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Abstract: Modulating the transport route of photogenerated carriers on hollow cadmium sulfide
without changing its intrinsic structure remains fascinating and challenging. In this work, a series
of well-defined heterogeneous hollow structural materials consisting of CdS hollow nanocubes
(CdS NCs) and graphitic C3N4 nanoparticles (CN NPs) were strategically designed and fabricated
according to an electrostatic interaction approach. It was found that such CN NPs/CdS NCs still
retained the hollow structure after CN NP adorning and demonstrated versatile and remarkably
boosted photoreduction performance. Specifically, under visible light irradiation (λ ≥ 420 nm), the
hydrogenation ratio over 2CN NPs/CdS NCs (the mass ratio of CN NPs to CdS NCs is controlled to
be 2%) toward nitrobenzene, p-nitroaniline, p-nitrotoluene, p-nitrophenol, and p-nitrochlorobenzene
can be increased to 100%, 99.9%, 83.2%, 93.6%, and 98.2%, respectively. In addition, based on the
results of photoelectrochemical performances, the 2CN NPs/CdS NCs reach a 0.46% applied bias
photo-to-current efficiency, indicating that the combination with CN NPs can indeed improve the
migration and motion behavior of photogenerated carriers, besides ameliorating the photocorrosion
and prolonging the lifetime of CdS NCs.

Keywords: heterogeneous hollow structural materials; CdS nanocubes; graphitic carbon nitride;
photoreduction catalysis

1. Introduction

Recently, micro- and nanomaterials with dimensions in the nanometer and submicron
scales have attracted significant interest [1]. For example, in terms of the microstructure of
materials, researchers have developed a myriad of micro- and nanomaterials with differ-
ent morphologies, including nanoparticles [2], nanorods [3], nanosheets [4], and hollow
structures [5]. Among the many morphologies, hollow structural micro- and nanomaterials
possess a larger specific surface area, lower density, shorter charge transport distance, and
higher loading capacity and have been successfully used in many fields, such as photo-
catalysis [6–8]. In particular, hollow CdS-based photocatalysts, which possess outstanding
photocatalytic activity toward environmental remediation and energy production under
visible light irradiation, have surpassed their solid counterparts in many aspects, such as
larger surface area and more exposed active sites to trigger many redox reactions [9,10]. All
of these are coupled with the high capacity for light absorption through light reflection and
scattering in the inner cavity, as the hollow structure endows the CdS with enhanced pho-
tocatalytic properties. Therefore, hollow CdS-based photocatalysts have broad application
prospects in the field of photocatalysis and are worthy of our further study.
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Regardless of the structures of pure hollow CdS-based photocatalysts, the practical
application remains restricted by the severe photocorrosion and high recombination rate of
photogenerated charges [11]; thus, it is necessary to find a suitable co-catalyst to improve
the shortcoming of severe photocorrosion. In the in-depth study of the morphology, size,
and composition of hollow structural materials, heterogeneous hollow structural materials,
which are formed by the combination of different compositions or different crystalline
phases as units, were extremely fascinating due to the abundance of design approaches
and the superiority of performance control [12–15]. Compared with conventional single-
component hollow structural materials, heterogeneous hollow structural materials not only
have the traditional advantages of hollow structures, but also show rich functionalities in
energy conversion and storage, catalysis, and drug delivery due to the synergistic effect
between different components [12,16–18].

Theoretically, the hollow structure can rapidly transport the generated electrons and
holes to two counterparts by enhancing the built-in electric field at the shell level, avoiding
the recombination of electrons and holes, and improving the photocatalytic activity [19–22].
Hitherto, multiple efforts have been devoted to developing heterogeneous hollow struc-
tural material-based photocatalysts. In particular, the effective transfer of photogenerated
holes from the valence band of CdS would be an ideal strategy to deal with the photo-
corrosion problem and improve the stability of CdS. Fortunately, graphitic carbon nitride
(g-C3N4) has a suitable energy level for constructing a heterostructure with CdS to afford
an effective separation and transfer of photogenerated charges [23–28]. Thanks to its rigid
heptazine ring structure, π-conjugated electronic structure, and high condensation degree,
g-C3N4 possesses many advantages in building the heterostructure, including excellent
physicochemical stability and attractive electronic structure combined with an appropriate
band gap (~2.7 eV). In addition, g-C3N4 is readily available and can be easily prepared
from cheap crude materials such as urea [29–31]. However, due to the irregular size and
low photocatalytic activity caused by the buckling nature of bulk g-C3N4, it is necessary to
design a favorable and facile morphology of g-C3N4 for constructing a hollow CdS-based
heterogeneous photocatalyst.

