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Prospects and Challenges into the Role of Gut  
Microbiome in Health and Disease

Introduction
Most studies of the human gut microbiome have 
focused on the bacterial component of the micro-
biome, but the fungal microbiome (i.e. the myco-
biome) has recently gained recognition as a 
fundamental part of the human microbiome. 
Fungi inhabit the mucosal surface to maintain 
intestinal homeostasis and systemic immunity.1 
Until recently, there has been a lack of research 
focusing on the interactions of the fungal king-
dom of microorganisms with other constituents 
of the gut microbiome and their contribution to 
health and diseases. To date, less than 3% of the 
microbiome literature accounts for the presence 
of fungi in microbial communities. Recent 
advances in sequencing technology have provided 
comprehensive tools to profile the fungal compo-
nent of the gut microbiome2 and emerging data 
suggest that the gut mycobiome may act as a res-
ervoir for potentially opportunistic pathogens in 
inflammatory bowel disease (IBD),3,4 graft-ver-
sus-host disease (GVHD),5 gastrointestinal can-
cer,6–8 and other diseases. Here, we discuss the 
importance of developing standardized method-
ology to define the gut mycobiome in early life, 
health, and diseases. We also highlight future 
directions of studies to delineate the role of gut 
mycobiome and the potential of therapeutic inter-
vention targeting the gut mycobiome.

Methods to characterize the gut mycobiome
Characterization of the gut mycobiome has been 
complicated by the lack of comprehensive, well-
curated, and high-resolution taxonomic annota-
tion within fungal databases. Development of 
standardized methods for mycobiome analyses is 
critical to minimize variations across studies. A 
comprehensive literature search using broad 
searching criteria was conducted in the  
PubMed and Google Scholar databases. In  
short, 103 relevant literatures related to gut  
mycobiome are carefully selected based on the 
key words including “gut mycobiome”, “fungi”, 
“fungus”, “eukaryotes”, “fungal community”, 
“yeast,” and “sequencing”. The fungal study 
workflow contains extraction, library construc-
tion, and sequencing, and bioinformatic analysis 
was shown in Figure 1(a). There were 33 different 
commercial extraction kits used for fungi  
studies2,5,6,8–74 with 13 customized proto-
cols.5,9,21,26,34,35,39,47,53,58,73–75 QIAamp DNA Mini 
Kit (Qiagen) was the most commonly used kit in 
16 papers.2,6,8,16,22,23,33,43–47,49,54,61,67 Fast DNA 
Spin Kit (MP Biomedicals) was a common 
extraction kit for fungi.11,12,17,27,36,65,66,70

About 90% of users selected next generation 
sequencing (NGS) platform for higher through-
put and faster turnaround time. Among all the 
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Figure 1.  The fungal study workflow contains extraction, libraries construction, sequencing, and bioinformatic 
analysis. (a) Initially DNA/RNA will be isolated from fungal samples. Then DNA or RNA extraction was 
performed following the protocol of amplicon, metagenomics, and metatranscriptomics according to strategy. 
Depending on strategy of research, different sequencer is selected from first-generation sequencing to 
third-generation sequencing. Generally, next generation sequencing (NGS) platform is chosen by higher 
output like Illumina sequencing by synthesis (SBS) sequencing technology, while-third generation sequencing 
has also become competitive for sequence full-length small genomes without assembly like Pacbio Single-
molecule real-time (SMRT) sequencing. Analyze sequencing data using amplicon, metagenomics, and 
metatranscriptomics bioinformatics pipeline to analysis 16S rRNA/rDNA, DNA and RNA, respectively. (b) 
Among the studies involving sequencing methods, there are 10 sequencing platforms are used, in which NGS 
platform is used frequently and Illumina MiSeq platform is used the most in NGS method. (c) The fungal 
sequencing strategies are the study of ITS region, analysis of 16S rRNA/rDNA and 18S rRNA/rDNA gene. (d) 
ITS sequences and commonly and locatable primers used in fungal target region.
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sequencing platforms, Illumina MiSeq platform 
is the most widely utilized sequencer for 16S 
amplicon (Figure 1(b)). Widely used platform of 
NGS is Illumina which has high throughput, high 
quality, and high speed for large number of sam-
ples. Compared with Nanopore which belongs to 
one of the third-generation sequencing (TGS) 
technique, Illumina sequencers involve the fol-
lowing features: (1) it has implemented hundreds 
of metabarcoding of complex samples per run 
through dual-index method compared with less 
than 24 sequences in a Nanopore single run.76 (2) 
It has high-quality rate with 99.99% accuracy 
higher than approximately 90% of Nanopore.77 
(3) For each sequencing run of massive fungal 
specimen, the MiSeq generates 24Gbp with 
PE300 and the NovaSeq 6000 generates 2190Gbp 
with PE150, respectively, but 10Gbp was gener-
ated by MinION in general research lab.78 With 
the continuous development of sequencing tech-
nology, new technologies have been used in 
research to identify fungi, especially Nanopore,79 
and TGS sequencers have two significant advan-
tages compared with Illumina. Initially, as an 
advantage of long reads sequencing in Nanopore, 
0–200 kbp DNA could be covered, while 400–
600 bp reads are sequenced in illumina sequenc-
ing. Long fragment could be reconstructed and 
identified as species precisely, decreasing the 
number of mislabeled species identified in illu-
mine.80 Secondarily, researches use Nanopore to 
detect fungi for the advantage of amplicon-based 
and PCR-free metagenomics technology.77

