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Abstract 1 

Analysis of SARS-CoV-2 genetic diversity within infected hosts can provide insight into the 2 

generation and spread of new viral variants and may enable high resolution inference of 3 

transmission chains. However, little is known about temporal aspects of SARS-CoV-2 intrahost 4 

diversity and the extent to which shared diversity reflects convergent evolution as opposed to 5 

transmission linkage. Here we use high depth of coverage sequencing to identify within-host 6 

genetic variants in 325 specimens from hospitalized COVID-19 patients and infected employees 7 

at a single medical center. We validated our variant calling by sequencing defined RNA mixtures 8 

and identified a viral load threshold that minimizes false positives. By leveraging clinical 9 

metadata, we found that intrahost diversity is low and does not vary by time from symptom 10 

onset. This suggests that variants will only rarely rise to appreciable frequency prior to 11 

transmission. Although there was generally little shared variation across the sequenced cohort, 12 

we identified intrahost variants shared across individuals who were unlikely to be related by 13 

transmission. These variants did not precede a rise in frequency in global consensus genomes, 14 

suggesting that intrahost variants may have limited utility for predicting future lineages. These 15 

results provide important context for sequence-based inference in SARS-CoV-2 evolution and 16 

epidemiology. 17 

 18 

 19 
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Introduction 21 

Over the course of the SARS-CoV-2 pandemic, whole genome sequencing has been widely 22 

used to characterize patterns of broad geographic spread, transmission in local clusters, and 23 

the spread of specific viral variants1–6. Early reports demonstrated that SARS-CoV-2 exhibits 24 

genetic diversity within infected hosts, but this has been less studied than consensus-level 25 

genomic diversity7. Intrahost diversity is an important complement to consensus sequencing. 26 

Patterns of viral intrahost diversity throughout individual infections can suggest the relative 27 

importance of natural selection and stochastic genetic drift8. Shared intrahost variants between 28 

individuals can reveal loci under convergent evolution and enable measurement of the 29 

transmission bottleneck, a critical determining factor in the spread of new genetic variants9,10. 30 

Studies of SARS-CoV-2 intrahost diversity may shed light on selective pressures applied at the 31 

individual level, such as antivirals and antibody-based therapeutics. While a clear understanding 32 

of within-host evolution can inform how SARS-CoV-2 spreads on broader scales, there have 33 

been relatively few comprehensive studies of intrahost dynamics9,11,12. 34 

 35 

Sequencing of intrahost populations can also potentially be applied to genomic epidemiology13. 36 

A common goal in sequencing specimens from case clusters is to infer transmission linkage, 37 

which can guide future public health and infection control interventions. However, the relatively 38 

low substitution rate and genetic diversity of SARS-CoV-2 present challenges to inference of 39 

individual transmission pairs13,14. In the pandemic setting, there is a non-negligible chance that 40 

two individuals who are epidemiologically unrelated could be infected with nearly identical viral 41 

genomes. Viruses from a single local outbreak may have few differentiating substitutions, 42 

limiting the ability of sequencing to resolve exact transmission chains. Identification of shared 43 

intrahost variants between individuals has been explored in other pathogens to overcome this 44 

obstacle15–19. However, use of this approach for SARS-CoV-2 will depend on a solid 45 

understanding of the forces that shape the generation and spread of genetic variants. 46 
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 47 

There are several unresolved questions that will dictate the utility of intrahost diversity for 48 

genomic epidemiology. First, there must be sufficient intrahost diversity generated during acute 49 

infection prior to a transmission event. How much intrahost diversity is accumulated over time 50 

from infection onset is currently unknown. Second, the population bottleneck during 51 

transmission must be sufficiently wide to allow minor variants to be transmitted to recipient 52 

hosts20,21. Third, de novo generation of the same minor variants across multiple infections must 53 

be sufficiently rare. Independent generation of shared minor variants by positive selection or 54 

genetic drift in unrelated hosts could confound transmission inference15. Finally, measurements 55 

of intrahost diversity must be accurate and account for several potential sources of error22,23. 56 

Although previous studies have described within-host variation of SARS-CoV-27,9,11,12,24–26, few 57 

have addressed the sources of systematic errors and batch effects in variant identification. To 58 

assess the utility of SARS-CoV-2 intrahost diversity for transmission inference, we need a 59 

clearer understanding of its temporal variation throughout infection and the extent of convergent 60 

evolution across individuals. Addressing these questions will also be valuable for understanding 61 

