
INTRODUCTION

It is exceedingly difficult to detect the pain occurring during 

surgery under general anesthesia accurately and to perform 

appropriate pain control, and the level of analgesia provided 

during the operation is fundamental, because it is directly 

linked to postoperative pain and complications. This is es-

pecially important for pediatric patients, because it is more 

challenging to communicate with them than adults during 

the perioperative period. Moreover, postoperative emergence 

and recovery patterns of pediatric patients are different from 

those of adults, and it is also difficult to predict the degree of 

postoperative pain (due to a limitation of pain rating scales). 

Therefore, if the degree of nociception (pain) during surgery 

is objectively predicted and evaluated, thereby appropriately 

controlled in such pediatric patients, postoperative pain can 

be effectively reduced, and it may be helpful to perform ad-

ditional analgesia for residual pain and to prevent postopera-

tive complications.

In addition, while regional anesthesia (analgesia) can be 

performed in an arousal state in adults and the evaluation of 

its effectiveness (success or failure) is possible, it is exceed-
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Nociception monitoring devices using changes in autonomic nervous system activity 
have been developed in numerous ways. Although there have been few studies con-
ducted on children, compared to the relatively higher number of studies on adults, most 
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standard clinical practice that uses hemodynamic parameters in the evaluation and 
treatment of intraoperative nociception (pain) during general anesthesia. Particularly, 
when monitoring the surgical pleth index (SPI) in anesthetized children, the application 
of a new target range of SPI values (≤ 40) to the SPI monitoring criteria seems to be nec-
essary for providing a more proper intraoperative analgesia. The analgesia nociception 
index (ANI) shows promising results in anesthetized adults, and recently, positive results 
along with cardiorespiratory coherence have been reported in pediatric patients. New-
born infant parasympathetic evaluation (NIPE) could be useful for providing adequate 
analgesia in newborns, infants, and children under 2 years of age in anesthetized or 
awake states. In cases of skin conductance and pupillometry, further studies are need-
ed. Understanding the pros, cons, and limitations of these nociception monitoring tools 
will provide more effective and safe intraoperative analgesia to pediatric patients under-
going general anesthesia, and it may also help to plan and conduct promising research 
on the use of perioperative nociception monitoring in pediatric patients in the future.
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ingly difficult to perform the procedure in an arousal state in 

pediatric patients. In this case, the evaluation of the success 

of regional analgesia becomes more difficult because the pro-

cedure is performed during general anesthesia. If there is a 

nociception monitoring device that can appropriately evalu-

ate the effect of local anesthetics administered for regional 

analgesia, by monitoring before and after regional analgesia, 

it is possible to evaluate the effectiveness of regional analge-

sia and to judge its success. In this respect, intraoperative no-

ciception monitoring can be beneficial for perioperative pain 

management in pediatric patients.

During the last two decades, several nociception monitor-

ing tools have been developed, which utilize physiological 

markers that are useful for performing objective pain assess-

ments. Of these, the most common method is to measure 

the degree of pain by measuring changes in the autonomic 

nervous system (ANS) activity [1]. Depending on which ANS 

surrogate marker—including pulse wave amplitude and 

pulse beat interval, heart rate variability, skin sweating, and 

pupillary changes—is used by each device, the basic operat-

ing principles and characteristics of the device (surgical pleth 

index, analgesia nociception index, heart rate variability, 

skin conductance, or pupillometry etc.) are determined. This 

article reviews the efficacy, reliability, and limitations of the 

devices for intraoperative analgesia in pediatric patients un-

dergoing general anesthesia by analyzing the results of the 

studies on the nociception monitoring devices for pediatric 

patients reported so far—even though the results are fewer 

than those for adults [2]. A better understanding of the nature 

of these devices may help provide more effective and safe 

perioperative analgesia to pediatric patients undergoing sur-

geries using general anesthesia.