For sequencing strategy, as indicated in Figure 
1(c), 50% of articles sequenced the internal tran-
scribed spacer (ITS) region, including ITS1 and 
ITS2, while 32% articles focused on 16s rRNA/
rDNA gene and 10% papers on 18s rRNA/rDNA 
regions. Only 3% of the papers have performed 
metagenomics and 4% with metatranscriptomic 
fungal analysis. The fungal ribosomal region  
contains the internal transcribed spacers (ITS1 
and ITS2) and the 5.8s, 18s, and 28s rRNA 
(Figure 1(d)). Currently, ITS1 and ITS211–

16,51,58,65,66,73,75,81 are two major optional primers 
for human gut mycobiome study and the primer 
ITS2 is longer than primer ITS1 which has lower 
species resolution but fewer amplification and 
sequencing errors.82 Besides, the primer ITS1 is 
biased toward the amplification of Basidiomycetes 
and the primer ITS2 for the Ascomycetes.83 There 
were also reported ITS target regions outper-
formed compared with other subunit rRNA region 

in the human microbiome.28 Because ITS regions 
show not only fewer number of ribosomal gene 
copies but also less relative abundance of variants 
and breakpoints in various regions per unit in 
human rDNA.84 A preview results nonetheless 
support that the result of 18s rDNA PCR, which 
compares with one of ITS PCR, shows significant 
diagnostic and accurate identification of fungal 
pathogens in clinical sample from fresh biopsies 
and punctate and deep wound secretions.85 
Compared with target sequence, metagenomics 
reads might be decreased biases from primer 
choices and increased community taxonomic 
characterization providing information of gene 
composition and the function.86

Overall, although significant advancements have 
been made on bioinformatics methodologies  
for gut mycobiome analyses, further develop-
ment of pipelines and databases is required to 
define and characterize fungal communities more 
accurately.

The gastrointestinal tract mycobiome
Fecal samples are the most commonly used speci-
mens to represent the human gut mycobiome. 
According to Human Microbiome Project, 
Saccharomyces, Malassezia, Candida, Cyberlindnera, 
Penicillium, Cladosporium, Aspergillus, Debaryomyces, 
Pichia, Clavispora, and Galactomyces are the most 
prevalent fungal genera in the human gut based 
on ITS2 and 18S rRNA sequencing.87 Cultivable 
gut mycobiota including Candida albicans, 
Candida glabrata, Candida deformans, Aspergillus 
glaucus, Cryptococcus saitoi, Cryptococcus neofor-
mans, Lichtheimia ramosa, Mucor circinelloides, 
Pleurostomophora richardsiae, Rhodotorula mucilagi-
nosa, Trichosporon asahii and Yarrowia lipolytica are 
frequently isolated from human feces.88,89 By 
pyrosequencing, Hoffmann et al.90 have found 12 
fungal genera in fecal samples and Saccharomyces 
(present in 89% of the samples) was the most 
dominant. In another study of 45 healthy indi-
viduals, a total of 72 distinct operational taxo-
nomic units (OTU) of gut fungi were found using 
ITS sequencing. Candida tropicalis, Geotrichum 
gigas, C. sake, and Phichia jadinii were the most 
commonly detected fungal microbiota from  
the fecal samples.91 Moreover, edible mushrooms 
(Agaricus bisporus) and plant pathogen (Epicoccum 
nigrum and Alternaria spp.) were also identified  
in the gastrointestinal tract of vegetarian indi-
viduals.43 Fecal-associated mycobiome are less 
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persistent and varied over time and is easily influ-
enced by food intake with “passing through” 
fungi.91,92 For instance, Saccharomyces cerevisiae 
and C. albicans were the two abundant fungal spe-
cies in healthy individuals’ gut.92,93 However,  
in a controlled-diet experiment, Saccharomyces 
declined below the limit of detection in stool 
when the volunteer consumed a S. cerevisiae-free 
diet, and the levels of C. albicans in stool were dra-
matically reduced when the volunteer cleaned 
their teeth more frequently.71

Mucosa is also colonized by fungi. Compared 
with luminal-associated gut mycobiota, a more 
stable fungal community was found in the intes-
tinal mucosa.6,94 There is limited research report-
ing the fungal composition of mucosa tissues as 
specimens are less accessible compared with 
fecal samples.95 A study applied 18s rDNA 
sequencing to study the mucosa-associated  
fungi of colonic biopsy tissues from 47 healthy  
individuals. They found that R. mucilaginosa, 
Galactomyces geotrichum, C. albicans, Septoria 
epambrosiae, Cryptococcus carnescens, Bullera cro-
cea, C. dubliensi, Cladosporium cladospoirioides, 
Raciborskiomyces longisetosum, and Penicillium 
ialicum were the most detected in mucosal sam-
ples.96 Future studies comparing fecal and 
mucosa mycobiota and the contribution of their 
individual role in intestinal homeostasis and 
pathogenesis of disease are warranted.