SARS-CoV-2 evolution. 62 

 63 

Here, we sequenced SARS-CoV-2 genomes from 325 residual upper respiratory samples from 64 

hospitalized patients and employees at the University of Michigan. To validate our sequencing 65 

approach, we sequenced defined mixtures of two synthetic RNA controls and found that low 66 

input viral load decreases the specificity of variant calling. We find that observed intrahost 67 

diversity does not vary significantly by day since symptom onset. Intrahost variants can be 68 

shared between individuals that are unlikely to be related by transmission, suggesting that 69 

variants can arise by parallel evolution. These results inform our understanding of SARS-CoV-2 70 

diversification in human hosts and highlight important considerations for sequence-based 71 

inference in the virus’s genomic epidemiology. 72 
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 73 

Results 74 

We retrieved respiratory specimens collected through diagnostic testing from March – May 75 

2020. We sequenced samples from two groups: inpatients who were part of an observational 76 

study of COVID-19 in hospitalized individuals (n = 190), and symptomatic employees who 77 

presented to occupational health services (n = 135). All employees were diagnosed and treated 78 

in outpatient settings, except for one who was admitted as an inpatient. Genome copy number 79 

determined by qPCR of the nucleocapsid gene was highly variable and decreased by day from 80 

symptom onset (p < 0.001, linear model, Fig. 1A). We obtained 212 complete genomes (Fig. 81 

1B), mostly from samples with higher viral loads (Fig. 1B). Consensus genomes had a median 82 

of 7 substitutions relative to the Wuhan-Hu-1/2019 reference sequence (range 4 – 12). 83 

Phylogenetic analysis of whole consensus genomes identified 10 unique evolutionary lineages 84 

in our cohort (lineages determined by the PANGOLIN system, see Methods; Fig. 1C). Most 85 

sequenced genomes fell in lineage B.1. We evaluated whether any employees were part of an 86 

epidemiologically linked cluster based on illness onset date, positive test status, and work 87 

location. We found that some employees were part of epidemiologically linked clusters (Fig. 88 

1C). The genomes from clusters 2, 10, 19, 20, and one pair in cluster 29 had ≤ 1 consensus 89 

difference, while the rest had 2 – 7 differences. Many inter-cluster employee pairs also had 90 

identical or nearly identical consensus genomes. We have no information on epidemiologic 91 

linkage for the remaining sequenced individuals. 92 

 93 

Identification of viral within-host variants can be prone to errors22,23. Therefore, we performed a 94 

mixing study to evaluate the accuracy of our pipeline for identifying intrahost single nucleotide 95 

variants (iSNV). We mixed two synthetic RNA controls that differ by seven single nucleotide 96 

substitutions at defined frequencies and input concentrations (Fig. 2A). These mixtures were 97 

sequenced using the same approach as the clinical samples. We identified true iSNV at the 98 
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expected frequencies at ≥ 103 copies/μL (Fig. 2B). There was greater variance in the observed 99 

variant frequencies at 102 copies/μL compared to higher input concentrations. We obtained high 100 

sensitivity for iSNV at ≥ 2% frequency and ≥ 103 copies/μL with sufficient genome coverage. 101 

Many false positive iSNV remained at ≥ 2% frequency and 102 copies/μL despite multiple quality 102 

filters (Figure 2C, Supplemental Figure 1). However, false positive iSNV per sample drastically 103 

decreased with input concentrations ≥ 103 copies/μL. Three false positive variants were 104 

identified in multiple samples above 104 copies/μL: A3350U, G6669A, and U13248A. Because 105 

these iSNV were not randomly dispersed across the genome and were otherwise well-106 

supported in the sequence data, we suspect that they represent low-frequency variants present 107 

in the synthetic RNA controls. Together, these data indicate that sufficient input viral load is a 108 

critical factor for accurate identification of iSNV. 109 

 110 

Based on our benchmarking experiment, we identified iSNV in 178 specimens with viral loads 111 

≥103 copies/μL (Fig. 3A). We excluded position 11083, which is near a natural poly-U site and 112 

prone to sequencing errors27. Most specimens exhibited fewer than ten minor iSNV (median 1, 113 