In this work, we synthesized a series of heterogeneous hollow structural materials
constructed by hollow CdS nanocubes (CdS NCs) and g-C3N4 nanoparticles (CN NPs), in
which CN NPs with abundant active sites were employed to reduce the photocorrosion
and enhance the photocatalytic performance of CdS NCs. Consequently, the resultant CN
NP/CdS NC heterogeneous hollow structural materials demonstrated superior photoactivi-
ties to the single counterparts toward hydrogenation of nitroaromatics to amino derivatives
under visible light irradiation. In addition, according to the variety of photoelectrochemical
performances, the CN NPs worked as a competent and suitable co-catalyst to separate the
photogenerated charges and improve the stability of CdS NCs; furthermore, they prolong
the lifetime of the photogenerated charges. The possible mechanism for the enhancement
of photocatalytic efficiency was studied in particular.

2. Results
2.1. Characterizations of CN NPs/CdS NCs

The detailed synthesis approach for CN NPs/CdS NCs is schematically demonstrated
in Figure 1. Based on the results of the zeta potential test, the CdS NC aqueous solution is
positively charged within the range of pH from 3 to 12 (Figure 1a). On the other hand, it is
noteworthy that the CN NP solution (Figure 1b) shows a negatively charged status within
the pH range from 6 to 12. In this regard, when the solution has a pH of more than 6, the
CN NPs with a negative charge would be spontaneously and uniformly self-assembled on
the surface of CdS NCs with a positive charge by electrostatic interaction.

X-ray diffraction (XRD) was performed to verify the crystalline phases. CdS NCs, CN
NPs, and 2CN NPs/CdS NCs (the mass ratio of CN NPs to CdS NCs is controlled to be
2%) were selected for a concise comparison, as shown in Figure 2a. Hexagonal wurtzite
CdS (JCPDS 41-1049) could be found in the pristine CdS NCs and the 2CN NPs/CdS
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NCs [9,10,32–34]. The peak at 2θ = 27.2◦ in the XRD of the CN NPs (JCPDS 87-1526)
was ascribed to the crystallographic plane (002) of graphite [31,35–37]. Note that this
characteristic peak of g-C3N4 disappeared when the CN NPs hybridized with the CdS NCs,
which may be ascribed to the rather low loading amount of CN NPs compared with CdS
NCs in the composite; the peak of g-C3N4 was probably covered by the CdS peaks.
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Figure 2. (a) XRD patterns, (b) FTIR spectra, and (c) BET measures of the CdS NCs, CN NPs, and
2CN/CdS NCs. Survey and high-resolution XPS spectra of (d) Cd 3d, (e) S 2p, (f) C 1s, and (g) N 1s for
CdS NCs, CN NPs, and 2CN NPs/CdS NCs. (h) UV-Vis diffuse reflectance spectra of CdS NCs, CN
NPs, and 2CN NPs/CdS NCs with (i) band gap determinations based on the Kubelka–Munk method.
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The Fourier transform infrared spectroscopy (FTIR) spectra of different samples were
inspected to verify the integration of CN NPs and CdS NCs in the composites. Figure 2b
shows that the absorption bands at 625, 1078, and 1338 cm−1, attributable to the vibration
mode of Cd–S [38,39], could be observed both in the spectrum of CdS NCs and CN
NPs/CdS NCs. Meanwhile, the absorption in the region of 1240–1680 cm−1, corresponding
to the stretching modes of the heterocycles in CN NPs, was also observed both in the CN
NPs and the 2CN NP/CdS NC composite [40,41]. Therefore, in combination, the XRD
and FTIR tests indicated that the integration of the CN NPs and CdS NCs was successful
according to the electrostatic interaction.

