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Abstract

Screening amino acid sequence space via experiments to discover peptides that self-assemble into amyloid fibrils is challenging. We
have developed a computational peptide assembly design (PepAD) algorithm that enables the discovery of amyloid-forming peptides.
Discontinuous molecular dynamics (DMD) simulation with the PRIME20 force field combined with the FoldAmyloid tool is used to
examine the fibrilization kinetics of PepAD-generated peptides. PepAD screening of ∼10,000 7-mer peptides resulted in twelve top-
scoring peptides with two distinct hydration properties. Our studies revealed that eight of the twelve in silico discovered peptides
spontaneously form amyloid fibrils in the DMD simulations and that all eight have at least five residues that the FoldAmyloid tool
classifies as being aggregation-prone. Based on these observations, we re-examined the PepAD-generated peptides in the sequence
pool returned by PepAD and extracted five sequence patterns as well as associated sequence signatures for the 7-mer amyloid-
forming peptides. Experimental results from Fourier transform infrared spectroscopy (FTIR), thioflavin T (ThT) fluorescence, circular
dichroism (CD), and transmission electron microscopy (TEM) indicate that all the peptides predicted to assemble in silico assemble
into antiparallel β-sheet nanofibers in a concentration-dependent manner. This is the first attempt to use a computational approach
to search for amyloid-forming peptides based on customized settings. Our efforts facilitate the identification of β-sheet-based self-
assembling peptides, and contribute insights towards answering a fundamental scientific question: “What does it take, sequence-wise,
for a peptide to self-assemble?”

Keywords: peptide assembly design, discontinuous molecular dynamics, amyloid-forming peptides, fourier-transform infrared spec-
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Significance Statement:

Self-assembling peptides that can form different supramolecular architectures can be useful in various drug delivery and biomed-
ical engineering applications. The discovery of peptides that can self-assemble to form amyloid-like structures lacks a systematic
approach and there has been limited work by researchers to search for peptide sequences that are predicted to form cross-β spines.
In this paper, we describe a novel, state-of-the-art computational approach that combines a Peptide Assembly Design (PepAD) al-
gorithm and discontinuous molecular dynamics simulations of amyloid formation to predict peptide sequences and patterns that
can self-assemble to form cross-β spines. All eight of the discovered peptide sequences assemble to form antiparallel β-sheets in
experimental measurements.

Introduction
Peptide self-assembly is a process in which peptides sponta-
neously form ordered aggregates. Peptide self-assembly into
nanoscale architectures (1–3) provides numerous advantages for
applications, including drug release (4, 5), protein scaffolds (6, 7),
tissue cell culture (8), and biomimetic 3D printing (9). Rational de-
sign of peptides from an alphabet of 20 natural amino acids makes
for a huge number of possible sequences, yet only a handful of
peptides have been discovered that self-assemble to form partic-
ular tertiary structures with unique bio-functions (10, 11). Great

structural variety can be achieved, in principle, via a “bottom-up”
strategy in which many factors, such as amino acid composition,
sequence length, and pattern, are tailored to form desired func-
tional architectures (12, 13). Short peptides (≤ 10 residues) are of
interest in bioengineering because they can be efficiently synthe-
sized, greatly reduce the level of complexity in sequence design,
and make it easier to establish connections between peptide se-
quence and aggregate structure. For instance, Frederix et al. (14)
conducted a comprehensive simulation study to examine the self-
assembly behaviors of all possible tripeptides (203 = 8,000). Only
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thirteen of these tripeptides were found to form a well-ordered
hydrogel network, supporting conventional wisdom that finding
new sequences that self-assemble is challenging but not impos-
sible.

The abnormal misfolding of peptide fragments and subsequent
self-assembly into amyloid fibrils is correlated with many neu-
rodegenerative diseases (15, 16), including Alzheimer’s, Parkin-
son’s, and Huntington’s diseases. Amyloid fibrils are 1D β-sheet-
rich peptide aggregates. Thus far, most of the known β-sheet-
forming peptides are derived from natural proteins (17–19). For
example, the 7-mer peptide fragment Aβ (16–22) (sequence: KLVF-
FAE), which is associated with Alzheimer’s disease, can assemble
into β-sheet fibrils. A well-established motif for human-designed
β-sheet-forming peptides is a pattern of alternating hydrophilic
and polar residues along the peptide chain; these have been
found experimentally to form multilayer β-sheet structures with
hydrophobic interfaces between the layers (20, 21). Sawaya and
Eisenberg proposed eight possible classes of cross-β spines con-
sisting of a 2-layer β-sheet and based on their work researchers
have been trying to develop methods to search for amyloid-
forming peptides in nature that self-assemble into these cross-
β spines (22). To date, some promising bioinformatic methods
have been proposed to predict the amyloidogenic region of a
given peptide sequence (23–25). For example, TANGO is a sta-
tistical mechanics algorithm that predicts protein aggregation
(26, 27). It is based on the assumption that in -aggregates, the
“aggregation-prone” residues within a protein are fully buried
and tend to have their hydrogen-bonding potential satisfied.
Fernandez-Escamilla et al. used TANGO to examine the aggrega-
tion of a set of 179 literature-reported peptides and 71 disease-
related peptides. They found that while TANGO can accurately
predict the self-aggregation propensity of short peptides (less than
20 residues), it has difficulty predicting that of long peptides (more
than 30 residues) (26). Although such bioinformatic methods are
powerful amyloidogenicity predicting tools, they cannot be ap-
plied to discover, which peptide sequences can form amyloid-like
structures in a fast and automatic way. To address this issue, we
are developing a computational toolkit that enables custom pre-
settings, such as peptide lengths, arrangements, assembly scaf-
folds, and hydration properties, to identify fibril-forming peptides.