IQR 0 – 3, Fig. 3B). There were four outlier specimens with greater than 15 iSNV. In these 114 

samples, iSNV were dispersed throughout the genome at various frequencies, so it is difficult to 115 

determine whether they represent mixed infections11. The locations of these samples on 116 

sequencing plates were not suggestive of cross-contamination. There was no difference in 117 

minor iSNV richness between hospitalized patients and employees treated as outpatients (p = 118 

0.29, Mann-Whitney U test, Supplemental Figure 2). We identified more minor iSNV encoding 119 

non-synonymous changes than synonymous ones across most open reading frames (Fig. 3C) 120 

and identified more iSNV at lower frequencies (Fig. 3D), which together is suggestive of mild 121 

within-host purifying selection. Sample iSNV richness decreased with higher viral loads by about 122 

1 iSNV per 10-fold increase in viral load (p = 0.01, multiple linear model, Supplemental Figure 123 
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3). Sample iSNV richness did not correlate with day from symptom onset (p = 0.75, multiple 124 

linear model, Fig. 3E). These results show that within-host diversity is low and remains that way 125 

over the duration of most SARS-CoV-2 infections. 126 

 127 

Next, we investigated patterns of shared intrahost diversity between individuals. Most iSNV 128 

were unique to a single individual. However, 19 iSNV were present in multiple specimens (Fig. 129 

4A). These did not include the three recurrent false positives found in the synthetic RNA 130 

controls. None of these mutations were located at sites known to commonly produce errors or 131 

homoplasies27,28. Two iSNV were present in three individuals (G12331A and A11782G, both 132 

synonymous changes in ORF1a) and one iSNV was present in six individuals (U13914G, 133 

encoding N149K in ORF1b). There was no clear phylogenetic clustering of genomes exhibiting 134 

these shared iSNV (Supplementary Figure 4). The U13914G mutation was shared between 135 

several sample pairs separated by 2 or more substitutions, and G12331A was shared between 136 

samples from different viral lineages (13 substitutions). These three mutations were first 137 

detected in our samples in late March 2020 (Fig. 4B). None reached > 1% frequency per week 138 

in consensus sequences submitted to GISAID through mid-November 2020. These results 139 

suggest that iSNV that arise convergently across viral lineages are not necessarily predictive of 140 

subsequent global spread of those mutations. 141 

 142 

Transmission inference based on shared iSNV integrates information such as consensus 143 

genome sequences, sample dates, and shared iSNV15. Therefore, we compared shared iSNV 144 

across all unique pairs of specimens used for variant calling (n = 15753, Fig. 5). Because most 145 

iSNV were unique to an individual, most pairs did not share iSNV and only 0.23% of pairs 146 

shared one iSNV. Many pairs with shared iSNV were sequenced in separate batches, which 147 

reduces the likelihood that shared iSNV are due to cross-contamination. No employee pairs in 148 

the same epidemiologic cluster shared iSNV (see Fig. 1C). We identified fourteen unique pairs 149 
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with shared iSNV between genomes that were near-identical (0 – 1 consensus differences), 150 

eight of which were collected within one week of each other. However, we have no 151 

epidemiologic data to suggest that these pairs of individuals are linked by transmission. We also 152 

identified shared iSNV between 23 pairs separated by ≥ 2 consensus substitutions (Fig. 5A and 153 

5B) and 15 pairs with collection dates 7 – 28 days apart (Fig. 5B). Due to differences in viral 154 

lineage and time of collection, these are very unlikely to be transmission pairs. Together, these 155 

data indicate that iSNV can arise convergently between individuals who are unlikely to be 156 

related by transmission. 157 

 158 

Discussion 159 

Accurate characterization of SARS-CoV-2 intrahost diversity is important for understanding the 160 

spread of new genetic variants and its potential use in transmission inference. In this study, we 161 

sequenced upper respiratory specimens from a cohort of hospitalized COVID-19 patients and 162 

infected employees. We found that intrahost diversity is low and its distribution does not vary by 163 

time since symptom onset. We identified iSNV shared across viral genomes separated by time 164 

and disparate evolutionary lineages, indicating that iSNV can arise convergently. Because 165 

variants may be shared through parallel mutation rather than transmission, caution is warranted 166 

in the use of shared iSNV alone for inferring transmission chains. Intrahost variants shared 167 

across multiple individuals did not precede an increase in frequency in global consensus 168 

genomes, which suggests that identifying convergent iSNV may have limited utility in tracking 169 