Factors affecting the gut mycobiome
Despite emerging research on the gut mycobiome, 
a consensus healthy mycobiome has yet to be 
established. Several factors have been shown to be 
associated with alterations in mycobiota commu-
nity composition including host genetics, gender, 
age, comorbidities, drugs, lifestyle factors includ-
ing hygiene, socioeconomic status, diet, occupa-
tion, and the immune system.81 Interestingly, 
unlike the bacteriome, the mycobiome was shown 
a higher diversity in highly acidic stomach envi-
ronment in piglet.97 This suggested that the imbal-
ance of gut mycobiota may be related to stomach 
disease. Indeed, recent study reveals a perturba-
tion of fungal compositional and ecological 
changes in gastric cancer development and C. albi-
cans was characterized as a biomarker for gastric 
cancer.98 Given that early life factors are known to 
influence host microbiome status, data on early 
life gut mycobiome and factors influencing their 
development were reviewed.

Early life gut mycobiota
Early life fungal colonization has an impact on 
health outcomes of infants by training their immune 
system. Gut mycobiome in early life and factors 
that influence their development are shown in 
Figure 2. Infant fecal mycobiome was character-
ized by a low relative abundance of fungi composi-
tion and richness. Mother and infant fecal 
mycobiome were profiled in 15 mother–infant pairs 
in the first year of life by 18s rRNA gene amplicon 
sequencing.99 Phyla Basidiomycota and Ascomycota, 
with the genus Saccharomyces and the class 
Exobasidiomycetes, were the most represented fun-
gal component found in meconium. In another 
study,100 fecal samples from 298 mother–offspring 
pairs were analyzed by ITS1 amplicon sequencing. 
S. cerevisiae was the most abundant species in the 
gut of infants from 1 year of age onwards. Besides, 
Debaryomyces hansenii prevailed up to 3 months in 
the infant’s feces. The 10-day, 1-year, and 2-year 
fecal samples from infants were richer in R. muci-
laginosa, whereas the 3-month samples showed a 
high colonizer of C. parapsilosis. To further investi-
gate early fungal community establishment, Ward 
et  al.101 assessed the skin, oral, and anal mycobi-
omes of 16 infants over the first month of life and 
the anal and vaginal mycobiomes of 17 mothers 
using ITS2 amplicon sequencing. Infant mycobi-
omes varied by three body sites; skin mycobiome 
were dominated by C. tropicalis, C. parapsilosis, S. 
cerevisiae, C. albicans, and C. orthopsilosis; oral myc-
obiome was enriched with C. parapsilosis, C. tropica-
lis, S. cerevisiae, C. orthopsilosis, C. albicans, and 
Cladosporium velox; and anal mycobiome were colo-
nized with C. parapsilosis, C. tropicalis, C. albicans, 
S. cerevisiae, C. orthopsilosis, and Cryptococcus pseu-
dolongus, respectively.99 However, the infant’s myc-
obiome did not show a trajectory toward maturity 
within first 30 days of life, and this could be in part 
explained by the use of a relatively consistent food 
source of either breast milk or infant formula. 
Moreover, Kasper has demonstrated that mycobi-
ota could be transferred from mothers to their off-
spring. In the study, five infants shared D. hansenii 
and S. cerevisiae observed in their mothers.100 
Notably, the mother-to-child bacterial transmis-
sion patterns have been well profiled at strain 
level,102,103 whereas limited studies on mother-to-
child vertical fungal transmission were reported. 
Overall, these studies all demonstrated that fungi 
could colonize in the neonatal gut at very early 
stage; nevertheless, how the mycobiome is shaped 
and how the succession occurs in the gut of neo-
nates remained to be elucidated in the future.
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Figure 2.  The gut mycobiome through life and the influencing factors in early life. Infants receive mycobiota colonization in the gut 
at birth, and fungal community increased with age in infancy but decreased when they grow up to young adults. 10 days after birth, 
Rhodotorula mucilaginosa and Debaryomyces hansenii predominated in the gut of infants, while Candida parapsilosis, C. tropicalis, C. 
albicans, Saccharomyces cerevisiae, C. orthopsilosis, and Cryptococcus pseudolongus enriched in the anus of infants in the first month. 
In the adult stage, C. albicans, S. cerevisiae, C. tropicalis, C. glabrata, C. deforans, and Aspergillus glaucus occupy the gut. In later years, 
Penicillium, Candida, Aspergillus, and Saccharomyces were dominant in the gut of elders. The major factors contributing to neonatal 
gut fungal communities were mode of feeding and mode of delivery. Compared with neonates by cesarean section, a higher level 
of Candida and Pleosporales, decreased level of Malassezia were shown in the gut of infants born via vaginal delivery. Moreover, 
infants could directly acquire mycobiota from breast milk feeding by their mothers, which contains abundant R. mucilaginosa and C. 
parapsilosis.