LITERATURE SEARCH STRATEGIES 
AND RESULTS

A literature search for the review was performed on major 

international and South Korean databases (PubMed, Em-

base, Cochrane, Web of Science, Scopus, and KoreaMed) to 

identify articles including systematic reviews, meta-analyses, 

practice guidelines, narrative reviews and clinical trials pub-

lished since 1990 that assessed nociception or pain using 

nociception monitoring tools or indices for analgesic guid-

ance in pediatric patients undergoing surgery using anes-

thesia. Databases were searched with the strings made using 

the Medical Subject Headings (MeSH) and free text terms 

(Analgesia; Anesthesia, general; Autonomic nervous system; 

Children; Monitoring, intraoperative; Nociception test; Pain 

measurement etc.). After the initial electronic search, the 

author evaluated the bibliographies of the identified studies 

and performed a manual search using Google Scholar. The 

articles identified were assessed individually for inclusion in 

the analysis.

Searches of the databases yielded 1,010 articles (Fig. 1). Of 

these, 950 publications were excluded, because it was clear 

from the title and abstract that they did not fulfill the selec-

tion criteria. From the remaining 60 articles, 30 potentially 

relevant studies were identified by scrutinizing the full-text 

articles. Thirty other publications were excluded because 

they included adult patients, or did not include available in-

terventions (pain measurement with nociception monitoring 

tools or indices using autonomic tone changes in pediatric 

patients undergoing surgery under anesthesia). Therefore, 30 

studies were finally included in this review (Fig. 1).

ANS MARKERS FOR NOCICEPTION 
ASSESSMENT

Postoperative pain increases ANS activity (i.e., increases 

sympathetic nervous system activity and postoperative anal-

gesia suppresses the response) [3–5]. Similarly, nociception 

caused by surgical stimulation during general anesthesia 

causes the release of stress hormones, and the level of stress 

hormone release depends on the level of analgesia provided 

[6,7]. This is because there is a neuroanatomic overlap be-

tween the pain transmission path and the ANS pathway [8]; 

these rationale and findings have led to the assumption that 

pain causes a change in ANS activity, which has resulted in 

the development of several monitoring devices using ANS 

surrogate markers for objective pain assessment. Derived 

cardiovascular and respiratory parameters including pulse 

wave amplitude, pulse beat interval, heart rate variability, the 

pattern of blood pressure, and heart rate responses are rep-

resentative ANS surrogate markers [1]. In addition, sweating 

and pupillary changes are also used as ANS markers for noci-

ception monitoring [1]. 

Although studies on various nociception monitoring de-

vices have been conducted on adults, recent research results 
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on pediatric patients have also been reported. It is essential 

to understand the efficacy and limitations of the nociception 

monitoring tools in pediatric patients undergoing general an-

esthesia by analyzing existing literature and research results, 

especially to recognize the differences between the pediatric 

and adult results, in order to appropriately provide intraop-

erative analgesia based on these monitoring devices. There-

fore, in addition to the 30 pediatric studies included in this 

study, the representative studies performed by applying the 

nociception monitoring tools used in the pediatric studies to 

adults were also cited and compared in this review.

NOCICEPTION MONITORING TOOLS 
USING PULSE WAVE AMPLITUDE AND 

PULSE BEAT INTERVAL

Surgical pleth index (SPI)

SPI, also called the Surgical Plethysmographic Index or 

Surgical Stress Index, is a simple, non-invasive monitoring 

tool used to assess nociception during anesthesia by analyz-

ing the waveform and heartbeat of photoplethysmography in 

pulse oximeters. SPI is calculated using the pulse photople-

thysmographic amplitude (PPGA) and heartbeat interval 

(HBI), which are measurable in the photoplethysmography 

[9] as follows in this equation,

SPI = 100 − (0.67 × PPGA + 0.33 × HBI)	 (1)

SPI values range from 0 (no stress) to 100 (maximum stress 

level), and in previous studies, an SPI range of 20–50 usually 

indicates adequate analgesia during surgery under general 

anesthesia [10–13]. It is also recommended to keep SPI val-

ues below 50 and avoid rapid increases (more than 10-point 

increase over a short time) as another criterion to maintain 

adequate analgesia [14].