In previous work, we developed a computational peptide
binding design (PepBD) algorithm to discover peptide-based
binders for biomolecular targets (28–32), e.g., proteins and RNA.
The PepBD algorithm can be used to design peptides with dis-
tinct hydration properties tailored to an experimental researcher’s
needs. The algorithm uses atomistic force fields rather than
knowledge-based information for the peptide designs, so it en-
ables the discovery of high-affinity binding peptides to targets
that have no known binders available in the protein data bank.
The PepBD algorithm has been used successfully to design 15-mer
transfer RNALys3-binding peptides for the inhibition of HIV reverse
transcriptase (33), 12-mer peptide-based biological recognition el-
ements for cardiac troponin I (34), and for neuropeptide Y (35) to
detect human performance indicators, peptide inhibitors target-
ing Clostridioides difficile toxins to neutralize the cytopathic effects
of the toxins (36), Protein A/L mimetic peptide ligands that bind to
immunoglobulin G for monoclonal antibody purification (37, 38)
peptides that bind to the Receptor Binding Domain of the SARS-
CoV-2 spike-protein (39).

In this work, a peptide assembly design (PepAD) algorithm is
described to discover self-assembling peptides for the construc-
tion of particular supramolecular structures, as opposed to dis-
covering binding peptides for the recognition of specific biomolec-

ular targets as is done in PepBD. The goal of this project is to dis-
cover peptides (not known in nature) that self-assemble to form a
particular type of amyloid-like structure, specifically the Class-
8 cross-β spine described by Sawaya et al. (22) This structure
contains a 2-layer β-sheet structure, with antiparallel-oriented β-
strands in each layer and parallel-oriented β-strands between two
layers. The PepAD algorithm is employed to search for 7-mer pep-
tides that self-assemble spontaneously to form the cross-β spine
of the 8th class, thereby leading to a pool of candidate peptide se-
quences. PepAD screening provided approximately 10,000 distinct
peptide sequences that could self-assemble to the desired struc-
ture. Out of these ∼10,000 peptides, the top twelve of the PepAD-
generated in silico peptides, viz. P1-P12, were evaluated using the
FoldAmyloid tool. Discontinuous molecular dynamics (DMD) sim-
ulations with the PRIME20 force field were carried out to examine
the fibrillization kinetics of the twelve in silico peptides at a tem-
perature of 296.1 K. Our computational studies revealed that eight
of the 12 in silico discovered peptides, viz. P1, P2, P5, P7, P9, P10, P11,
and P12, spontaneously form amyloid fibrils in the DMD/PRIME20
simulations, and that all of these peptides have at least five
residues along the chain with self-aggregation scales higher than
a threshold value as classified by the FoldAmyloid tool. Based on
this bioinformatic information, we examine 300 candidate pep-
tide sequences screened by PepAD and identify approximately
240 peptide sequences that have at least five residues along the
chain with self-aggregation scales higher than a threshold value
using FoldAmyloid. The characterization of the 240 promising in
silico peptides leads to five sequence patterns as well as to their
associated sequence signatures for 7-mer amyloid-forming pep-
tides. A sequence pattern is an arrangement of hydrophobic (H),
charged (C), and polar (P) residues along the chain. The sequence
signature is a subset of this pattern, a family of sequences with
specific amino acids at certain key sites and a broader choice of
amino acids at other sites along the chain. Finally, we experimen-
tally test the eight peptides predicted by DMD/PRIME20 to form
amyloid-like structures and discovered that they assemble into
antiparallel β-sheets at concentrations between 0.2 and 10 mM
at room temperature in water. The entire strategy of discovering
peptides that self-assemble to form amyloid-like structures inte-
grates computational design (PepAD), simulation-based screening
(DMD) and experimental testing (see Fig. 1). Experimental tests for
fibril formation includes Thioflavin T (ThT) fluorescence, circular
dichroism (CD), Fourier transform infrared spectroscopy (FTIR),
and transmission electron microscopy (TEM).