Additionally, Brunauer–Emmett–Teller (BET) measurements were performed to evalu-
ate the specific surface areas of CdS NCs, CN NPs, and 2CN NPs/CdS NCs. As illustrated
in Figure 2c, specific surface areas of CdS NCs, CN NPs, and 2CN NPs/CdS NCs were
97.5, 6.3, and 45.3 m2/g, respectively. It is noteworthy that after combining with CN NPs,
the specific surface area of 2CN NPs/CdS NCs is dramatically decreased, which can be
attributed to the integration of CN NPs on the CdS NC substrates shielding the pores of
CdS NC frameworks.

Elemental chemical states of CN NPs, CdS NCs, and 2CN NPs/CdS NCs were de-
termined by X-ray photoelectron spectroscopy (XPS). As shown in Figure 2d–g, the high-
resolution spectrum of Cd 3d suggests the presence of Cd2+. Additionally, the characterized
peaks located at 161.3 eV for S 2p3/2 and 162.7 eV for S (Figure 2e) can be ascribed to
S2− [42,43]. Peaks centered at 284.6, 285.4, and 288.2 eV in the C 1s spectrum corresponded
to C-C/C-H, C-OH, and N-C=N, respectively. Finally, the peaks at 398.7, 399.2, and 400.8 eV
of the N 1s spectrum are attributable to the nitrogen species of C-N=C, N-(C)3, and C-N-H
groups, respectively [44,45]. As such, XPS results signify again the successful combination
of CN NPs and CdS NSs in the composites.

To determine the optical properties of as-prepared samples, diffuse reflectance spec-
troscopy (DRS) was performed. Figure 2h shows that the CdS NCs, CN NPs, and 2CN
NPs/CdS NCs had substantial absorption in the visible region, which could be attributed
to the intrinsic absorption properties of CdS and g-C3N4. Additionally, according to the
Kubelka–Munk method [46,47], the band gap of CdS NCs, CN NPs, and 2CN NPs/CdS
NCs could be roughly determined as 2.41, 2.72, and 2.47 eV by drawing a tangent line on the
plots of (αhν)2 vs. hν, as shown in Figure 2i. The results of DRS further suggested that the
energy band structures of as-prepared samples are suitable for absorption of visible light.

The morphologies of CdS NCs, CN NPs, and 2CN NPs/CdS NCs were investigated
by FESEM. As demonstrated in Figure 3a,b, uniform and neat nanocubes were observed.
Figure 3c,d show the SEM image of CN NPs, which ultrasmall nanoparticles with a mean
diameter of ca. 5–20 nm. It is worth noting that the framework of CdS NCs had no change
after combination with CN NPs, implying that electrostatic interaction can be considered
as a mild and efficient assembly route, as shown in Figure 3e,f. Additionally, EDS mapping
analysis was also performed (Figure 3g) to elucidate the elemental distribution in the
nanocomposites, confirming the presence of the Cd, S, C, and N elements in the 2CN
NPs/CdS NCs. Based on the SEM and EDS results, it is confirmed that the CN NPs were
tightly integrated on the surface of CdS NCs after electrostatic self-assembly.

Transmission electron microscopy (TEM) measurements were performed to inspect the
morphologies of the CdS NCs, CN NPs, and 2CN NPs/CdS NCs (Figure 4a). In the TEM
images of CdS NCs, a polycrystalline structure of hollow nanocubes with a mean diameter
of 100 nm could be observed. It was previously demonstrated that the complex hollow
nanostructure of CdS possessed superior photocatalytic activity to the other forms of CdS.
The TEM images of the CN NPs had many ultrasmall nanoparticles with a diameter of ca.
5–20 nm (Figure 4b). Therefore, given the surface charge properties of these assembly units,
it could be reasonably speculated that the negatively charged CN NPs would spontaneously
and uniformly self-assemble on the positively charged hollow CdS NCs to afford intimate
interfacial contact under electrostatic interaction (Figure 4d). In 2CN NPs/CdS NCs, lattice
spacing (0.359 nm) was accurately assigned to the (002) crystallographic plane of hexagonal
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CdS [20,37,48]. The blue circles in Figure 4e mark some non-crystalline CN NPs that loaded
on the CdS NCs surface uniformly and intimately, indicating the successful synthesis of
heterogeneous hollow structural materials by combination of CdS NCs and CN NPs.
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Molecules 2022, 27, x FOR PEER REVIEW 6 of 15 
 

 

NCs to afford intimate interfacial contact under electrostatic interaction (Figure 4d). In 

2CN NPs/CdS NCs, lattice spacing (0.359 nm) was accurately assigned to the (002) crys-

tallographic plane of hexagonal CdS [20,37,48]. The blue circles in Figure 4e mark some 

non-crystalline CN NPs that loaded on the CdS NCs surface uniformly and intimately, 

indicating the successful synthesis of heterogeneous hollow structural materials by com-

bination of CdS NCs and CN NPs. 