The effectiveness of SPI as a tool for monitoring and evalu-

ating nociception and administering analgesics in adults was 

demonstrated in several studies [10–13,15]. Notably, they 

have shown that SPI-guided analgesia offers several clinical 

benefits in comparison to analgesia based on conventional 

hemodynamic parameters during surgery under general an-

esthesia [10,12,13,16,17]. In contrast, limitations have been 

reported for various clinical situations and confounding fac-

tors [18–23], one of which may be age. Thus, limitations pre-

sented in the studies of pediatric patients must be considered 

carefully [19,24,25].

Although the number of studies related to SPI in children 
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is limited, efforts to reduce the incidence of postoperative 

pain and complications by appropriately evaluating nocicep-

tion during surgery and performing appropriate analgesia 

have been attempted in various forms. The results have 

been reported in several ways, also [19,24–26]. Harju et al. 

[26] observed changes in intraoperative SPI in two groups 

receiving ultrasound-guided ilioinguinal and iliohypogastric 

nerve block with saline or ropivacaine before the beginning 

of surgery after anesthesia induction in patients under 24 

months old undergoing inguinal hernia surgery. As a result, 

an increase in SPI was observed in both groups after endo-

tracheal intubation, whereas an increase in SPI during surgi-

cal incision was observed only in the saline-injected group. 

Harju et al. [26] reported that the reactivity of SPI to surgical 

stimuli was blunted in the ropivacaine-injected group, sug-

gesting that SPI monitoring may be useful for determining 

the analgesic effect of the nerve block in pediatric patients 

undergoing regional analgesia, but also reported that the 

reactivity of the SPI was rather small, and there was a limita-

tion of marked inter-individual variability in SPI reactions 

to nociception. More importantly, several other pediatric 

studies about SPI have shown that children have less confi-

dence in SPI than adults, and thus children should receive 

intraoperative analgesia based on SPI levels that differ from 

those of adults. Supporting this, Park et al. [19] found that the 

cardiovascular structure and function of children—especially 

the vascular distensibility—is different from adults and that 

the actual nociception levels in children are not reflected in 

SPI values and the pediatric SPI value tends to be lower dur-

ing surgery. A possible explanation is that ultrasonographic 

examinations of vascular structures showed lower vascular 

wall stress and higher distensibility in children than in ado-

lescents [27], and basal catecholamine concentrations and 

resting muscle sympathetic nerve activity are also lower in 

children than in adults [28]. Due to these characteristics, the 

stimulation of vascular smooth muscle and vascular contrac-

tile force that occur during the activation of the sympathetic 

nervous system may be less in children. Two factors deter-

mine SPI values, HBI and PPGA, of which PPGA depends on 

the vascular wall distensibility and intravascular pulse pres-

sure [29] and has double the effect on SPI values compared to 

HBI (Equation 1). Because children have lower vascular con-

tractility and higher vascular distensibility than adults, activa-

tion of the sympathetic nervous system due to nociception is 

unlikely to significantly reduce PPGA as in adults, which can 

result in underestimation of SPI values.

The notion that there is less reduction in PPGA in children 

than in adults due to the unique characteristics of children’s 

vascular response at the time of nociception is supported by 

comparing the SPI data of previous studies. Compared with 

the results of two studies that reported changes in SPI, heart 

rate (HR), and PPGA during endotracheal intubation after 

administration of 2 μg/kg of fentanyl for anesthesia induction 

[30,31], the change in SPI values (the amount of increase) af-

ter endotracheal intubation was relatively higher in the adult 

study [30], while the change in HR was similar. Therefore, it 

can be inferred that the amount of change in PPGA, that is, 

the amount of decrease in PPGA, would have been higher in 

adults. Indeed, the median difference for PPGA before and 

after intubation reported in the pediatric study [31] was small 

(–0.51). Fig. 2 schematically shows the data from these two 

studies and the changes which occur in the photoplethys-

mography in adults and children at the time of nociception, 

the difference between them, and how the SPI values are 

changed. 