Factors affecting mycobiome in early life
Fungi are ubiquitous in the environment and the 
infant mycobiome may originate from the mother 
during birth, from the mother’s breast milk, 
parental skin, or anywhere else in the hospital or 
home environment with which the offspring come 
in contact with.100

Mode of delivery. In newborn babies, initial fungal 
colonization is largely dependent on delivery mode 
(Figure 2). Infants born vaginally obtained fungi 
that colonize the vagina, whereas infants born via 
Caesarian section acquire fungal species that are 
related to the skin.104–106 Azevedo et al.107 found 
that delivery mode might be associated with a 
higher carriage of oral fungi at a young age. Ward 
et al.108 highlighted that the mode of birth likely 
influence the fungal composition of the infant. It 
was believed that infants born vaginally appeared 

to have a higher level of Candida in their fecal 
mycobiome given that Candida was found pre-
dominantly in the vagina canal and they also had a 
more diverse mycobiome compared to those born 
by cesarean section (C-section) given the expo-
sure of the infant to the mother’s fecal mycobiota. 
In contrast, infants delivered by C-section were 
colonized by a relatively higher abundance of 
Malassezia which originated from their mother’s 
skin. However, there are limited studies to sup-
port these hypotheses. In a separate study, Zhu 
et al.109 found that relative abundance of the order 
Pleosporales was higher in infants born by vaginal 
delivery than in those born by C-section.

Mode of feeding. Breast milk is considered the 
most ideal nutrition for infants offering protec-
tion from neonatal sepsis and facilitating infant 
growth and development.110 Several studies have 
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shown that the mode of feeding impact on the gut 
bacterial microbiome.111,112 Boix-Amorós et al.113 
characterized mycobiome composition in breast 
milk from healthy mothers and showed that the 
fungal composition of human breast milk was 
dominated by Malassezia (44%), followed by 
Candida (19%) and Saccharomyces (12%). The 
most abundant viable fungi detected were R. muci-
laginosa and C. parapsilosis (Figure 2).24 Azevedo 
et  al.107 suggested that the feeding mode of the 
infant (formula-fed or breast-fed infants) did not 
result in a difference in their oral yeast carriage. In 
contrast, Ward et al.108 suggested that feeding mode 
might affect the infant oral mycobiota. Currently, 
the relationship between infant and maternal gut 
mycobiome and whether breast milk leads to 
transmission of mycobiome from mother to infant 
remain controversial and require future studies. 
Future studies should focus on longitudinal track-
ing of the early-life mycobiota using mother–baby 
pairs while monitoring health outcomes during the 
first year of life. In addition, given the known inter-
actions between the bacteria and fungi, future 
studies should also focus on the analysis of both 
bacteria and fungi to better characterize their 
structural and functional relationships, as well as 
their combined effects on health outcomes.

Gut mycobiota in elder subjects
Fungal community increased with age in infancy 
but decreased when they grow up to young adults 
(Figure 2).88 However, gut mycobiota alteration 
in elder subjects was less reported,114 and most of 
the older adults studied were reported with known 
diseases including hypertriglyceridemia (HG),115 
Alzheimer’s disease (AD),51,116 and type 2 diabe-
tes mellitus (T2DM).19 In Denmark, gut mycobi-
ome analysis was performed in 100 elderly 
participants (70 with normotriglyceridemia ver-
sus 30 with hypertriglyceridemia) aged 65–81 
years by ITS 2 amplicon sequencing on their fecal 
samples. Penicillium, Candida, and Aspergillus 
were the top three genera among the elderly 
Danes, and genus Penicillium was strongly  
correlated with the hypertriglyceridemia.115 
Another study on 17 older subjects (11 mild cog-
nitive impairment versus 6 cognitively normal) 
with average age of 64.6 years showed that 
Saccharomyces, Candida, and Aspergillus were 
major fungal genera in their fecal samples through 
ITS 1 sequencing. Higher abundance of Botrytis, 
Kazachstania, Phaeoacremonium, and Cladosporium 
and decreased abundance of Meyerozyma at genus 

level were found in the gut of patients with mild 
cognitive impairment compared with controls.51 
Besides, Alonso et al.116 suggest that higher pro-
portion of fungi were found in the brain tissue of 
older patients with AD compared with controls, 
and the percentages of Aspergillus and Candida 
were higher in elder controls than that in young 
controls by ITS 1 amplicon sequencing. However, 
to date no studies have fully profiled the longitu-
dinal changes of mycobiota in the gut of old 
adults. Further studies are needed for a more 
complete picture of microbial development 
throughout the whole life.

The role of gut mycobiome and disease 
susceptibilities

Mycobiota and inflammatory bowel  
disease (IBD)
IBD, including ulcerative colitis (UC) and 
Crohn’s disease (CD), is a chronic and relapsing, 
inflammatory disorder of the gastrointestinal tract. 
Its pathogenesis involves a complex interaction 
among host genetics, host immunity, microbiome, 
and environmental exposures.117 The alterations 
of fecal and mucosal mycobiota in IBD in the 
pediatric and adult populations were summarized 
in Figure 3. As early as 1990, anti-Saccharomyces 
cerevisiae antibodies (ASCA) were found to be sig-
nificantly higher in sera of patients with CD, 
which suggests that the gut mycobiota may be 
involved in the pathogenesis of CD.118 Several 
studies have also confirmed increased ASCA titers 
in sera of CD patients and considered it as a 
potential biomarker for disease diagnosis.119–121 C. 
albicans was reported to be one of the immuno-
gens for ASCA.122 Standaert-Vitse et al.122 showed 
that the pathogenic C. albicans in human tissues 
may induce overexpression of ASCA major 
epitopes. It was also shown that patients with CD 
and their first-degree healthy relatives were more 
frequently and more heavily colonized by C. albi-
cans than healthy controls based on traditional 
culture method.123 Moreover, in vivo experiments 
suggested that colonic inflammation facilitated C. 
albicans colonization in dextran sodium sulfate-
induced mice colitis model.124,125