 

Figure 4. TEM images of (a) CdS NCs, (b) CN NPs, and (c) the 2CN NP/CdS NC heterogeneous 

hollow photocatalyst; (d) schematic illustration of the flowchart for fabricating the CN NPs/CdS 

NCs; (e) HRTEM image of the 2CN NP/CdS NC heterogeneous hollow photocatalyst. 

2.2. Photocatalytic Performances of CN NPs/CdS NCs 

The photocatalytic performance of the substrates was probed under visible light (λ > 

420 nm) irradiation at ambient conditions by the selective anaerobic photocatalytic hydro-

genation of aromatic nitro compounds to the corresponding amino compounds. An ex-

ample is the photocatalytic hydrogenation of nitrobenzene to aniline. According to UV-

Vis spectroscopy, the absorption peak at 273 nm was attributed to nitrobenzene, and the 

peaks at 238 nm were ascribed to aniline. Figure 5a shows that the CN NPs had a low 

photoactivity and reduced only ca. 9.4% of the nitrobenzene after irradiation for 15 min, 

whereas the CdS NCs reduced ca. 84.1% of the nitrobenzene in the same irradiation time. 

When the CN NPs and CdS NCs were combined, the CN NPs/CdS NC heterogeneous 

hollow photocatalysts exhibited strongly enhanced photocatalytic performances. Among 

the different CN NPs loading amounts, the photoactivity of 2CN NP/CdS heterogeneous 

hollow photocatalyst demonstrated the optimal photoactivity (~100%) in comparison with 

the other counterparts. Consequently, the results indicated that the integration of CdS 

NCs with CN NPs in a rational way contributes to enhancing performance. Furthermore, 

to demonstrate the critical role of photoelectrons in initiating the progress of reducing 

nitrobenzene, K2S2O8 was used as an electron quench. Figure 5b shows that the photoac-

tivity decreased remarkably for 2CN NPs/CdS under the same reaction conditions, there-

fore indicating the crucial role of in situ photoexcited electrons in initiating the reaction. 

Figure 4. TEM images of (a) CdS NCs, (b) CN NPs, and (c) the 2CN NP/CdS NC heterogeneous
hollow photocatalyst; (d) schematic illustration of the flowchart for fabricating the CN NPs/CdS
NCs; (e) HRTEM image of the 2CN NP/CdS NC heterogeneous hollow photocatalyst.

2.2. Photocatalytic Performances of CN NPs/CdS NCs

The photocatalytic performance of the substrates was probed under visible light
(λ > 420 nm) irradiation at ambient conditions by the selective anaerobic photocatalytic
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hydrogenation of aromatic nitro compounds to the corresponding amino compounds. An
example is the photocatalytic hydrogenation of nitrobenzene to aniline. According to
UV-Vis spectroscopy, the absorption peak at 273 nm was attributed to nitrobenzene, and
the peaks at 238 nm were ascribed to aniline. Figure 5a shows that the CN NPs had a low
photoactivity and reduced only ca. 9.4% of the nitrobenzene after irradiation for 15 min,
whereas the CdS NCs reduced ca. 84.1% of the nitrobenzene in the same irradiation time.
When the CN NPs and CdS NCs were combined, the CN NPs/CdS NC heterogeneous
hollow photocatalysts exhibited strongly enhanced photocatalytic performances. Among
the different CN NPs loading amounts, the photoactivity of 2CN NP/CdS heterogeneous
hollow photocatalyst demonstrated the optimal photoactivity (~100%) in comparison with
the other counterparts. Consequently, the results indicated that the integration of CdS NCs
with CN NPs in a rational way contributes to enhancing performance. Furthermore, to
demonstrate the critical role of photoelectrons in initiating the progress of reducing ni-
trobenzene, K2S2O8 was used as an electron quench. Figure 5b shows that the photoactivity
decreased remarkably for 2CN NPs/CdS under the same reaction conditions, therefore
indicating the crucial role of in situ photoexcited electrons in initiating the reaction.
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ratio of CN NPs to CdS NCs) heterogeneous hollow photocatalysts with different CN NP loading
amounts under visible light irradiation with N2 aeration. (b) Photoactivities of 2CN NPs/CdS
NCs when adding K2S2O8 as electron quench under visible light irradiation with N2 aeration.
(c) Typical reaction model of converting aromatic nitro compounds to aromatic amines under the
experimental environment.