broader SARS-CoV-2 evolution. 170 

 171 

Specimen viral load is important when measuring intrahost diversity. We and others have shown 172 

that samples with low viral loads are prone to false positive iSNV and lower sensitivity22,23,29. A 173 

strength of our study is that we experimentally validated the accuracy of our variant calling by 174 

sequencing defined populations. Based on these results, we excluded samples with low viral 175 
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load from subsequent analyses. Future studies of SARS-CoV-2 intrahost diversity should report 176 

and account for specimen viral loads to avoid this common source of error. We did not 177 

benchmark our sequencing approach for detecting insertions and deletions (indels) and 178 

therefore did not report these for the clinical specimens. Intrahost indels could conceivably 179 

provide useful information about within-host evolution, but accurate detection is also subject to 180 

similar issues of sample quality and viral load. 181 

 182 

The low level of intrahost diversity that we found here is consistent with a recent preprint by 183 

Lythgoe et al.9. The fact that our work and the study by Lythgoe et al. were performed with 184 

different geographical areas, sequencing approaches (ARTIC Network amplicons vs. veSEQ 185 

metagenomic sequencing), and analysis methods lends credence to the results. Lythgoe et al. 186 

reported more shared variation than seen here, but this is most likely due to sequencing a 187 

greater number of samples among individuals within known epidemiologic clusters. We and 188 

Lythgoe et al. measure a lower level of intrahost diversity at the 2% frequency threshold 189 

compared to a recent study in Austria12. The reasons for this are not clear, but it is likely due to 190 

differences in sample viral loads and variant calling methods. We did not find a difference in 191 

intrahost diversity between hospitalized COVID-19 patients and those treated as outpatients, 192 

which suggests that viral diversity may not be a reliable marker for disease severity.  193 

 194 

Measuring viral diversity over the course of infection is relevant for understanding how variants 195 

are transmitted to new hosts. Only genetic variants present at the time of a transmission event 196 

will have the opportunity to spread. Because SARS-CoV-2 usually transmits just before or 197 

several days after symptom onset30,31, it is important to define viral diversity in this window. Our 198 

cross-sectional analysis of diversity by time since symptom onset indicates that diversity does 199 

not significantly increase over the course of infection. A significant fraction of samples may not 200 

exhibit any iSNV at the time of transmission, which could limit the utility of iSNV for linking 201 
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transmission pairs. Only a large bottleneck would lead to onward spread of most iSNV present 202 

during early infection. However, it is important to recognize that although the absolute level of 203 

diversity may not change over time, different variants may arise or go extinct during a given 204 

infection. This phenomenon was observed in a recent study by Tonkin-Hill et al.11. Serial 205 

samples from individuals could address this issue with higher resolution. Low diversity within 206 

hosts also shapes our expectations for emergence of resistance to drugs and monoclonal 207 

antibodies. With such limited substrate for selection to act upon, the short window of time 208 

between treatment and transmission could limit the spread of a variant selected within a host. 209 

Even during prolonged infections in immunocompromised hosts, there is only limited evidence 210 

of resistance to various COVID-19 therapeutics32–34. 211 

 212 

Parallel evolution is a critical factor to consider in the interpretation of shared intrahost 213 

variation15. Even if iSNV identification were perfectly specific, iSNV can arise in parallel due to 214 

biological processes such as natural selection and genetic drift. A key finding of this work is that 215 

iSNV can arise in genomes that are unrelated by local transmission, specifically those across 216 

large time intervals and lineages. Shared iSNV between individuals with identical genomes 217 

collected the same week may also have arisen in parallel. These pairs are most likely not 218 

epidemiologically linked, but we are unable to rule out coincident local transmission in the 219 

community. Because iSNV can arise in parallel in genomes that are not linked by transmission, 220 

caution is needed when relying entirely on shared iSNV for transmission inference11,13. 221 

 222 

We also found that identifying iSNV across multiple individuals did not precede an increase of 223 

those mutations in frequency in global consensus genomes. It is unclear whether these 224 

mutations arose due to positive selection, chance, or mutational “hotspots”11. It is possible that 225 

these mutations were lost due to purifying selection within hosts or during transmission8,35. 226 
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These results suggest that iSNV may have lower utility for tracking broader SARS-CoV-2 227 

evolution, but larger sample sizes in more geographic areas are necessary to evaluate this. 228 