Based on denaturing gradient gel electrophoresis 
(DGGE) analysis, Ott et al.96 showed that fungal 
diversity was increased in patients with CD com-
pared with controls. Sokol et al.126 reported a dis-
tinct fungal microbiota dysbiosis in stool of 
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patients with IBD characterized by an increased 
Basidiomycota/Ascomycota ratio, decreased pro-
portion of S. cerevisiae, and an increased C. albi-
cans using ITS2 sequencing. Liguori et al. profiled 
the fungal composition in colonic mucosa of 
patients with CD and healthy subjects and found 
an increase in fungus load during CD flare. In 
addition, Cystofilobasidiaceae family, Dioszegia 
genera, and C. glabrata species were overrepre-
sented in CD while Leptosphaeria and Trichosporon 
genera were reduced compared with healthy con-
trols. Similarly, a higher richness in fungal diver-
sity in the inflamed mucosa of treatment-naïve 
UC patients was detected when compared with 
noninflamed mucosa (Figure 3). However, after 
5-ASA treatment, the richness of diversity 
declined.33 Furthermore, increased diversity of 
mucosal fungal microbiota was associated with 
expression of tumor necrosis factor (TNF)-α and 
interferon (IFN)-γ, which are key factors in the 
pathogenesis of IBD.4 In contrast to findings in 
adults, a reduced diversity in fungal microbiota 
was reported in the stool of pediatric patients with 
CD and UC.127 Besides, the represented fungal 
taxa detected in stool of pediatric patients with 
CD also differed from those of adults. Chehoud 
et al.127 showed that C. utilis and Candida parapsi-
losis were more common in stool samples of chil-
dren with IBD than healthy children via ITS1 
Region Gene Sequencing. El Mouzan et  al.128 
investigated fungal microbiota composition in 
treatment-naïve children with CD and showed 
that Psathyrellaceae, Cortinariaceae, Psathyrella, 
and Gymnopilus were significantly increased in the 
mucosa, while Cortinariaceae, Hymenochaete, and 
Gymnopilus were enriched in stool samples. In 
addition, Lewis et al. reported that S. cerevisiae, 
Clavispora lusitaniae, Candida utilis, C. albicans, 
and Kluyveromyces marxianus were present in 
abundance in stools from 86 pediatric subjects 
with CD compared to controls using shotgun 
metagenomic analysis (Figure 3). Pediatric and 
adult subjects with CD shared a small proportion 
of fungal taxa but there is also distinct differences 
in the fungal species.129 These difference may be 
due to different clinical phenotypes, drugs, and 
gut bacterial community between adults and 
pediatric IBD subjects. Numerous studies have 
highlighted the interaction between fungi and 
bacteria in IBD. Several correlations between 
bacteria and fungi were observed in a pediatric 
cohort, which varied between the healthy controls 
and patients with CD.129 Hoarau reported a sig-
nificant interkingdom associations in bacteriome 

and mycobiome in 13 familial clusters, which 
included 6 bacterial-fungal genus and 13 species-
level correlations.69 In a DSS-induced mice colitis 
model, Sovran et  al.35 found that the beneficial 
effects of Saccharomyces boulardii and pathogenic 
effects of C. albicans on colitis severity could be 
eliminated through a broad-spectrum antibiotic 
cocktail treatment, including ampicillin, neomy-
cin, metronidazole, and vancomycin. Overall, the 
gut fungal microbiota is altered in IBD but how 
fungi are involved in the occurrence and develop-
ment of IBD remains unclear. Modulation of the 
fungal microbiota can be considered as a thera-
peutic approach for IBD as certain strains includ-
ing S. boulardii and S. cerevisiae have shown 
therapeutic effects in human and murine IBD 
models. More studies on host–fungi interactions 
are necessary to enhance our understanding on 
how fungal microbiota interact with other con-
stituents of the gut microbiota and the mecha-
nisms of these relationships, in association with 
pathogenesis and development of IBD. Novel 
approaches, such as dietary interventions, probi-
otics, fecal microbiota transplantation (FMT), 
and antifungal metabolites to restore the dysbi-
otic states of intestinal mycobiota could be con-
sidered in the future; however, further studies are 
needed to assess their safety and efficacy.