Apart from nitrobenzene, the selection of other aromatic nitro compounds such as
p-nitroaniline, p-nitrotoluene, p-nitrophenol, and p-nitrochlorobenzene over CdS NCs, CN
NPs, and 2CN NP/CdS NC heterogeneous hollow photocatalyst were also explored. As
shown in Figure 6a–f, compared with CdS NCs and CN NPs, 2CN NPs/CdS still shows
the optimal photocatalytic activity for hydrogenation of aromatic nitro compounds. The
photocatalytic performance toward p-nitroaniline, p-nitrotoluene, p-nitrophenol, and p-
nitrochlorobenzene over 2CN NPs/CdS was found to be 99.9%, 83.2%, 93.6%, and 98.2%,
respectively. Hence, the integration of CdS NCs and CN NPs in an appropriate approach
will be beneficial for enhancing the photocatalytic performances under visible light. Mean-
while, cycling experiments were carried out to demonstrate that CN NPs can improve
the photostability of CdS. As shown in Figure 6b,c, the 2CN NPs/CdS NCs maintained
excellent photostability (97.7%) for the photocatalytic hydrogenation of p-nitroaniline after
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four consecutive cycling experiments. However, the photocatalytic hydrogenation activity
of CdS NCs was reduced to only 48.6%. It was clearly shown that CN NPs will ameliorate
the photocorrosion of the CdS NCs after integration.
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nitrophenol, and (f) p-nitrochlorobenzene over CdS NCs, CN NPs, and 2CN NPs/CdS under visible
light irradiation with N2 aeration. Cyclic experiments for photocatalytic reducing of p-nitroaniline
over (b) CdS NCs and (c) 2CN NP/CdS NC heterogeneous hollow photocatalyst under the experi-
mental environment.

Table 1 summarizes a comparative study of different photocatalysts reported in recent
years toward the hydrogenation of nitrobenzene. It is clearly shown that the as-prepared
samples showed excellent performance toward the hydrogenation of nitrobenzene.

Table 1. Comparison of the irradiation time and efficiency among various photocatalysts.

Materials Irradiation Time (min) Efficiency (%) Ref.

2CN NPs/CdS NCs 15 100 This work
Ti3C2/Pd 150 99 [49]

1.2% PtO@Cr2O3 60 98 [50]
2% Bi2O3/Bi2WO6 40 93.1 [51]
20% rGO/NiCo2O4 60 100 [52]
1.2%PtO@ZnCr2O4 60 100 [53]

2.3. Photoelectrochemical (PEC) Measurements

Photoelectrochemical (PEC) measurements were performed to observe the PEC prop-
erties of CdS NCs, CN NPs, and CN NPs/CdS NC heterogeneous hollow photocatalysts.
Figure 7a shows the transient photocurrent responses of CdS NCs, CN NPs, and the 2CN
NP/CdS NC heterogeneous hollow photocatalyst under visible light, following the subse-
quence of 2CN NPs/CdS NCs > CdS NCs > CN NPs, which is in line with the photocatalytic
performances. Additionally, electrochemical impedance spectroscopy (EIS) was performed
to evaluate the separation efficiency of photogenerated charge carriers in the interfaces.
Generally, a smaller Nyquist plot semicircle radius represents a faster interfacial charge
transfer rate [54]. As shown in Figure 7b, the EIS Nyquist plot of the 2CN NP/CdS NC het-
erogeneous hollow photocatalysts exhibits a smaller semicircular arc radius under visible
light than that of CdS NCs and CN NPs, implying that the interface of the 2CN NP/CdS
NC heterogeneous hollow photocatalyst will facilitate the moving and transmission of
photogenerated electrons. Furthermore, after 1 h of continuous irradiation, the 2CN CdS
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NCs exhibit more photostability than CdS NCs (Figure 7c), indicating that the CN NPs can
indeed ameliorate the photocorrosion of CdS NCs.
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(c) photostability, (d) LSV (scan rate: 5 mV/s), (e) ABPE curves based on the LSV results, (f) Mott–
Schottky plots, and (g) OCVD curves of CdS NCs, CN NPs, and 2CN NP/CdS NC heterogeneous
hollow photocatalyst under visible light irradiation. (h) Electron lifetime based on the results of
OCVD curves and (i) PL spectra of the as-prepared materials with an excitation wavelength of
325 nm.

