kinases, including p38 
MAPK and Src family of tyrosine kinases that 
phosphorylated KCNB1 at Ser800 and Tyr124 
(the latter residue is also responsible for Src- 
mediated increase of myelination and prolifera-
tion of mouse Schwann cells) [84,85,88–91]. 
The phosphorylation of the channel enhances 
its interactions with syntaxin accelerating inser-
tion into the plasma membrane [92]. The 
increased K+ efflux that follows, stimulates cas-
pase and nuclease activity and marks a point of 
no-return toward apoptosis. However, we later 
discovered that reactive oxygen species (ROS) 
can directly modify KCNB1 proteins, turning 
them into aberrant, toxic channels [93]. The 
journey into what at the time was uncharted 
territory began when we tested the idea that 
the excess ROS that build up in aging cells 
may oxidize K+ channels, leading to neuronal 
failure. For that exploratory inquiry, we took 
advantage of the simplicity of C. elegans, 
which indeed turned out to be an excellent 
tool to capture the essence of the problem. 
Accordingly, the KVS-1 channel, which is 
a homolog of KCNB1, becomes progressively 
oxidated at Cys113 in the sensory neurons of 
aging worms [27,94]. The oxidative modifica-
tions alter the gating of KVS-1, which by 
impairing sensory neuron excitability, leads to 
behavioral deficit. The cysteine responsible for 
the functional alterations of the KVS-1 channel 
is conserved in KCNB1 (Cys73. The KVS-1 
channel possesses a 40 amino-acid domain 
composed of a N-inactivating ball preceded by 
an N inactivation regulatory domain, called 
NIRD which modulates the inactivation of the 
channel [95]). This suggests that also KCNB1 

may be susceptible to redox. In fact, oxidants 
cross-link KCNB1 subunits to each other (oli-
gomers), by inducing the formation of disulfide 
bridges involving conserved Cys73 [93]. Most 
importantly, KCNB1 oligomers were detected in 
the post mortem hippocampi of male and 
female AD donors (83.8 ± 0.79 yrs. average 
age) where they were significantly more abun-
dant than in age-matched controls (82.5 ± 
0.76 yrs.) [64]. Just to give an idea of the extent 
of KCNB1 oligomerization in the aging human 
brain, ~40% of KCNB1 channels were found to 
be oligomerized in control donors, and this num-
ber increased to ~75% in Alzheimer’s donors. 
Similarly, KCNB1 oligomers were found to be 
~35% and ~80% in, respectively, 22 month-old 
control and 3xTg-AD mice [93]. KCNB1 oligo-
mers do not conduct current [93]. Studies in 
3xTg-AD mouse model of Alzheimer’s disease–a 
pathology characterized by extensive oxidative 
stress–showed that oxidized KCNB1 channels 
impair neuron repolarization causing hippocampal 
hyperexcitability [96,97]. However, the toxicity of 
KCNB1 oligomers does not stem only from their 
lack of conduction, and is also caused by non- 
ionic mechanisms. A KCNB1 variant obtained by 
replacing Cys73 to Ala (C73A) does not form 
oligomers and conducts normally. Therefore, 
C73A channels should give rise to an apoptotic 
current surge in response to an oxidative insult. In 
contrast, the mutant does not cause cellular death. 
This implies that the formation of oligomers, 
rather than KCNB1 current, is the event that trig-
gers the initial pro-apoptotic stimulus.

Integrin-α5-KCNB1 complexes are implicated 
in multiple pathologies

Alzheimer’s disease and Traumatic Brain Injury 
(TBI) provide two well characterized examples of 
the pleiotropic nature of integrin-α5-KCNB1 com-
plexes. As the brain undergoes degeneration or 
trauma, these IKCs turn pathogenic by promoting 
inflammation and apoptosis via integrins and their 
signaling machinery [64,65,98]. The signaling 
pathways recruited by integrin-α5-KCNB1 com-
plexes have been characterized in detail. 
Conformational changes in KCNB1 such as 
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opening and closing leads to the recruitment of 
FAK. The kinase autophosphorylates Tyr397, 
creating a binding site for Src family tyrosine 
kinases. FAK/Src complexes activate small 
GTPases of the Ras sub-family, which in turn, set 
in motion a canonical MAPK pathway, composed 
of Rapidly Activated fibrosarcoma (RAF) kinase, 
Mitogen-Activated Protein Kinase Kinase (MEK) 
and Extracellular signal-Regulated kinase (ERK) 
[62,65]. This is followed by the appearance of killer 
kinases, including C-Jun N-Terminal Kinase 
(JNK) and presumably kinases implicated in the 
surge mechanism such as p38 MAPK, caspases and 
other death proteins, that execute the final steps of 
the apoptotic program [82,89,98].

Integrin-α5-KCNB1 complexes keep balance 
between cell’s life and death

Studies of integrin-α5-KCNB1 complexes 
expressed in immortal cells demonstrated that 
the activation of Ras-MAPK signaling represents 
a causative step toward apoptosis [63,65]. 
However, also IKCs formed with anti-apoptotic 
C73A subunits turned out to engage the same 
Ras-MAPK cascades. The answer to this conun-
drum is that the difference between IKCs formed 
with WT and C73A KCNB1 channels resides in 
the way they regulate active Akt, a major archi-
tect of cell survival. Akt keeps apoptosis progres-
sion in check through phosphorylating BCL2 
associated agonist of cell death (BAD) at 
Ser136 [99,100]. When BAD is dephosphory-
lated, it forms heterodimers with Bcl-2 and Bcl- 
xL, preventing them from inhibiting the release 
of cytochrome c through the mitochondrial pore 
[100]. Accordingly, Akt is significantly more 
active, and with it, BAD is more phosphorylated, 
in the presence of IKCs formed with C73A 
mutants compared to WT [63,65]. Furthermore, 
pharmacological inhibition of Akt abolishes the 
protective effect of C73A, but when Ras-MAPK 
signaling is simultaneously inhibited, apoptosis 
is also suppressed. The activation of Akt occurs 
at the plasma membrane, where the kinase is 
sequentially phosphorylated at Thr308 and at 
Ser473 before being released back into the cyto-
plasm [101]. An oxidative insult causes selective 
increase of Akt binding to WT channels that 