Gut mycobiome in colorectal cancer (CRC)
Studies have shown that gut microbiota dysbiosis 
is associated with CRC.130 Besides bacteriome and 
virome, involvement of gut mycobiota in colorectal 
carcinogenesis has been increasingly recognized 
recently. Luan et  al. compared mucosa-adherent 
fungal microbiota of paired biopsy samples of ade-
nomas with adjacent normal colon tissue and 
found that gut fungal diversity in adenomas was 
decreased compared with adjacent normal tissues. 
At the genus level, the opportunistic pathogens 
Phoma and Candida accounted for an average of 
45% of the fungal microbiota. They also found an 
OTU, assigned to Spizellomycetales, to be signifi-
cantly enriched in adenomas compared with adja-
cent samples while one OTU, assigned to 
Paraglomerales, was significantly enriched in non-
advanced adenomas compared with adjacent tis-
sues. More importantly, Fusarium and Trichoderma 
genera, respectively, were significantly enriched in 
adjacent biopsy samples in advanced adenoma 
compared with samples of nonadvanced adenoma 
which may be useful for early diagnosis.6 In a myc-
obiome study of 29 polyps, 74 CRC patients, and 
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Figure 3.  Schematic summary of the gut mycobiome alterations in IBD. Compared with healthy individuals, the gut mycobiome of 
patients with IBD is characterized by increased fungal diversity and mycobiota dysbiosis accompanying with inflammation. Increased 
Basidiomycota/Ascomycota ratio and Candida albicans level, decreased proportion of Saccharomyces cerevisiae were shown in the 
fecal samples of patients with IBD. Similarly, increased fungus load including of C. albicans, C. tropicalis, C. glabrata, and Gibberella 
moniliformis were also found in the intestinal mucosa of patients with IBD. Nevertheless, pediatric patients with IBD showed a 
decreased fungal diversity in the gut. C. albicans, C. utilis, C. parapsilosis, S. cerevisiae, Clavispora lusitaniae, and Kluyveromyces 
marxianus prevailed in the feces of children, while increased abundance of Psathyrellaceae, Cortinariaceae, Psathyrella, and 
Gymnopilus were detected in their mucosa.
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28 healthy controls, fecal mycobiota composition 
differed among the three groups with a significant 
increase in the ratio of Ascomycota to Basidiomycota 
from control to CRC samples suggesting that 
changes of the gut mycobiota may be associated 
with progression of tumorigenesis. In addition, a 
higher fungal diversity was shown in late-stage 
CRC than in early-stage CRC.5 An increased pro-
portion of opportunistic fungi Trichosporon and 
Malassezia was detected as the major contributor in 
the progression CRC.7 In a large multicenter study 
of 184 patients with CRC, 197 patients with ade-
noma and 204 control subjects, the ratio of 
Basidiomycota/Ascomycota was reported to be 
higher in CRC than in controls.8 In addition, six 
fungal features were detected to be enriched in 
CRC compared with controls at the genus level, 
including Malassezia, Moniliophthtora, Rhodotorula, 
Acremonium, Thielaviopsis, and Pisolithus.8 A small 
cohort comparing mycobiota in patients with 
colitis-associated cancer (CAC) and sporadic 
cancer showed no difference in the fungal micro-
biota composition.131 Overall, fungal dysbiosis 
has been found in adenomas, CRC, or CAC. 
Understanding fungal diversity and abundance in 
CRC is crucial to help elucidate the potential con-
tribution of fungal species in colorectal tumorigen-
esis and delineation of fecal fungal dysbiosis might 
shed light on new opportunities for utilizing fungal 
species as noninvasive diagnostic biomarkers for 
CRC or its precursor lesions.

Gut mycobiome in metabolic diseases
Animal and human studies support a role of gut 
fungi in metabolic disease.17,19,132 In a mouse 
model, Heisel et  al.133 investigated the effects of 
obesogenic diet on fungal composition by ITS2 
sequencing and found that S. cerevisiae in the gut 
was significantly more abundant in lean mice than 
in mice fed with a high-fat diet. In an obese subject 
(body weight index = 48.9), a higher fecal fungal 
diversity was observed compared with healthy lean 
individuals.134 Furthermore, by using parallel aero-
bic culture-dependent approach on 24 subjects and 
ITS-based sequencing on 52 subjects, impaired 
fungal communities were reported in the gut of 
obese individuals, characterized by an increased 
presence of the phylum Ascomycota, the class 
Saccharomycetes, and the families Dipodascaceae and 
Saccharomycetaceae as compared with nonobese 
individuals.17,135 These findings suggest that obese 
subjects had altered gut fungi composition com-
pared with their lean counterparts.