Additionally, linear sweep photovoltammetry (LSV) can be used to assess the kinetics
of charge motion. As shown in Figure 7d, the photocurrent of the 2CN CdS NC heteroge-
neous hollow photocatalyst increases in the high bias voltage region, indicating that 2CN
CdS NCs have a beneficial interface for charge movement [55]. For the results of LSV, the
conversion efficiency can be estimated by calculating the applied bias photo-to-current
efficiency (ABPE, η) with Equation (1).

η =
I(1.23− |V|)

P
(1)

where I is the photocurrent measured by LSV, V is the bias, and P is the intensity of
irradiation light (about 20 mW·cm−2). The results are reflected in Figure 7e, and the 2CN
CdS NCs have the highest efficiency, about 0.46%. Notably, the results of LSV and ABPE
are quite in line with the photoactivity performances, consistently confirming that the
motion behavior of photogenerated charges will be significantly promoted after adorning
the surface of CdS nanocubes with CN NPs.

Furthermore, the CB of semiconductors could be determined by Mott–Schottky (M-S)
measurements, as shown in Figure 7f, flat-band potentials of CdS NCs and CN NPs are
determined to be −0.93 and −1.22 eV (vs. RHE). Thus, combined with the results of
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UV-Vis DRS, the VB location of CdS NSs and CN NPs can be roughly calculated as +1.48 V
and +1.40 V, respectively. Such band structures are beneficial for the transmission of the
photogenerated electrons from the CB of CN NPs to the CB of CdS NCs, as well as the
photogenerated holes from the VB of CdS NCs to the VB of CN NPs, thus ameliorating the
photocorrosion of CdS NCs.

Additionally, the recombination kinetics and lifetime of charge could be estimated
by monitoring the open-circuit photovoltage decay (OCVD) tests [49]. The 2CN CdS NC
heterogeneous hollow photocatalyst exhibits a larger photovoltage than CdS NCs and CN
NPs, implying the lowest recombination of charge, as shown in Figure 7g. Based on the
OCVD results, the logarithmic graph of electron lifetime vs. open-circuit voltage could be
calculated by Equation (2),

τ =
−kBT

e

(
dVoc

dt

)−1
(2)

where electron lifetime, thermal energy, electron charge (~1.602× 10−19 C), time-dependent
photovoltage, and time are abbreviated as τ, kBT, e, Voc, and t. The calculated results are
reflected in Figure 7h. The 2CN NP/CdS NC heterogeneous hollow photocatalyst shows
a longer electron lifetime. Obviously, the result is in line with the other PEC tests. Such
a conclusion can be further confirmed by the photoluminescence (PL) intensity test; as
shown in Figure 7i, the lowest intensity of the 2CN NP/CdS NC heterogeneous hollow
photocatalyst indicates an optimal charge separation efficiency.