Results
Computational discovery of amyloid-forming
peptides
A PepAD algorithm based on the Monte Carlo (MC) algorithm
has been developed in our lab to design peptide sequences that
can self-aggregate to form supramolecular architectures. The de-
signed sequences are draped upon a fixed peptide backbone scaf-
fold within a two-layer fibril structure; this structure is fixed
throughout the design process. Two kinds of sequence change
moves are applied: residue mutation and residue exchange, to
search for new self-assembling peptide candidates. A score func-
tion, �score, which considers (i) the binding free energy, �Gbinding, of
the peptide chain with its neighboring peptides (40, 41) and (ii)
the intrinsic self-aggregation propensity, Paggregation, of the individ-
ual peptides (42–44), is used to evaluate the acceptance of new
peptide candidates. Paggregation evaluates the aggregation propen-
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Fig. 1. An integrated strategy containing customized computational design, simulation-based screening, and experimental verification is described to
discover amyloid-forming peptides.

sity of the fibril-like supramolecular structure. Hence, the score
function �score is defined to be

�score = �Gbinding − λ × Paggregation, (1)

where λ is a weighting factor that adjusts the relative importance
of the intrinsic aggregation propensity of the peptides during the
sequence evolution. The �Gbinding is defined as

�Gbinding =
∑ (

Gi j − Gi − G j
)

. (2)

The notation i and j is used to represent two neighboring pep-
tides, respectively. The Gi j indicates the free energy of the pair of
peptides i and j in solution, and the Gi and G j indicate the free en-
ergies of each individual peptide i and j, respectively. An all-atom
amino acid model is used, and the force field parameters are taken
from the Amber 14SB force field. The Paggregation is defined as

Paggregation = δhydr Ihydr + δαIα + δβ Iβ + δchIch + δpat Ipat, (3)

where Ihydr indicates the hydrophobicity of the sequence, Iα is the
α-helical propensity, Iβ is the -sheet propensity, Ich is the absolute
value of the net charge of the sequence, and Ipat is the sequence
pattern that accounts for the sequence-dependent nature of pep-
tide secondary structure. The coefficients δi are used to weigh each
of the individual factors. The algorithm allows for the design of
peptides at distinct pH environments by considering the proto-
nation and deprotonation state of the natural amino acids at the
system pH. A description of the computational design procedure
and �score is provided in "PepAD algorithm" and the Supplementary
Material.

As explained above, an initial peptide backbone scaffold is re-
quired in the PepAD algorithm to discover potential sequences
that are capable of assembling into the Class-8 cross-β spine
(22). The Aβ (16–22) (sequence: KLVFFAE) was used because it is
known to form the characteristic Class-8 structure, a 2-layer amy-
loid fibril that consists of antiparallel-oriented β-strands in each
layer, and parallel-oriented β-strands between two layers (45). The
structure of Aβ (16–22) is examined in DMD simulation, which pre-
dicts that the sequence forms amyloid fibrils (Fig. 2A), consistent
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Fig. 2. (a) The fibril formed by the Aβ (16–22) peptide KLVFFAE in the DMD simulations. (b) Input structure for PepAD: A 2-layer β-sheet structure is
constructed using the Discovery Studio 3.5 package and optimized by atomistic MD simulation in the AMBER14 package; the 8 Aβ (16–22) peptides are
aligned in antiparallel arrangements within each β-sheet layer and in parallel arrangements between the β-sheet layers. Sequence evolution on the
2-layer β-sheet structure leads to the fluctuation of scores in the PepAD algorithm, resulting in the two top-scoring 7-mer peptides: (c) sequence
RLLLEAS in case 1 and (d) sequence ALRLELA in case 2.
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Table 1. Sequences of twelve top-scoring in silico peptides, and their associated �score, �Gbinding, and λ × Paggregation values. (unit: kcal/mol.)

Case 1

Peptides Sequences �score �Gbinding λ×Paggregation

P1(a) R L L L E A S − 38.59 − 28.08 10.51
P2 R A L L S V E − 36.74 − 26.64 10.09
P3 I G R A E W S − 37.52 − 29.50 8.02
P4(b) E W L A Q A R − 41.76 − 25.88 15.88
P5 A L R L S L E − 42.78 − 25.84 16.93
P6 Q A R A E W L − 43.54 − 26.50 17.05

Case 2

P7(c) R L L A A L E − 36.79 − 27.67 9.12
P8 L W R L E G G − 35.60 − 28.17 7.43
P9 R W L A V A E − 35.82 − 29.64 6.18
P10(d) I A R L E L A − 40.19 − 27.43 12.76
P11 R A L L A L E − 40.89 − 27.22 13.67
P12 A L R L E L A − 41.81 − 26.97 14.84