 229 

One of the most important variables for transmission inferences is the size of the transmission 230 

bottleneck15. If parallel evolution of iSNV occurs regularly and the transmission bottleneck is 231 

very small, that would increase the likelihood that shared iSNV are due to convergence rather 232 

than transmission. However, if the bottleneck is large, then iSNV may become more valuable for 233 

detecting transmission networks when consensus genomes are limited. There are currently 234 

conflicting results on the SARS-CoV-2 bottleneck size. Popa et al. estimated a bottleneck size 235 

of greater than 100012. In contrast, Lythgoe et al. estimated a bottleneck size range from 1 – 8 236 

based on 14 household pairs9. Lythgoe et al. in particular used extensive controls and validation 237 

for preventing contamination and identifying sequencing errors. Other studies both in humans 238 

and in domestic cats have estimated small bottlenecks36,37. It is difficult to interpret these 239 

contrasting results because each study used different sequencing and analysis methodologies. 240 

In recent work on influenza A virus, a study of methodological differences was key for resolving 241 

different conclusions about the bottleneck size38. One factor that has not yet been clearly 242 

defined is how the time interval between donor-recipient pairs affects SARS-CoV-2 bottleneck 243 

estimates. We expect that further work will clarify the reasons behind these conflicting 244 

estimates. 245 

 246 

Because of the high incidence and low mutation rate of SARS-CoV-2, genomic epidemiology is 247 

necessarily constrained in its ability to determine exact transmission chains in an outbreak. 248 

Using minor genetic variation to increase the resolution of genomic epidemiology requires 249 

attention to the underlying processes of within-host viral evolution and awareness of possible 250 

confounders. Unified statistical frameworks that incorporate sequences, metadata, and 251 

epidemiological models are likely the most robust approaches for integrating intrahost variants, 252 
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but these models also must account for parallel evolution15–17. As others have recently 253 

suggested11, we caution against assigning transmission pairs solely by virtue of shared iSNV in 254 

the absence of clear epidemiologic information. 255 

 256 
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Materials and Methods 265 

 266 

We collected clinical metadata and residual diagnostic specimens positive for SARS-CoV-2 267 

from hospitalized patients enrolled in the CDC HAIVEN (Hospitalized Adult Influenza Vaccine 268 

Effectiveness Network) study and infected employees enrolled in the HARVI (hospital 269 

associated respiratory virus infection) study. These studies and the use of residual specimens 270 

were approved by the University of Michigan Institutional Review Board.  271 

 272 

Date of illness onset for hospitalized patients was collected individually via medical chart 273 

abstraction from physician notes. Michigan Medicine employees with any suspected COVID-19 274 

symptoms were asked to call a COVID-19 healthcare worker hotline before reporting to work. 275 

Date of symptom onset, a list of symptoms, close contacts, travel history, and work location and 276 

description were recorded. After testing, employee clusters were determined by illness onset 277 

date, positive test status, and work location.  278 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427330doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427330
http://creativecommons.org/licenses/by-nc/4.0/


 279 

Genome amplification and sequencing 280 

Residual samples from nasopharyngeal swabs and sputum specimens were centrifuged at 1200 281 

x g. and 200 microliters were aliquoted. RNA was extracted with the Invitrogen PureLink Pro 96 282 

Viral RNA/DNA Purification Kit and eluted in volumes of 100 microliters. Complementary DNA 283 

was reverse transcribed with SuperScript IV (ThermoFisher). The SARS-CoV-2 genome was 284 

amplified in two multiplex PCR reactions using the ARTIC Network V3 primer sets. Sequencing 285 

libraries were prepared with the NEBNext Ultra II kit and pooled in equal volumes after 286 

barcoding. The pooled sequencing library was gel extracted to remove adapter dimers. Libraries 287 

were sequenced on an Illumina MiSeq at the University of Michigan Microbiome Core facility (v2 288 

chemistry, 2x250 cycles). To validate this approach, we used two synthetic RNA controls that 289 

differ by seven single nucleotide mutations, Wuhan-Hu-1 and EPI_ISL_418227 (Twist 290 

Bioscience, San Francisco, CA). We mixed the two RNAs at various copy numbers (105, 104, 291 

103, 102 genome copies/μL) and frequencies (0%, 0.25%, 0.5%, 1%, 2%, 5%, 10%, and 100%). 292 