Based on the above analysis, the photocatalytic mechanism of the CN/CdS NC hetero-
geneous hollow photocatalyst was proposed, as shown in Scheme 1. Under the irradiation
of visible light, both CN NPs and CdS NCs were excited to produce the electron–hole pairs.
The electrons in the conduction band of the CN NPs easily and immediately migrated
into the conduction band of the CdS NCs because (1) CN NPs had a more negative elec-
tronic potential in their conduction band compared with CdS NCs and (2) the interfacial
integration between CN NPs and CdS NCs was highly intimate. Meanwhile, the holes
in the valence band of the CdS NCs spontaneously flew into the valence band of the CN
NPs, which effectively prevented the photocorrosion of the CdS NCs and prolonged their
lifetime. As for the photoreduction, the electrons in the conduction band of the CdS NCs
efficiently reduced the aromatic nitro compounds to the corresponding amines under the
N2 atmosphere.
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3. Materials and Methods
3.1. Materials

Urea, sulfuric acid (H2SO4), nitric acid (HNO3), sodium hydroxide (NaOH), hydrochlo-
ric acid (HCl), ammonium hydroxide (NH3·H2O), polyvinyl pyrrolidone K-30, silver nitrate
(AgNO3), sodium citrate, sodium borohydride (NaBH4), ferric chloride (FeCl3), sodium sul-
fide (Na2S), cadmium nitrate (Cd(NO3)2), tributylphosphine, concentrated NH3 H2O, potas-
sium hexacyanoferrate (III) (K3[Fe(CN)6]), potassium hexacyanoferrate (II) (K4[Fe(CN)6]),
sodium sulfate (Na2SO4), ethanol (C2H5OH), deionized water (DI H2O, Millipore, 18.2 MΩ
cm resistivity), ammonium formate (HCO2NH4), potassium persulfate (KPS, K2S2O8),
nitrobenzene, p-nitroaniline, p-nitrophenol, p-nitrotoluene, and p-nitrochlorobenzene were
are analytical grade and used as received without further purification.

3.2. Synthesis
3.2.1. Synthesis of CdS Nanocubes (CdS NCs)

The CdS nanocubes were prepared as follows [10,32,33]: polyvinyl pyrrolidone K-30
(84 mg) and aqueous AgNO3 (50 mmol/L, 1 mL) were added into a solution of aqueous
sodium citrate (10 mmol/L, 40 mL) before the sequential addition of aqueous NaBH4
(10 mmol/L, 1 mL), concentrated HCl (200 µL), and aqueous FeCl3 (0.1 mol/L, 50 µL)
under constant strong stirring. The mixed solution was maintained at 30 ◦C for 16 h to
form a homogeneous suspension, to which aqueous Na2S (0.1 mol/L, 1 mL) was added.
The precipitates were collected, washed three times with methanol, and dispersed in
methanol (4 mL). The solution of Cd(NO3)2 in methanol (50 mmol/L, 1 mL) and polyvinyl
pyrrolidone K-30 (50 mg) were then added sequentially, and the mixture was stirred at
50 ◦C for 5 min. Finally, tributylphosphine (100 µL) was added and the mixture was kept at
50 ◦C for another 2 h. The precipitates were collected and washed three times with ethanol
and deionized H2O to give CdS nanocubes (CdS NCs).

3.2.2. Synthesis of g-C3N4 Nanoparticles (CN NPs)

Typically, urea (10 g) was heated from room temperature to 550 ◦C at 7 ◦C/min in a
covered crucible for 2 h and then cooled to ambient temperature to obtain a yellow powder.
The yellow powder (1 g) was added into a mixture solution including 20 mL H2SO4 and
20 mL HNO3 and then stirred at room temperature for 2 h. The mixture was then diluted
with 1 L of deionized water and washed several times to give a white residue. The white
residue was finally dispersed in 30 mL concentrated NH3·H2O and heated at 120 ◦C for
12 h in a 50 mL Teflon-lined autoclave, before being cooled to room temperature. The
aqueous suspension was centrifuged at ~500 rpm to remove the precipitate and dialyzed to
remove large-sized nanoparticles and NH3 molecules to provide an aqueous solution of
g-C3N4 nanoparticles (marked as CN NPs).

3.2.3. Preparation of g-C3N4 Nanoparticles/CdS Nanocubes (CN NPs/CdS NCs)

The g-C3N4 nanoparticles/CdS nanocubes (CN NPs/CdS NCs) were prepared by
electrostatic self-assembly. CdS NCs (0.1 g) were firstly dispersed in ethanol (98 mL),
and the aqueous g-CN NP solution was added dropwise; the pH of the mixture solution
was adjusted to ~8.0 with aqueous NaOH (0.01 mol/L), and the mass ratio of CN NPs
to CdS NCs was controlled to be 1%, 2%, 3%, 4%, and 5%. Finally, the precipitates were
collected and washed three times with ethanol and deionized H2O to give the g-C3N4
nanoparticles/CdS nanocubes (CN NPs/CdS NCs).