In summary, Park et al. [19] reported that for children 

undergoing tonsillectomy under general anesthesia, intra-

operative fentanyl requirement was lower for the SPI-guided 

analgesia group than for hemodynamic parameters-based 

analgesia, but postoperative pain and emergence agitation 

scores and rescue fentanyl dose were higher in the SPI-guid-

ed analgesia group, and thus SPI values in children are less 

likely to accurately reflect the nociception-antinociception 

balance due to their unique cardiovascular structure and 

physiology. It was concluded that re-establishment of the 

target SPI range or the development of new formulas for 

children is necessary for proper intraoperative analgesia in 

children undergoing general anesthesia.

Ledowski et al. [24] also found that SPI cut-off values of 50, 

the most commonly used cut-off value in SPI-related studies, 

do not have clinically appropriate sensitivity or specificity to 

predict the presence of acute pain in the recovery room, and 

suggested that it may be more appropriate to adjust to a cut-

off of 40 or lower (which is lower than the existing cut-off val-

ue of 50) to provide intraoperative analgesia that avoids mod-

erate and severe postoperative pain in children. Ledowski et 

al. [24] reaffirmed that, in children, intraoperative analgesia 

during general anesthesia should be performed based on SPI 
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values that differ from those in adults.

Song et al. [25] also reported there was no significant dif-

ference in SPI changes during cranial pin fixation among the 

groups received sufentanil infusion at three different rates 

(0.2, 0.5, and 0.8 μg/kg/h) in pediatric patients aged 2–12 

years who underwent cranial pinning under general anesthe-

sia, suggesting that SPI may not be sensitive enough to moni-

tor a level of nociception and analgesia in children.

A systematic review using meta-analysis of six randomized 

controlled trials, examining the efficacy and safety of SPI-

guided analgesia and conventional analgesia based on he-

modynamic parameters (blood pressure and HR) and during 

surgery under general anesthesia, showed that SPI-based an-

algesia reduced intraoperative opioid requirement and short-

ened extubation time, and there was no difference in the de-

gree of postoperative pain and the incidence of perioperative 

complications [32]. Based on these findings, the systematic 

review suggested that nociception monitoring and analgesic 

administration using SPI are more useful for providing prop-

er analgesia under general anesthesia in various clinical situ-

ations. However, considering that the number of randomized 

controlled studies included in this study is few, and only one 

of the included studies is for children [19], and the results of 

other studies related to SPI in children are conflicting [24–26], 

further studies are needed to determine the efficacy of SPI for 

intraoperative analgesia, especially in children.

NOCICEPTION MONITORING TOOLS 
USING HEART RATE VARIABILITY

Heart rate variability (HRV)

HRV refers to the degree of change (variability) in time 

and frequency analysis of the interval between successive 
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heartbeats, which reflects the activity and balance of the au-

tonomic nervous system, i.e., the interactions between the 

sympathetic and parasympathetic nervous systems. HRV 

monitoring devices calculate and measure HRV parameters 

such as standard deviations of normal RR intervals on stan-

dard electrocardiogram (time-domain analysis) or high-fre-

quency (HF), low-frequency (LF), very low-frequency (VLF) 

power, and LF/HF ratio (frequency domain [power spectral 

density] analysis) quickly, easily, and non-invasively [33,34]. 

The LF/HF ratio is a quantitative measure of the overall bal-

ance between the sympathetic and parasympathetic nervous 

system and, when the ratio is high, indicates an increase in 

sympathetic activity or inhibition of parasympathetic activity.