Peptides (a) P1—P3 and (b) P4—P6 were evolved in case 1 at λ = 2.0 and at λ = 3.0, respectively, and peptides (c) P7—P9 and (d) P10—P12 were evolved in case 2 at λ

= 2.0 and at λ = 3.0, respectively.

with experimental findings. Based on the DMD prediction of Aβ

(16–22)’s fibril formation, we construct a 2-layer β-sheet structure
in the Discovery Studio 3.5 package. Eight 7-mer Aβ (16–22) pep-
tides are aligned in an antiparallel arrangement within each β-
sheet layer (4 peptides per layer) and in a parallel arrangement
between the β-sheet layers. Later, a 5-ns explicit-solvent atomistic
molecular dynamics simulation is conducted using the AMBER14
package to relax the 2-layer β-sheet structure to eliminate unfa-
vorable atomic overlaps. This optimized 2-layer β-sheet structure
is used as the initial backbone scaffold in the PepAD algorithm
(Fig. 2b).

Through presetting two sets of hydration properties: case 1 with
(Nhydrophobic = 4, Npolar = 1, Ncharge = 2, and Nother = 0), and case 2
with (Nhydrophobic = 5, Npolar = 0, Ncharge = 2, and Nother = 0), we
search for amyloid-forming peptides via the PepAD algorithm. It
is of interest to determine which hydration properties favor the
amyloid-β type fibrilization of the peptides. If too many hydropho-
bic residues appear on the chain, the peptide is likely to be insolu-
ble in solution, but if too many polar residues appear on the chain,
the peptide is not likely to aggregate in solution. Two values are
set for the weighting factor λ, viz. λ = 2.0 and λ = 3.0 in Equation
(1) to avoid local searches during the evolution process. The pH
value was set to be between 6.0 and 8.3. The weighting factors λ

= 2.0 and λ = 3.0 were chosen to provide a good balance between
optimizing the binding free energy and the aggregation propen-
sity in the �score of the amyloid-forming structure. All the searches
start with random peptide sequences draped on the fixed back-
bone scaffold. Fig. 2c and d show two examples of �score vs. the
number of steps for the two cases. A moderate fluctuation in the
score profiles is observed consistently in the entire design process
as the residue(s) are mutated and exchanged to search for the best
peptide candidates in a broad sequence space. The lowest scores
in the profile indicate good peptide designs: the best sequence, RL-
LLEAS, in case 1 has the lowest �score = −38.59 kcal/mol at λ = 2.0
(Fig. 2c), and the best sequence, ALRLELA, in case 2, has the lowest
�score = −41.81 kcal/mol at λ = 3.0 (Fig. 2d).

By ranking the scores of the evolved peptides, we identify a total
of 300 potential amyloid-forming peptides: 150 for case 1 and 150
for case 2. Table 1 lists the twelve top-scoring in silico peptide se-
quences, as well as their associated scores (�score), binding free en-
ergies (�Gbinding), and self-aggregation propensities (λ×Paggregation)
calculated using Equations (1–3). For convenience, we call the
twelve top-scoring peptides “P1” to “P12.” peptides (a) P1—P3 and

(b) P4—P6 are evolved in case 1 at λ = 2.0 and λ = 3.0, respectively,
and peptides (c) P7—P9 and (d) P10—P12 are evolved in case 2 at
λ = 2.0 and λ = 3.0, respectively.

Computational analysis of the fibrillization
behaviors of the in silico peptides
A bioinformatics method, FoldAmyloid, is utilized to charac-
terize peptide designs that result from the PepAD algorithm.
In this method, peptides are predicted to be amyloidogenic if
they contain at least seven consecutive residues that have av-
erage self-aggregation scales that are higher than an empiri-
cal threshold value of 21.4; otherwise, they are predicted to be
non-amyloidogenic (46). A detailed discussion of the FoldAmyloid
server is provided in the Supplementary Materials. The intrinsic
amyloid propensities of the 12 PepAD-generated in silico peptides
are evaluated in the FoldAmyloid web server. This method pre-
dicts the self-aggregation scales for the segments on the in silico
peptides P1—P12, giving insight to which residues are aggregation-
prone. These data are shown in Figs. 3 and S2. Eight peptides:
P1, P2, P5, P7, P9, P10, P11, and P12 are found to have at least
five residues along the chains with self-aggregation scales above
21.4. For instance, the residues (R, L, L, L, E) at sites 1–5 on pep-
tide P1 are aggregation prone as their self-aggregation scales are
higher than 21.4 (Fig. 3a). In contrast, four of the peptides: P3, P4,
P6, and P8 are found to have less than five residues with self-
aggregation scales above 21.4. For example, only one residue, R,
at site three on P3 has a high self-aggregation scale value of 21.6
(Fig. 3b).