We amplified and sequenced each RNA mixture as described above. 293 

 294 

Viral load measurements 295 

We measured SARS-CoV-2 genome copy concentration for each sample by qPCR using 296 

conditions outlined in the CDC 2019-Novel Coronavirus EUA protocol 297 

(https://www.fda.gov/media/134922/download). The nucleocapsid gene was amplified using the 298 

CDC N1 primer and probe set as follows: 2019-nCoV_N1 Forward Primer 299 

GACCCCAAAATCAGCGAAAT; 2019-nCoV_N1 Reverse Primer 300 

TCTGGTTACTGCCAGTTGAATCTG; 2019-nCoV_N1 Probe 301 

ACCCCGCATTACGTTTGGTGGACC. Probe sequences were FAM labeled with Iowa Black 302 

quencher (Integrated DNA Technologies, Coralville, IA). Reactions were performed using 303 

TaqPath 1-step RT-qPCR master mix (Thermofisher, Waltham, MA) with 500 nM of each primer 304 
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and 250 nM of each probe in a total reaction volume of 20 µl. Cycling conditions were as 305 

follows: 2 min at 25 °C, 15 min at 50 °C, 2 min at 95 °C, and 45 cycles of 3 seconds at 95 °C, 30 306 

seconds at 55 °C. Samples were run on an Applied Biosystems 7500 FAST real-time PCR 307 

system. Cycle threshold (Ct) was designated uniformly across PCR runs. 308 

Standard curves based on serial dilutions of a plasmid containing the nucleocapsid sequence 309 

were used to determine copy number for each plate of samples. Copy number is expressed in 310 

genome copies per microliter of extracted viral RNA. 311 

 312 

Analysis of sequence reads 313 

We aligned reads to the MN908947.3 reference genome with BWA-MEM version 0.7.1539. We 314 

removed sequencing adaptors and trimmed ARTIC primer sequences with iVar 1.2.123. We 315 

determined the consensus sequences with iVar 1.2.1, taking the most common base as the 316 

consensus (>50% frequency). We placed an N at positions along the MN908947.3 reference 317 

with fewer than 10 reads. We manually inspected insertions and deletions by visualizing 318 

alignments with IGV (version 2.8.0)40. We identified single nucleotide variants with iVar 1.2.1 319 

using the following parameters: sample with viral load ≥ 103 copies/μL; sample with consensus 320 

genome length of ≥ 29000; sample with ≥ 80% of genome sites above 200x coverage; iSNV 321 

frequency threshold of 2%; read depth of ≥ 100 at iSNV sites; ≥ 10 reads with average Phred 322 

score of > 35 supporting a given iSNV; iVar p-value of < 0.0001. All samples on which we called 323 

variants had > 50,000 mapped reads. We accounted for strand bias by performing a two-sided 324 

Fisher's exact test for hypothesis that the forward/reverse strand counts supporting the variant 325 

base are derived from the same distribution as the consensus base. We then applied a 326 

Bonferroni multiple test correction and excluded variants with an adjusted p-value < 0.05. To 327 

generate a phylogenetic tree, we aligned consensus genomes with MUSCLE 3.8.31 and 328 

masked positions that are known to commonly exhibit homoplasies or sequencing errors41. We 329 
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generated a maximum likelihood phylogeny with IQ-TREE, using a GTR model and 1000 330 

ultrafast bootstrap replicates42,43. Evolutionary lineages (Pango lineages) were assigned with 331 

PANGOLIN44. 332 

 333 

Data and code availability 334 

Raw sequence reads are available as fastq files from the Sequence Read Archive at accession 335 

number PRJNA682212, with human-mapping reads removed. Analysis code is available at 336 

https://github.com/lauringlab/SARSCov2_Intrahost. Consensus genome sequences are publicly 337 

available at the GitHub link and on GISAID. 338 

 339 
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Figure Legends 442 

 443 

Figure 1. Viral shedding and overview of genome sequencing data. (A) Viral load by day of 444 

infection in hospitalized patients (teal) and employees (violet). Viral load, measured by qPCR of 445 

the N gene in units of genome copies per microliter of extracted RNA, is on the y-axis and day 446 

post symptom onset is on the x-axis. (B) Genome completeness by viral load in hospitalized 447 

patients (teal) and employees (violet). Viral load as shown in (A) is on the x-axis and the fraction 448 

of the genome covered above 10x read depth is shown on the y-axis. (C) Maximum-likelihood 449 

phylogenetic tree. Tips represent complete consensus genomes from hospitalized patients (teal) 450 

and employees (violet). The axis shows divergence from the root (Wuhan-Hu-1/2019). 451 