HRV can be measured in both conscious patients and 

those under sedation or anesthesia [35–37], but similar to SPI, 

it can be affected by several physiological or psychological 

conditions such as age (typically decreasing with age) [38], 

drugs [39], psychological problems [40], comorbidities [41,42], 

depth of sedation or anesthesia [43,44], and surgical stimuli 

[45]. Several clinical studies examining the correlation be-

tween the intensity of noxious stimuli such as surgical stimuli 

and corresponding HRV in anesthetized adult patients sug-

gested that HRV could be used as an objective pain assess-

ment tool [46,47]. In contrast, studies for HRV in unanesthe-

tized adult patients showed conflicting results [48,49].

In addition, numerous studies have investigated the rela-

tionship between established behavioral indicators of pain 

and HRV at the evaluation of acute pain in pediatric patients, 

including preterm infants, newborn (neonate) infants, in-

fants, and children in various clinical settings [50–52]. Con-

sequently, HRV usually responded well to pain in most pedi-

atric age groups, but the findings in infants were inconsistent 

[53]. On the other hand, physiological indicators (nociception 

monitoring devices), including HRV, are the only tools that 

can measure nociception in anesthetized younger children, 

but the results reported so far have limitations due to the na-

ture of HRV, which is susceptible to several factors [54,55].

Therefore, several real-time algorithms and indices using 

them have been developed to correct such confounding fac-

tors of HRV so that changes in HRV correspond well to the in-

tensity of nociception. These algorithms and indexes include 

analgesia nociception index, cardiorespiratory coherence, 

and newborn infant parasympathetic evaluation (NIPE).

Analgesia nociception index (ANI)

ANI (MetroDoloris Medical Systems, France) combines 

electrocardiogram and respiratory rate with high-frequency 

adjustment (0.15–0.4 Hz) in the frequency domain analysis 

of HRV and shows parasympathetic activity in the numeri-

cal range of 0 (maximal pain) to 100 (no pain) (as opposed to 

SPI). Previous studies on ANI regarded ANI ≥ 50 as appropri-

ate analgesia and predicted that ANS responsiveness was 

caused by nociceptive stimulation when ANI < 30 [56,57].

The efficacy of ANI in intraoperative nociception monitor-

ing and analgesia has been well documented through studies 

performed in adults [56,58,59]. Recent studies in pediatric pa-

tients also reported that ANI was more sensitive to detecting 

surgical stimuli during surgery and useful for monitoring in-

traoperative analgesia than other hemodynamic parameters 

[60–62].

Considering that ANI is shown to reflect not only intraop-

erative pain but also postoperative pain, that is, the degree of 

pain in conscious patients, it may have advantages over other 

pain monitoring devices [63,64]. Nevertheless, there are still 

studies that reported the opposite results [57,65], much like 

the controversial issue of its reliability in conscious patients 

in the correlation between HRV and pain intensity [48,49].

Cardiorespiratory coherence

Cardiorespiratory coherence, a non-invasive nociception 

monitoring device, measures a degree of ANS activity by ana-

lyzing the linear combination intensity between heart rate 

and respiration during general anesthesia and assesses the 

degree of pain in a range from 0 (low coherence, strong no-

ciception) to 1 (high coherence, no nociception). It includes 

real-time cardiorespiratory coherence; cardiorespiratory 

coherence algorithm, or wavelet transform cardiorespiratory 

coherence algorithm. Although there are very few studies 

evaluating the efficacy of cardiorespiratory coherence to date, 

most of them have been conducted in children, and they 

reported notable outcomes that cardiorespiratory coherence 

is more sensitive and superior to hemodynamic parameters 

in detecting nociception, antinociception, and movement in 

pediatric patients undergoing general anesthesia [66–68].

Nociception monitoring tools in children
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Newborn infant parasympathetic evaluation 

(NIPE)

ANI was developed for HRV analysis in children over 2 

years old and adults. Newborns, infants, and children under 

2 years of age require a modified approach to HRV analysis 

because they have a lower HRV due to an immaturity of the 

ANS and high basal heart rate. The NIPE index (MetroDo-

loris Medical Systems), a modified form of ANI nociception 

monitoring, was developed for use in newborns (including 

premature infants) and children under 2 years of age [69]. 