Next, we investigate the fibrillization kinetics of the 12
in silico peptides at 296.1 K using DMD/PRIME20 simulations.
DMD/PRIME20 is a fast alternative to traditional molecular dy-
namics simulations that uses discontinuous potentials to model
proteins. The force field PRIME20, developed by the Hall group in
2010, is arguably the most detailed and realistic of the coarse-
grained models used to study protein aggregation. Each amino
acid is represented by a 3-sphere backbone comprised of the
united atoms NH, CαH, and CO and a single-sphere side chain, R.
Water is modeled implicitly (47–52). Details are provided in "PepAD
algorithm". For each in silico peptide system, we placed 48 identi-
cal peptide chains in a simulation box (200.0, 200.0, and 200.0 Å) to
achieve a concentration of ∼10 mM. The systems were simulated
for 5 μs to examine their self-aggregation kinetics. It is worth not-
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Fig. 3. The self-aggregation propensities of the PepAD-generated peptides (a) P1, (b) P3, (c) P5, (d) P8, (e) P9, and (f) P12 are evaluated using the
FoldAmyloid tool (45). The final structures of the six in silico peptides in the DMD/PRIME20 simulations are inserted as insets to illustrate their
fibrillization behaviors. Each simulation contains 48 peptides at a concentration of ∼10 mM and a temperature of 296.1 K.

ing that all of the 48 peptide chains in the DMD simulations are
in completely random configurations at the beginning. The sim-
ulated amyloid-like structures of the peptides P1—P12 are shown
as insets in Figs. 3 and S2. Our simulation predictions agree with
the results predicted by the FoldAmyloid server. All of the eight
peptides that have at least five residues along the chains with self-
aggregation scales above 21.4: P1 (Fig. 3a), P2 (Fig. S2a), P5 (Fig. 3c),

P7 (Fig. S2d), P9 (Fig. 3e), P10 (Fig. S2e), P11 (Fig. S2f), and P12 (Fig. 3f)
are predicted to spontaneously form amyloid fibrils and adopt a
predominantly antiparallel alignment within the β-sheet struc-
tures in the DMD simulations. Peptides P3 (Fig. 3b), P4 (Fig. S2b),
P6 (Fig. S2c), and P8 (Fig. 3d) do not self-assemble to form amyloid-
like structures by themselves and remain in a random-coil state
at the end of the DMD simulations.
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Sequence patterns and signatures of
Amyloid-forming peptides
Based on the bioinformatic information gained from the FoldAmy-
oid predictions and the DMD simulation results, we can make in-
formed predictions as to whether or not a 7-mer peptide is prone
to form an amyloid fibril at room temperature. As mentioned ear-
lier, 300 potential amyloid-forming peptides, viz. the top-scoring
150 peptides each from cases 1 to 2, identified via the PepAD algo-
rithm are characterized using the FoldAmyloid webserver to eval-
uate their intrinsic aggregation propensities. The peptides with
at least five residues along the chains above the self-aggregation
threshold scale of 21.4 are stored for further study, while the oth-
ers are abandoned. Approximately 100 in silico peptides for case 1
and 140 in silico peptides for case 2 meet this criterion.

The 240 promising in silico peptides are sorted according to their
residue types (Table S1), leading to five distinct sequence patterns
of hydrophobic (“H”), charged (“C”), and polar (“P”) residues. As
shown in Fig. 4, three sequence patterns are identified for case
1 [“CHHHCHP” (pattern 1), “HHCHPHC” (pattern 2) and “CHHH-
PHC” (pattern 3)], and two sequence patterns are identified for
case 2 [“CHHHHHC” (pattern 4) and “HHCHCHH” (pattern 5)]. Sub-
sequently, we characterize the peptide sequences in each pattern
and come up with one sequence signature for pattern 1 “CHH-
HCHP,” one sequence signature for pattern 2 “HHCHPHC,” two se-
quence signatures for pattern 3 “CHHHPHC,” four sequence sig-
natures for pattern 4 “CHHHHHC,” and three sequence signatures
for pattern 5 “HHCHCHH.” For example, a signature sequence for
pattern 1 “CHHHCHP” is R-X1-X1-X1-(E/D)-X1-S, where X1 could be
any one of the residues A, V, L, and I. There are four signature
sequences for pattern 4 “CHHHHHC.” One of them is (R/K)-X2-X2-
X2-X2-X2-(E/D), where X2 can be any one of the residues A, V, L, I,
F, Y, and W. The residue options for X1 and X2 are identified as a
result of their frequent appearance at corresponding sites among
the 240 promising in silico peptides. By comparing the sequences of
the eight in silico peptides (P1, P2, P5, P7, P9, P10, P11, and P12) that
contain greater than or equal to five self-aggregating residues pre-
dicted by the FoldAmyloid tool with the signature sequences, we
see that the peptides P1 (RLLLEAS), P2 (RALLSVE), and P5 (ALRLSLE)
in case 1 belong to patterns 1, 3, and 2, respectively; the peptides
P7 (RLLAALE), P9 (RWLAVAE) and P11(RALLALE) in case 2 belong
to pattern 4, and the peptides P10 (IARLELA) and P12 (ALRLELA)
in case 2 belong to pattern 5. The peptide Aβ (16–22) (KLVFFAE),
which is well known in both experiments and simulations to form
a fibril-like structure at room temperature in solution, conforms
to the signature sequence (R/K)-X2-X2-X2-X2-X2-(E/D) of pattern 4.