Heatmaps show PANGOLIN evolutionary linage (left) and epidemiologic cluster (right). 452 

 453 

Figure 2. Assessing accuracy of intrahost variant detection by sequencing defined viral 454 

mixtures. (A) Schematic of the experiment. Wuhan-Hu-1 (reference) and EPI_ISL_418227 455 

(variant) RNA were mixed at the given frequencies and viral loads (units of genome copies per 456 

microliter, representing the resulting mixture). Mixtures of RNA were amplified and sequenced in 457 

the same fashion as the clinical specimens. Reference and variant genomes differ by seven 458 

single nucleotide substitutions. (B) Observed frequency by expected frequency. Observed 459 

frequency of the true positive intrahost single nucleotide variants (iSNV) is on the y-axis and 460 

expected iSNV frequency is on the x-axis. Synthetic RNA copy number in units of genome 461 

copies per microliter of RNA is shown above each facet. Values above the points indicate the 462 

number of variants detected in that group (maximum of seven per group). (C) False positive 463 

iSNV. Number of false positive iSNV per sample is shown on the y-axis (base 10 log scale) and 464 

viral load as shown in (B) is on the x-axis. Each point represents a unique sample and the 465 

boxplots represent the median and 25th and 75th percentiles, with whiskers extending to the 466 

most extreme point within the range of the median ± 1.5 times the interquartile range. 467 
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 468 

Figure 3. SARS-CoV-2 intrahost single nucleotide variant (iSNV) diversity. (A) Sequencing 469 

coverage for clinical samples. The number of clinical samples (y-axis) is shown by the fraction 470 

of the genome above a given read depth threshold (x-axis). The different lines show the data 471 

evaluated with six read depth thresholds. (B) Histogram of the number of specimens (y-axis) by 472 

the number of minor iSNV per sample (x-axis), n = 178. (C) Number of minor iSNV by frequency 473 

with a bin width of 0.05. Non-synonymous iSNV are shown in orange and synonymous iSNV are 474 

shown in violet. (D) Number of minor iSNV by coding region. Non-synonymous iSNV are shown 475 

in orange and synonymous iSNV are shown in violet. (E) Scatterplot of the number of minor 476 

iSNV per sample (y-axis) by the day post symptom onset (x-axis). Hospitalized patients are 477 

shown in teal and employees shown in violet. The four samples with > 15 iSNV shown in (B) are 478 

excluded from the plot for visualization. 479 

 480 

Figure 4. Shared iSNV across samples and their frequency in global consensus genomes. (A) 481 

Shared iSNV across samples, with the number of samples sharing the iSNV (y-axis) by the 482 

genome position (x-axis). Colors indicate the iSNV coding change relative to the reference. (B) 483 

The frequency (y-axis) of three iSNV shared by three or more samples over time (x-axis). The 484 

consensus genomes are from GISAID, as available on 2020-11-11. The vertical dotted lines 485 

represent the earliest time we detected each iSNV in our samples. 486 

 487 

Figure 5. Pairwise comparisons of shared iSNV. Each unique pair is shown as a single point, 488 

with employee-employee pairs in violet (left), patient-employee pairs in orange (middle), and 489 

patient-patient pairs in purple (right). The number of iSNV shared by each pair is shown on the 490 

y-axis with the number of consensus differences between the pair of genomes on the x-axis. 491 

Pairs of samples collected within seven days of each other are displayed in (A), and pairs of 492 

samples collected greater than seven days apart are shown in (B). 493 
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Supplemental Figure Legends 495 

 496 

Supplemental Figure 1. True and false positive iSNV in RNA mixture validation experiment. 497 

Each iSNV is shown as a point, with the frequency on the y-axis and genome position on the x-498 

axis. True positive iSNV are shown in violet and false positive iSNV are shown in orange. All 499 

iSNV displayed have a frequency of 2% or greater. Viral loads are shown above each facet, in 500 

units of genome copies per microliter of RNA. 501 

 502 

Supplemental Figure 2. Number of minor iSNV per sample (y-axis) across groups, with 503 

hospitalized patients shown by teal points and employees shown by violet points. Boxplots for 504 

each group represent the median and 25th and 75th percentiles, with whiskers extending to the 505 

most extreme point within the range of the median ± 1.5 times the interquartile range. 506 