The basic principle of NIPE is to analyze the parasympathetic 

activity of the ANS in real-time using HRV analysis. HRV sig-

nals above 0.15 Hz allow for automated HRV analysis of data 

indicative of parasympathetic nervous system activity via a 

high pass filter and exhibiting physiological respiratory sinus 

arrhythmia [69]. This automated analysis is quantified by the 

NIPE index, which ranges between 0–100 to reflect relative 

parasympathetic activity, with higher values indicating higher 

levels of parasympathetic activity. A NIPE index of less than 

50 in newborns and infants under anesthesia usually suggests 

a presence of stress or nociception and insufficient analgesia 

[70]. 

NIPE does an excellent job reflecting a balance of nocicep-

tion and antinociception. NIPE decreases in the presence 

of nociception in anesthetized infants and newborns, while 

increases in cases of loss of nociception or administration of 

analgesics [70,71]. In addition, Valencia-Ramos et al. [72] re-

ported that NIPE monitoring reflected a change in the degree 

of comfort during nebulization for conscious infants with 

bronchitis in the intensive care unit. NIPE was suggested as a 

comfort monitoring system for infants. NIPE may also reflect 

psychological conditions such as psychological stability or 

discomfort and stress in conscious infants and newborns. 

Taken together, even if the evidence is still lacking, NIPE 

monitoring of nociception and analgesia, or discomfort and 

comfort in newborns and infants under two years of age un-

der anesthesia or awareness may be more effective than other 

nociception monitoring modalities. However, Cremillieux 

et al. [73] reported that the NIPE index during painful proce-

dures of premature infants in the neonatal intensive care unit 

did not reliably reflect acute pain. Thus, further research is 

required to study these issues.

NOCICEPTION MONITORING TOOLS 
USING SKIN SWEATING 

Skin conductance algesimeter (SCA) 

A SCA measures an increase in stress reflected in changes 

in the activity of the sympathetic nervous system. When the 

sympathetic nerves are activated, the plantar sweat glands 

in the palms and soles are filled with sweat. When the sweat 

reaches the skin, the skin resistance decreases, and the skin 

conduction increases, and when the sweat is reabsorbed, the 

skin conduction decreases again. When the skin nerves are 

activated by stimulation, both amplitude and frequency of 

efferent skin nerve bursts increase. Therefore, the increase 

in the number of skin conductance fluctuations (NSCF) and 

amplitude of skin conductance fluctuations in SCA measure-

ments may be interpreted as increased activity of the sympa-

thetic nervous system [74,75]. 

Unlike other nociception monitoring tools, the SCA index 

is not affected by circulatory changes, cardiac activity, vaso-

active drugs, or neuromuscular blockade. Therefore, SCA 

is more sensitive and specifically associated with pain and 

noxious stimuli [76]. The SCA index responds quickly (in 

seconds) and allows continuous and objective monitoring 

with a wide range of indications in various clinical situations. 

It also has higher sensitivity and specificity in assessing pain 

than other monitoring devices currently available. SCA has 

been extensively studied, particularly in pediatric patients, 

for its efficacy and is known to be useful in assessing pain and 

analgesia. For premature infants, SCA is more sensitive and 

specific than behavioral-state observations in evaluating heel 

stick pain during blood sampling, tactile stimulation stress, 

and high decibel sound stimuli [77–79]. Both in healthy new-

borns and artificially ventilated infants, an increased NSCF 

on SCA monitoring correlated well with occurrences of pain 

and discomfort [80,81]. 