Experimental measurements on peptides
predicted to aggregate in silico
On the basis of the outcomes of the DMD/PRIME20 simulations
and the FoldAmyloid server, eight peptides (P1, P2, P5, P7, P9, P10,
P11, and P12) were purchased and characterized experimentally.
The peptides were purchased with acetylated and amidated N-
and C-termini, respectively, to avoid terminal charges. Note that
terminal charges are not considered in the PRIME20 force field. We
performed ThT fluorescence spectroscopy, FTIR, negative-stain
TEM, and CD (see the Supplementary Material for details). Exper-
imental results are reported in Fig. 5, Fig. S3, and Fig. S4. ThT flu-
orescence is a commonly used method of detecting amyloid fib-
ril formation: the ThT dye exhibits increased fluorescence upon
binding to β-sheets (53–55). At peptide concentrations of 1 mM
and near stoichiometric ThT, we observed increased ThT fluores-
cence intensity for all peptides except for P9 (Fig. 5a, with data

from replicates in Fig. S3). FTIR measurements, conducted at the
higher peptide concentration of 10 mM, provided direct evidence
of antiparallel β-sheet formation for all peptides (Fig. 5b). De-
pending on the location of the peaks within the amide I (1700–
1600 cm−1) region, it is possible to distinguish between antipar-
allel and parallel β-sheet structures. Antiparallel β-sheets tend
to have a maximum at around 1625 cm−1 and a smaller peak at
around 1695 cm−1, and these features were observed for all the
peptides we tested. In contrast, parallel β-sheets would have dis-
played only one maximum peak at 1640 cm−1 and no peak near
1695 cm−1 (56–61). It may appear contradictory that the P9 pep-
tide exhibited the FTIR spectrum of an antiparallel β-sheet de-
spite exhibiting no increase in ThT fluorescence, but the peptide
concentration differed between these measurements. To further
corroborate amyloid fibril formation, we imaged peptide solutions
after 1 hour of assembly at 1 mM peptide concentration using neg-
ative stain (uranyl acetate) TEM (Fig. 5d and Fig. S4). TEM imaging
revealed amyloid fibrils in all peptide solutions tested, although
the peptides that exhibited the lowest levels of ThT fluorescence,
P5 and P9, appeared to contain fewer fibrils. Furthermore, TEM
images of the P9 reveal a low abundance of short fibrils. Finally,
we collected CD spectra at the relatively low concentration of
0.2 mM, and these spectra further highlight the concentration-
dependent amyloid formation for these peptides. The CD spec-
trum of 0.2 mM P12 peptide indicates β-strand secondary struc-
ture typical of amyloid, with a single minimum at 220 nm. The CD
spectra of other peptide peptides appear consistent with partial
contributions from molecules in β-strand and random coil con-
formations, suggesting that self-assembly was not complete for
all peptides tested other than P12 at 0.2 mM and 96 hour of as-
sembly time.

To summarize: ThT fluorescence, FTIR, TEM, and CD measure-
ments provide clear evidence of self-assembly into antiparallel
β-sheet fibrils for all of the peptides tested. The computational
and experimental outcomes for each peptide are summarized in
Table S2. Experimental techniques also vary in their compatibil-
ity with different peptide concentrations, and results from pep-
tide solutions prepared at concentrations ranging between 0.2 and
10 mM also suggest that assembly depends on concentration in
this range. Among the peptides tested experimentally, the most
assembly prone peptide appears to be P12, and the least assem-
bly prone peptides appear to be peptides P5 and P9.