 507 

Supplemental Figure 3. Number of minor iSNV per sample (y-axis) by genome copies per 508 

microliter of RNA (x-axis). Hospitalized patients are shown by teal points and employees shown 509 

by violet points. 510 

 511 

Supplemental Figure 4. Maximum likelihood phylogenetic tree as shown in Figure 1C. Tips 512 

represent complete consensus genomes from hospitalized patients (teal) and employees 513 

(violet). The x-axis shows divergence from the root (Wuhan-Hu-1/2019). Heatmaps show 514 

samples that contain each of the three mutations as an iSNV. 515 
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Figure 1. Viral shedding and overview of genome sequencing data. (A) Viral load by day of infection in hospitalized patients (teal) and employees (violet). Viral load, measured by N1 qPCR in units of genome copies per microliter of extracted RNA, is on the y-axis and day post symptom onset is on the x-axis. (B) Genome completeness by viral load in hospitalized patients (teal) and employees (violet). Viral load as shown in (A) is on the x-axis and the fraction of the genome covered above 10x read depth is shown on the y-axis. (C) Maximum-likelihood phylogenetic tree. Tips represent complete consensus genomes from hospitalized patients (teal) and employees (violet). The axis shows divergence from the root (Wuhan-Hu-1/2019). Heatmaps show PANGOLIN evolutionary lineage (left) and epidemiologic cluster (right).
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Figure 2. Assessing accuracy of intrahost variant detection by sequencing defined viral mixtures. (A) Schematic of the experiment. Wuhan-Hu-1 (reference) and EPI_ISL_418227 (variant) RNA were mixed at the given frequencies and viral loads (units of genome copies per microliter). Mixtures of RNA were amplified and sequenced in the same fashion as the clinical specimens. Reference and variant genomes differ by seven single nucleotide substitutions. (B) Observed frequency by expected frequency. Observed frequency of the true positive intrahost single nucleotide variants (iSNV) is on the y-axis and expected iSNV frequency is on the x-axis. Viral loads are shown above each facet, in units of genome copies per microliter of RNA. Values above the points indicate the number of variants detected in that group (maximum of seven per group). (C) False positive iSNV. Number of false positive iSNV per sample is shown on the y-axis (base 10 log scale) and viral load as shown in (B) is on the x-axis. Each point represents a unique sample and the boxplots represent the median and 25th and 75th percentiles, with whiskers extending to the most extreme point within the range of the median ± 1.5 times the interquartile range.
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Figure 3. SARS-CoV-2 intrahost single nucleotide variant (iSNV) diversity. (A) Sequencing coverage for clinical samples. The number of clinical samples (y-axis) is shown by the fraction of the genome above a given read depth threshold (x-axis). The different lines show the data evaluated with six read depth thresholds. (B) Histogram of the number of specimens (y-axis) by the number of minor iSNV per sample (x-axis), n = 178. (C) Number of minor iSNV by frequency with a bin width of 0.05. Non-synonymous iSNV are shown in orange and synonymous iSNV are shown in violet. (D) Number of minor iSNV by coding region. Non-synonymous iSNV are shown in orange and synonymous iSNV are shown in violet. (E) Scatterplot of the number of minor iSNV per sample (y-axis) by the day post symptom onset (x-axis). Hospitalized patients are shown in teal and employees shown in violet. The four samples with > 15 iSNV shown in (B) are excluded from the plot for visualization.
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Adam Lauring
Figure 4. Shared iSNV across samples and their frequency in global consensus genomes. (A) Shared iSNV across samples, with the number of samples sharing the iSNV (y-axis) by the genome position (x-axis). Colors indicate the iSNV coding change relative to the reference. (B) The frequency (y-axis) of three iSNV shared by three or more samples over time (x-axis). The consensus genomes are from GISAID, as available on 2020-11-11. The vertical dotted lines represent the earliest time we detected each iSNV in our samples.
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Figure 5. Pairwise comparisons of shared iSNV. Each unique pair is shown as a single point, with employee-employee pairs in violet (left), patient-employee pairs in orange (middle), and patient-patient pairs in purple (right). The number of iSNV shared by each pair is shown on the y-axis with the number of consensus differences between the pair of genomes on the x-axis. Pairs of samples collected within seven days of each other are displayed in (A), and pairs of samples collected greater than seven days apart are shown in (B).
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