Several studies evaluating the efficacy of SCA concerning 

general anesthesia in adult patients have shown that the SCA 

index is useful in monitoring perioperative stress with in-

creasing values during nociceptive stimulation, such as endo-

tracheal intubation and tetanic stimulation, and decreasing 

values during analgesic infusion [82,83]. Regarding postop-

erative pain, several studies have reported that the SCA index 

is well correlated with the numeric rating scale assessed by 
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the recovery room [84,85].

Few studies of SCA have been conducted on children un-

der general anesthesia. Sabourdin et al. [61] reported that the 

responses of SCA to remifentanil at different infusion rates 

in children under general anesthesia was less sensitive than 

those of ANI. Therefore, despite many advantages of SCA, the 

evidence is still lacking in its efficacy for analgesia in pediatric 

patients undergoing general anesthesia. Thus further studies 

are required on these topics.

NOCICEPTION MONITORING TOOLS 
USING PUPILLARY CHANGE

Pupillometry

Pupillometry is based on the evaluation of the pupillary re-

flex dilatation induced by nociceptive stimulation. Pupillom-

etry is a non-invasive monitoring technique which measures 

dynamic pupillary diameter by an infrared camera. Pupillary 

diameter increases in response to nociceptive stimulation.

The degree of pupillary dilatation in patients with anesthe-

sia using propofol or inhalational anesthetics is associated 

with the intensity of nociceptive stimuli during operation. The 

pupillary reflex dilatation by nociception in pediatric patients 

was maintained during deep sedation with ketamine, and the 

degree of pupillary dilatation was related to the intensity of 

the nociceptive stimuli [86]. Therefore, pupillometry can be 

a useful nociception monitoring tool in pediatric patients se-

dated with ketamine. Additionally, it has been suggested that 

pupillometry is a useful nociception monitoring device by 

other studies in children and adolescents undergoing general 

anesthesia, which showed that nociceptive stimuli during an-

esthesia cause pupillary reflex dilatation, and administration 

of opioid analgesics or deep anesthesia (hypnosis) decreases 

the pupil diameter [87–89]. However, it must be considered 

that other factors such as severe anxiety [90] or drugs [91,92] 

also influence the pupil diameter and reflex.

REGIONAL ANALGESIA AND OPIOID 
CONSUMPTION DURING GENERAL 

ANESTHESIA

Regional analgesia in pediatrics are performed after the 

induction of general anesthesia and before skin incision to 

reduce the surgical stress response and to spare intravenous 

opioid administration during surgery. The adequacy of re-

gional analgesia in children has traditionally been assessed 

by monitoring changes in hemodynamic parameters caused 

by noxious stimuli. Inadequate regional analgesia is often 

defined as an increase in heart rate of about 10–20% or more 

from baseline within 1 to 2 minutes after surgical incision 

[93,94]. However, the use of these hemodynamic parameters 

to assess the effects of regional analgesia is not standardized 

and may be inaccurate [95–98]. Therefore, there have been 

attempts to perform a faster and more accurate evaluation 

and to minimize intravenous opioid requirements during 

surgery by determining the effects of regional analgesia using 

nociception monitoring devices that are proven effective in 

monitoring the nociception-antinociception balance during 

surgery.

As previously mentioned, Harju et al. [26] reported that no 

increase in SPI was observed during surgical incision, and the 

responsiveness of SPI to noxious stimuli was blunted in chil-

dren undergoing ultrasound-guided ilioinguinal and iliohy-

pogastric nerve block after anesthesia induction for inguinal 

hernia surgery, suggesting that SPI monitoring may be useful 

in discriminating the success of regional analgesia in pedi-

atric patients. Song et al. [99] observed significant changes 

in some HRV parameters after performing a caudal block 

in pediatric patients undergoing urological surgery under 

general anesthesia. They concluded that these HRV changes 

indicated reduced sympathetic activity and increased heart 

rate predictability, suggesting that the assessment of the HRV 

parameters can be an indicator of a successful caudal block. 