Discussion and Conclusion
The PepAD algorithm has been developed in our lab to design pep-
tide supramolecular architectures. Since Sawaya et al. proposed
eight possible classes of cross-β spines consisting of a pair of β-
sheet layers, researchers have been enthusiastically searching for
amyloid-forming peptides in nature to self-assemble into these
cross-β spines (22). The β-sheet structure that was used in this
work as an initial structure for our discovery of amyloid-forming
peptides (Fig. 2b) is the steric zipper of the 8th class (22); it con-
tains two β-sheet layers, antiparallel-oriented β-strands in each
layer, and parallel-oriented β-sheets between the two layers. Thus
far, only one 6-mer peptide Aβ (35–40) (MVGGVV) and one 7-mer
peptide Aβ (16–22) (KLVFFAE) have been identified in the litera-
ture as forming amyloid fibrils of the 8th class in the experiment.
By using the PepAD algorithm, we computationally identified a li-
brary of 7-mer amyloid-forming peptides that could potentially
assemble into the cross-β spine of the 8th class. The PepAD algo-
rithm provides opportunities to discover peptides with the poten-
tial to form the cross-β spines of other classes, including but not
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Fig. 4. Sequence patterns and signatures of amyloid-forming peptides, as well as their associated peptides.

limited to the 8th class. In the future, we plan to design peptides
that can assemble into other classes.

Our computational studies are devoted to discovering 7-mer
amyloid-forming peptides in a fast and efficient manner. By study-
ing the amyloid propensities of twelve PepAD-generated insilico
peptides, we observed that 7-mer in silico peptides with at least
five self-aggregation-prone residues, as predicted by the FoldAmy-
loid tool, aggregate into fibril structures in the DMD/PRIME20 sim-
ulations. In contrast, 7-mer peptides having less than five self-
aggregation prone residues according to FoldAmyloid do not ag-
gregate into fibril structures in DMD/PRIME20 simulations. Based
on the above bioinformatic information, we re-examined each
candidate sequence in the sequence pool returned by PepAD and
identified approximately 240 potential peptide designs. By sort-
ing out the 240 in silico peptide sequences, we obtained five es-
sential sequence patterns as well as associated sequence sig-
natures that seem to suggest which 7-mer peptides will form
amyloid. These sequence patterns and signatures suggest a sim-
ple initial-stage screen to ascertain computationally whether or
not a 7-mer peptide can self-assemble into amyloid fibrils. The
present experimental results suggest that computational predic-
tion of peptide assembly can be highly predictive of experimental
outcomes.

We have demonstrated that combining the PepAD algorithm,
DMD/PRIME20 simulations, and the FoldAmyloid tool makes it
possible to generate an experimentally tractable set of 7-mer
peptides that can be tested experimentally to discover previ-
ously unknown antiparallel β-sheet-forming peptides. Specifi-
cally, biophysical measurements revealed that peptides P1, P2,
P5, P7, P9, P10, P11, and P12 formed antiparallel β-sheets. The
success rate for experimental amyloid-formation of computa-
tionally predicted amyloid-forming 7-mer peptides appears to be
100% (eight of eight peptides tested experimentally assembled),

although the degree of assembly depended on concentration be-
tween 0.2 and 10 mM for all peptides other than P12. Although
we are aware of no systematic experimental assessment of as-
sembly for arbitrary 7-amino acid peptides, we suggest that our
success rate may be substantially higher than the fraction of
all possible 7-mer peptides that would assemble into β-sheets
under the conditions tested. However, drawing such a conclu-
sion would require the experimental analysis of a significantly
larger set of peptides. Another way to evaluate the PepAD al-
gorithm would be in competition with amino acid sequences
chosen by humans experienced in β-sheet peptide design. Since
human designs primarily consider simple hydrophobic/polar se-
quence patterns, one could also compare PedAD peptide designs
to randomly selected amino acid sequences with the same hy-
drophobic/polar patterning. Finally, our experimental results pro-
vide a metric for evaluating the PepAD algorithm’s design capa-
bility and suggest a basis for assessment of future algorithm
improvements.

Methods
PepAD algorithm
The PepAD algorithm is a MC-based search procedure to
discover peptides that have the potential to self-aggregate
into supramolecular architectures, e.g. β-sheet fibril, β-barrel
oligomer, or α-helix bundle. A flowsheet of the PepAD algorithm
is provided in Fig. S1(a). The procedure is described briefly below.

(1) A predetermined peptide backbone scaffold (herein chosen
to be a 2-layer β-sheet fibril) is specified and an initial se-
quence S(0) is generated on it. In this work, eight 7-mer Aβ

(16–22) peptides are aligned in an antiparallel arrangement
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Fig. 5. Experiments on peptides predicted to assemble in silico. (a) ThT fluorescence measurements of peptide solutions at 1 mM over 48 hours. Each
curve is the average of the replicas, plotted in Fig. S3. (b) FTIR spectra of peptides measured at 10 mM. Gray vertical lines identify peak positions
corresponding to antiparallel β-sheets (∼1695 and ∼1625 cm−1). (c) CD curves measured at 0.2 mM. (d) A TEM image of P12 fibrils (scale bar 100 nm).

within each β-sheet layer (four peptides per layer) and in a
parallel arrangement between the β-sheet layers.