Mycobiome dysbiosis has also been reported in 
the gut of patients with diabetes mellitus.136–139 A 
higher diversity in fecal fungal species was found 
to distinguish children with type 1 diabetes melli-
tus (T1DM) from healthy controls.136 Moreover, 
a significantly increase in Candida colonization 
was found in the fecal samples of patients with 
type 1 and 2 diabetes compared with controls, 
which was verified by quantitative real-time PCR 
and medium cultures.137,138 In contrast, a separate 
study reported that C. albicans was significantly 
less prevalent in individuals with T1DM (62% of 
all strains identified) compared to control subjects 
(85% of all strains identified) based on medium 
cultures. Moreover, the fungal species isolated in 
this study were shown to be more resistant to anti-
fungal drugs.136 Overall, the role of Candida in the 
pathogenesis of T1DM requires further confirma-
tion. Using fungal ITS1 metagenomic sequencing 
on fecal samples from 10 healthy controls, 14 
newly diagnosed T2DM, and 16 long-standing 
patients with T2DM, Bhute et  al.139 found that 
opportunistic fungal pathogens such as Aspergillus 
and Candida were more abundant in newly diag-
nosed subjects compared with other groups. 
Jayasudha et  al.19 used metagenomic sequencing 
to characterize fungal structure in fecal samples 
from 21 individuals with T2DM and 30 healthy 
controls. They found that patients with T2DM 
had increased fungal richness and evenness in the 
gut compared to healthy controls. An increase in 
the abundance of known human pathogens (genus 
Candida, Kodamaea, and Meyerozyma) and a 
decrease in the phylum Mucoromycota were noted 
in the gut of T2DM subjects.

Apart from altered gut mycobiome, altered fungal 
abundance in oral cavity was also reported in the 
subjects with diabetes mellitus. C. albicans and C. 
glabrata were both detected in the oral cavity of 
patients with T1DM.140,141 Nowakowska et  al.141 
suggested that C. glabrata resident in vagina and 
rectum was more than four times higher in women 
with diabetes than in nondiabetics. Significant 
associations were showed between glycemia and 
serum lipids with fungal abundance in patients with 
diabetes.137,141 Overall, these findings suggest that 
individuals with T2DM had gut mycobiome dys-
biosis but whether this is the cause or consequence 
of the disease remains unknown. Most current 
studies are descriptive and longitudinal follow-up 
cohorts are important to delineate the importance 
of mycobiota dysbiosis in disease progression or 
complications in patients with diabetes mellitus.

https://journals.sagepub.com/home/tag


Therapeutic Advances in Gastroenterology 14

10	 journals.sagepub.com/home/tag

Atherosclerosis is associated with metabolic dis-
eases.142 Gut mycobiota dysbiosis has also been 
shown to be related with the development of 
carotid atherosclerosis.132 In a study of 33 subjects 
who had fecal samples collected for ITS amplicon 
sequencing, the subjects were divided into two 
groups of 12 nonobese subjects versus 21 obese 
subjects. The authors showed that the relative 
abundance of phylum Zygomycota and family 
Mucoraceae and Mucor racemosus in the fecal  
samples of participants were negatively correlated 
with the carotid intima-media thickness and to  
the risk of subclinical atherosclerosis (using the 
Framingham risk scores) in prospective follow-
up.132 A separate study compared gut mycobiome 
of 48 coronary atherosclerosis patients with healthy 
controls, and there was no significant difference in 
the fungal composition of fecal samples between 
both groups with ITS sequencing. However, the 
abundance of Thermoascus and species Malassezia 
restricta in the patients with coronary atherosclero-
sis was significantly lower than in healthy individu-
als, and the decrease of M. restricta might have a 
close association with lipid metabolism disorder in 
atherosclerosis patients.143 Altogether these find-
ings implied the emerging role of the gut mycobi-
ota on atherosclerosis. As cardiovascular and 
metabolic risks vary in individuals and can also be 
influenced by external factors including diet and 
lifestyle, multiomics studies incorporating metabo-
lomics, transcriptomics, and the overall gut micro-
biome are needed.

Therapeutic approaches targeting the gut 
mycobiome
Pathogenic fungi infections have been a major 
challenge to global health and leads to significant 
morbidity and mortality. Recently, study suggested 
that host adaptive immune system could suppress 
harmful fungal effectors of pathogenic fungi in the 
gut to improve their commensal fitness, so as to 
maintain intestinal homeostasis in healthy state.144 
However, pathogens such as C. albicans, C. neofor-
mans, and Aspergillus fumigatus could present a 
threat on immunocompromised individuals.145 In 
subjects with fungal infections, antifungal drugs 
are generally used as the first choice to clear the 
pathogens. Current antifungal drugs in clinical use 
consist of azoles (disruption of fungal ergosterol 
synthesis), polyenes (breakdown of membranes), 
echinocandins (inhibition of cell wall synthesis), 
and pyrimidines (inhibition of DNA synthesis and 
miscoding of RNA).146 Invasive candidiasis is a 

frequent health-care-associated fungal infection 
caused by C. albicans, C. glabrata, and C. tropicalis. 
Mortality of this fungi infection is up to 40% annu-
ally.147,148 Amphotericin B deoxycholate and 
micafungin treatments are effective to control the 
infections.149,150 Recently alterations in the gut 
mycobiome have been reported in fecal samples of 
patients admitted to hospital with coronavirus dis-
ease (COVID-19) with increased proportions of 
opportunistic fungal pathogens, C. albicans, C. 
auris, and A. flavus compared with controls. 
Importantly, two respiratory-associated fungal 
pathogens, A. flavus and Aspergillus niger, were 
detected in fecal samples from a subset of patients 
with COVID-19, even after clearance of severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) from nasopharyngeal samples and resolu-
tion of respiratory symptoms.63 In sick individuals, 
Aspergillus sp. (A. fumigatus, A. penicillioides, A. 
niger and A. flavus) were detected in the endotra-
cheal aspirate or bronchoalveolar lavage fluid 
imposing a high risk developing complicating inva-
sive pulmonary aspergillosis. Antifungal therapies, 
such asvoriconazole and isavuconazole, were com-
monly used for preventing pulmonary aspergillosis 
and reducing mortality.151–153 However, toxicities 
and drug–drug interactions limit the utility of cur-
rent antifungal drugs. Ubiquity use of antifungal 
drugs has contributed to our reliance on fungicides 
and the emergence of multidrug-resistant patho-
genic fungi.154