prevents the kinase from being phosphorylated 
and released into the cytoplasm [65]. At the 
moment, the causes for the selective affinity of 
oxidized WT channels for Akt are not known. 
An important fact to consider, is that KCNB1 
oligomers are poorly endocytosed and conse-
quently build up in the plasma membrane [82]. 
Hence, it is possible that the increased presence 
of KCNB1 protein at the membrane might 
enhance the probability of interacting with Akt. 
Indeed, under normal conditions, a small frac-
tion of KCNB1 channels, either WT and C73A, 
co-immunoprecipitate with Akt [65]. In sum-
mary, the evidence at hand provides a model 
for the toxicity of integrin-α5-KCNB1 complexes 
that predicts that these IKCs send apoptotic 
stimuli via Ras-MAPK cascades, while simulta-
neously neutralizing the mechanisms of cellular 
survival.

Biomedical relevance of integrin-α5-KCNB1 
complexes

The elucidation of the non-ionic functions of 
IKCs carries important biomedical implications, 
as drugs that impinge on the signaling pathways 
engaged by these complexes have the potential 
to ameliorate multiple pathologies. One promis-
ing candidate is Dasatinib, a second-generation 
Src tyrosine kinase inhibitor. Dasatinib is FDA- 
approved for the treatment of Philadelphia chro-
mosome-positive (Ph+) chronic myeloid leuke-
mia (CML) and acute lymphoblastic leukemia 
including Central Nervous System CMS (the 
drug is blood–brain barrier permeable) [102– 
110]. Dasatinib, reverses cognitive decline in 
rodent models of AD by decreasing β-amyloid 
(Aβ) load and neurofibrillary tau tangles (NFT), 
inflammation, and oxidative stress [64,111–114]. 
The potential therapeutic effects of Dasatinib 
in AD stem from its ability to impinge on multi-
ple cellular mechanisms, which share the invol-
vement of Src tyrosine kinases, such as the 
oxidation of integrin-α5-KCNB1 complexes 
[64,98]. Combs and colleagues were the first to 
show that the inhibition of Src tyrosine kinases 
by Dasatinib acted to reduce brain inflammation 
and improved cognitive outcome in mouse 
model of Alzheimer’s disease [112,113]. Work 
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from our lab further indicated that prolonged 
Dasatinib treatment in 3xTg-AD mice decreased 
brain inflammation and Aβ load and reduced 
behavioral deficit caused by the oxidation of 
integrin-α5-KCNB1 complexes [64]. Dasatinib 
was also found to significantly decrease inflam-
mation and neurodegeneration caused by oxida-
tion of integrin-α5-KCNB1 complexes in the 
Lateral Fluid Percussion (LFP) mouse model of 
brain trauma, a condition that shares with 
Alzheimer’s disease copious oxidative stress and 
Aβ plaque formation [115–120]. Orr and collea-
gues detected a reduction in total NFT density, 
neuron loss, and ventricular enlargement follow-
ing Dasatinib+Quercetin (a flavonoid found in 
many plants and foods) regimen in human 
Alzheimer’s neurons and in the brains of 
a mouse model of tauopathy [111]. Others have 
sought to identify agents targeting the surge 
mechanism, which relies on the interaction 
between the C-terminus of KCNB1 and syntaxin. 
This effort has led to the identification of a small 
molecule inhibitor (cpd5) of the protein–protein 
interaction between syntaxin and KCNB1, that 
has shown some efficacy in ameliorating neuro-
nal loss in middle cerebral artery occlusion 
mouse model of ischemic stroke [121]. 
Currently, seven drugs that inhibit Ras-MAPK 
signaling are FDA-approved for the treatment 
of multiple cancer pathologies, and Akt agonists 
are being developed [122–125]. It is therefore to 
be hoped that in the future, some of the drugs 
that target components of the integrin- 
α5-KCNB1 complexes signaling machinery 
could be repurposed for the treatment of dis-
eases, including Alzheimer’s disease, TBI, and 
stroke.

Conclusions

In a short period of time, enormous progress has 
been achieved in our understanding of ion chan-
nels and their non-ionic functions. In 20 years, 
what started as sporadic, anecdotal evidence has 
become a solid, broad field of research. Channels 
exert their non-ionic functions through various 
mechanisms, ranging from physical coupling, to 
possessing enzymatic features, and many other 
mechanisms will likely be discovered as our 

understanding of these proteins progresses. The 
repertoire of non-ionic functions of ion channels 
is implicated in a broad range of physiological 
processes, as fundamental as actin cytoskeleton 
remodeling and cell migration, differentiation, 
embryogenesis, excitation-contraction coupling, 
and learning and memory formation. 
Consequently, defective non-ionic functions give 
rise to pathologies, including TBI, Alzheimer’s dis-
ease, stroke, and cancer.

Interestingly, channels achieve their non-ionic 
functions by primarily interacting with integrins. 
The voltage-gated and delayed rectifier K+ channel 
KCNB1 provides one of the best examples of the 
broad pathophysiological implications of non- 
ionic functions of an ion channel. Integrin- 
α5-KCNB1 complexes are involved in regulating 
basic cellular processes, and they become toxic in 
pathological conditions. The elucidation of these 
mechanisms may provide pharmacological indica-
tions that could be quickly translated to human 
clinical trials.
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