Migeon et al. [93] assessed pupillary reflex dilatation and ANI 

monitoring to evaluate the adequacy of regional analgesia 

while performing a neuraxial or peripheral nerve block after 

anesthesia induction in pediatric patients undergoing urolog-

ical and orthopedic surgeries under sevoflurane anesthesia. 

In patients with a failed nerve block, the pupil diameter in-

creased significantly, and ANI decreased within 1 min. There-

fore, it was suggested that these two nociception monitoring 

tools would be helpful in rapidly and accurately discriminat-

ing the success of regional analgesia in pediatric patients. 

Meanwhile, in a prospective randomized trial performed by 

Dundar et al. [100], after performing a thoracic paravertebral 

block in adult patients undergoing breast surgery under gen-

eral anesthesia, the rate of remifentanil infusion was adjusted 
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based on ANI monitoring (maintained at 50–70) in an experi-

mental group for further analgesia during surgery. As a result, 

it was reported that intraoperative remifentanil consumption 

in the experimental group based on ANI was significantly 

lower than that of the control group based on hemodynamic 

parameters, suggesting that ANI monitoring may help opti-

mize opioid consumption during surgery in these clinical set-

tings.

Comprehensively considering these findings, further stud-

ies are needed in pediatric patients with various regional an-

algesia and nociception monitoring devices in various clini-

cal situations.

CONCLUSIONS

Nociception monitoring tools using ANS activity have been 

developed in several ways. Each monitoring device evaluates 

sympathetic or parasympathetic tone changed by nocicep-

tion and the monitoring devices share being more effective 

than conventional hemodynamic parameters. At the same 

time, depending on which autonomic surrogate marker is 

used, the basic operating principle and characteristics of the 

monitoring device differ, and their usefulness in various clini-

cal situations also differs. Therefore, a comprehensive analy-

sis and understanding of these principles and study results 

are needed. This review analyzes the efficacy and limitations 

of several nociception monitoring devices, mainly focusing 

on the intraoperative analgesia in pediatric patients under 

general anesthesia and additionally comparing details about 

clinical conditions such as arousal state, postoperative pain, 

regional analgesia, and includes adult or younger children 

(newborn or infant) populations when needed. 

Although most of the nociception monitoring devices 

still lack studies with pediatric patients, most nociception 

monitors in children (as in adults) appear to be more useful 

than the standard clinical practice that uses hemodynamic 

parameters in the evaluation and treatment of intraoperative 

nociception during general anesthesia.

Summarizing the characteristics of each monitoring de-

vice, SPI seems to be less valid and limited for children than 

for adults. It may be necessary to apply a lower target value 

range (maintained below 40) or to develop new formulas 

fitted to children to provide adequate analgesia during sur-

gery under general anesthesia in children. ANI has shown 

promising results in anesthetized adults, and recently posi-

tive results along with cardiorespiratory coherence have been 

reported in pediatric patients. Especially, NIPE is expected to 

be useful for providing adequate analgesia in newborns and 

infants and children under 2 years of age under anesthesia 

or a conscious state. SCA may be best used to assess stress in 

conscious or sedated newborns and younger children, but 

there is still little evidence of the efficacy of the analgesia dur-

ing general anesthesia in pediatric patients. Pupillometry has 

shown reliable results in pediatric patients under anesthesia, 

as in adults, but has some pitfalls, because the measurement 

may be inaccurate or complicated by a range of factors. It 

has been reported that ANI performs well compared to other 

devices on postoperative pain, but there are still suboptimal 

results. SPI, ANI, and pupillometry may be useful for evaluat-

ing the effects of regional analgesia performed during general 

anesthesia. In this situation, ANI also enables the optimiza-

tion of opioid consumption.

A thorough understanding of the pros and cons of the noci-

ception monitoring tools summarized above and their appli-

cation in clinical situations will provide a more effective and 

safe intraoperative analgesia for pediatric patients undergo-

ing general anesthesia, and it may also facilitate the planning 

and conduct of research on the use of intraoperative nocicep-

tion monitoring in pediatric patients.
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