Diet could be one of the major driving force 
influencing gut fungal mycobiota structure.90 A 
high-fat diet changed the gut fungal communities 
in murine models. It was reported that the  
abundances of the Alternaria, Saccharomyces, 
Septoriella, and Tilletiopsis genera were higher in 
mice administrated with normal chow compared 
with those fed with high-fat diet.133 Moreover, 
diet rich in plant-derived carbohydrate can sup-
port Candida in the gut of Indian subjects, while 
saturated fatty acid and coconut oil–rich diet 
negatively correlated with the load of Candida in 
the gut.155–157 In addition, dietary short-chain 
fatty acids correlated with decreased colonization 
of Aspergillus spp.90

Probiotics and prebiotics have been designed to 
provide health benefit. Multiple studies have iden-
tified several bacteria species with antifungal 
effects in vitro experiments, like Lactobacillus spp. 
and Bifidobacterium spp.158–160 In mice models, 
oral heat-killed Lactobacillus acidophilus (HKLA) 
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and heat killed Lactobacillus casei could decrease 
the colonization of viable C. albicans in the tract.161 
Colitis would induce overgrowth of opportunistic 
yeast pathogen C. glabrata in murine gut. Mice 
with colitis treated with β-glucans presented a 
decreased level of C. glabrata in the gut compared 
the colitis mice.162 Mycobiota regulation with pro-
biotics and prebiotics in human study is rare, 
increasing evidences provide the possibility that 
the antagonistic relationships between bacterial 
and fungal species may decrease the perturbations 
and enhance the cross-talks in the gut to establish 
a balanced microbial community.163

Other than bacteria, fungal probiotics could also 
confer beneficial effects to support human health. S. 
cerevisiae and S. boulardii are the most common yeast. 
S. boulardii has shown the potential abilities to allevi-
ate gastrointestinal disorder caused by Helicobacter 
pylori, Salmonella, and Clostridium difficile.164–166 In 
the gut of patients with IBD, the environment may 
favor fungi over bacteria, leading to both fungal and 
bacterial microbiome dysbiosis.129,167 Guslandi 
has demonstrated that S. boulardii could be used to 
treat IBD effectively, modulating the microbial 
composition in the gut.168,169 However, whether  
S. boulardii was involved in the restoration of mycobi-
ome composition in the gut remains unknown. 
Understanding how probiotics interplay with fungal 
community to maintain or restore a stable ecosystem 
and improve human health remains a challenge for 
future work.

Fecal microbiome transplantation (FMT) is the 
transfer of stool from a healthy individual to the 
gastrointestinal tract of another individual to  
re-establish the balance of microbiome.170 Up to 
date, the effective application of FMT in treating 
patients with recurrent Clostridium difficile-associ-
ated diarrhea (CDI),171 IBD,172 irritable bowel 
syndrome (IBS)173 have been successively dem-
onstrated. The efficacy of FMT is also associated 
with mycobiota. CDI is accompanied by out-
growth of C. albicans and dysbiosis in fungal 
diversity. High levels of Saccharomyces and 
Aspergillus in donor stool were reported in FMT 
responders, while nonresponders were related to 
a high abundance of C. albicans. The results 
implied that FMI is a promising therapy to 
improve gut mycobiome dysbiosis in CDI 
patients, while the fungi also have a tight associa-
tion with FMT treatment outcomes.

Future perspective
Here we review the existing literature on the 
human gut mycobiome in order to provide a 
comprehensive insight into both the methodolo-
gies available to research the gut mycobiota and 
also to highlight the latest research findings. We 
also draw on research into what is known about 
the human mycobiome composition at diseases 
and early life in order to provide both compara-
tive insight and productive direction for future 
studies in this burgeoning research area. Studies 
performed so far have shown potential links of 
mycobiome in health and diseases, it is impor-
tant to demonstrate the causation rather than 
association. An increasing body of evidence sug-
gests the alteration of interkingdom microbial 
community alterations contributing to the detri-
mental consequences to the host. To expand our 
knowledge and obtain deeper insight into the 
role of the microbiome in health and disease, 
future studies should characterize the different 
microorganisms (bacteria, fungi, and viruses) in 
the same sample types and inter-kingdom micro-
bial community. Future challenge will be to 
understand these interactions on both the 
molecular level and in their complexity. To meet 
this challenge, improved approaches and collab-
orations among bacteriologists, mycologists, 
immunologists, and clinicians are required to 
develop the foundation for personalized micro-
biome medicine. A better understanding of the 
fungi–bacteria–host interactions can allow iden-
tification of patients who are at risk and improve-
ment of patient care by tailored manipulation of 
the microbiota.
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