(2) The score �
(0)
score for this initial sequence S(0) is evaluated

using a score function that takes into account the bind-
ing affinities between the neighboring chains on the pep-
tide backbone scaffold, as well as the intrinsic aggregation
propensities of the individual peptides. The score function
is described briefly in "Computational discovery of amyloid-
forming peptides" and has been discussed at length in the
Supplementary Material.

(3) Two different kinds of trial moves, viz. residue mutation and
residue exchange, are randomly selected at each evolution
step, i, to generate a new trial peptide sequence S( i). A de-
scription of the two moves is illustrated in Fig. S1b.

(4) The initial side-chain conformations of the amino acids are
chosen from the rotamer library of Lovell et al. (62). Energy
minimization is performed to optimize the side-chain con-
figurations of the residues along the peptide chains in the
structure. The energy minimization technique is described
in our previous work (31).

(5) The score �
(i)
score for the new trial sequence S( i) is evaluated,

and the new peptide sequence is accepted or rejected using
the MC Metropolis sampling method.

(6) Repeat (3, 4, and 5) at least 10,000 times. The sequences with
low scores have the potential to self-assemble into the se-
lected supramolecular architecture, e.g., the 2-layer β-sheet
fibril.

Two kinds of sequence moves, viz. residue mutation and residue
exchange, are applied in the PepAD algorithm to perturb the se-
quences, resulting in new trial peptides. The peptide backbone
scaffold is kept fixed during the sequence evolution. The two
kinds of sequence moves that are performed are: (i) residue mu-
tation, in which an old residue on all of the peptide chains is ran-
domly chosen and replaced by a new one of the same residue type
(hydrophobic, polar, charge, and other); (ii) residue exchange, in
which two residues on all of the peptide chains are randomly cho-
sen and swapped, regardless of their residue type. An illustration
of the sequence change moves is provided in Fig. S1b. The score
function, �score, is an essential part of the PepAD algorithm. It is de-
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scribed in detail in the Supplementary Material. The 20 standard
amino acids have been classified into four distinct residue types
in this work. Details are provided in the Supplementary Material.

DMD simulation and PRIME20 model
DMD simulation and the PRIME20 model have been used ex-
tensively to examine the kinetics of the fibrillization process for
peptides. DMD simulation adopts discontinuous potentials (e.g.,
hard-sphere and square-well interactions) to describe the interac-
tions between particles, thus allowing for sampling of longer time
scales and larger space scales than traditional molecular dynam-
ics simulations. The PRIME20 model is an implicit-solvent coarse-
grained protein force field developed in our group that is tailored
to simulations of peptide aggregation with DMD. In the PRIME20
model, each amino acid is represented by three backbone spheres
(NH–, CαH–, and CO–) and one side chain sphere (R-). Each side
chain of the 20 natural amino acids is assigned a unique size,
atomic mass, and Cα-R bond length. Details of the DMD simula-
tions and PRIME20 model are described in our earlier work (47–52).

In this work, we conduct DMD/PRIME20 simulations to examine
the aggregation behavior of Aβ (16–22) and the PepAD-generated
in silico peptides (P1-P12) at T = 296.1 K. For each in silico peptide
system, 48 peptides are placed into a cubic box with edge lengths
of 200.0 Å, making the peptide concentration ∼10 mM. Each pep-
tide system starts from a random-coil state and is simulated three
times. Each of the DMD simulations is carried out for approxi-
mately 5 μs in the canonical ensemble. The Andersen thermostat
is implemented to maintain the simulation system at the desired
temperature. The fibril cluster of peptides is determined by using
the VMD 1.9.3 software to analyze the final simulated structures.

FoldAmyloid Web server
The FoldAmyloid web-server (http://bioinfo.protres.ru/fold-amyl
oid/) (46) was developed in the Galzitskaya lab to predict which
regions on a protein sequence are amyloidogenic. FoldAmyloid
is a bioinformatics method that uses statistical data on natural
amyloid proteins to obtain inherent aggregation scales for stan-
dard amino acids. Residues with predicted self-aggregation scales
higher than an empirical threshold value of 21.4 are considered
aggregation prone. Details are described in the Supplementary
Material.

Peptide Synthesis, FTIR, and ThT
The experimental details of peptide synthesis, ThT fluorescence,
FTIR, TEM, CD spectroscopy is described in the Supplementary
Material.

Associated Content
Supplementary Material

The Supplementary Material is available free of charge at De-
tailed descriptions regarding the calculations of score (�score), as
well as binding free energy (�Gbinding) and intrinsic aggregation
propensity (Paggregation) in the computational peptide algorithm.
The classifications of the 20 standard amino acids into four
residue types. The self-aggregation propensities and simulated
self-assembled structures of the PepAD-generated in silico pep-
tides P2, P4, P6, P7, P10, and P11. The FoldAmyloid-webserver, ex-
perimental methods and additional experimental figures are de-
scribed.

Supplementary Material
Supplementary Material is available at PNAS Nexus online.
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