3.3. Characterizations

The zeta potential was monitored with a Zeta Potential Analyzer (Omin, BIC, America).
An X-ray diffraction (XRD, X’Pert Pro MPD) instrument equipped with Cu Kα radiation
under 36 kV and 30 mA was employed to analyze the crystal structures. A TJ270-30A
spectrophotometer (Tianjin Tuopu Instrument, China) was used to monitor the Fourier
transform infrared spectroscopy (FT-IR) in the range of 400–4000 cm−1. The surface areas
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were determined from the nitrogen adsorption–desorption isotherm at 77.3 K by Brunauer–
Emmett–Teller (BET, 3flex, Micromeritics, America). Field emission scanning electron
microscopy (SEM, SUPRA 55, Carl Zeiss) was utilized to observe the morphologies. Trans-
mission electron microscopy (TEM, FEI, America) was performed with an accelerating
voltage of 200 kV. X-ray photoelectron spectroscopy (XPS, Escalab 250, Thermo Scientific,
America) was analyzed with corrected by C 1s spectra of 284.6 eV. The UV-Vis diffuse
reflectance spectroscopy (DRS) was performed on a Lambda 950 (PerkinElmer, America)
by employing BaSO4 as a reflectance substrate. The photofluorescence (PL) spectra were
measured on a Varian Cary Eclipse spectrometer with an excitation wavelength of 325 nm.
Finally, all the PEC measurements were monitored using a three-electrode configuration on
an electrochemical workstation (CHI-660C, Chenhua, China). Working electrodes: added
the as-prepared photocatalysts (5 mg) into 0.5 mL ethanol, dripped on a 1 × 1 cm2 FTO
glass, and finally dried the glass at 50 ◦C for 30 min to remove ethanol. Counter electrode:
Pt foil. Reference electrode: Ag/AgCl. Electrolyte: Na2SO4 solution (1.0 mol·L−1).

3.4. Photoactivity Evolution

The photoactivity of the as-prepared samples was evaluated by reducing a series of
aromatic nitro compounds. Typically, the catalyst (5 mg) and ammonium formate (10 mg,
for quenching photogenerated holes) were evenly dispersed into the solution including the
target nitro compound (30 mg L−1, 50 mL) with continuously bubbling N2. After stirring
for 0.5 h in dark to reach an adsorption–desorption equilibrium, the mixture system was
irradiated by a 500 W Xe lamp equipped with an optical filter (λ > 420 nm). Based on the
equation of Lambert–Beer (Equation (3)), the photoactivity of the photocatalysts could be
evaluated as follows:

Conversion =

(
C0 − Ct

C0

)
× 100% (3)

where C0 and Ct represent the initial concentration and the time-dependent concentration,
respectively.

4. Conclusions

In summary, we designed a series of well-fined heterogeneous hollow structural
materials (CN NPs/CdS NCs) via a self-assembly approach by combining hollow CdS
nanocubes and g-C3N4 nanoparticles. The intrinsically negatively charged CN NPs were
uniformly and intimately interspersed on the positively charged hollow nanocubes of
CdS NCs based on electrostatic interaction. The intimate integration of CN NPs with
CdS NCs could effectively ameliorate the photocorrosion and enhance the performance
of CdS NCs in photocatalytic hydrogenation. Under the irradiation of visible light, the
CN NP/CdS NC heterogeneous hollow photocatalysts demonstrated markedly enhanced
photocatalytic hydrogenation performance in the anaerobic photocatalytic hydrogenation
of aromatic nitro compounds at ambient conditions; in particular, when the mass ratio
of CN NPs to CdS NCs is 2%, the hydrogenation ratio over the heterogeneous hollow
photocatalyst toward nitrobenzene, p-nitroaniline, p-nitrotoluene, p-nitrophenol, and p-
nitrochlorobenzene can be increased to 100%, 99.9%, 83.2%, 93.6%, and 98.2%, respectively.
The photogenerated electrons responsible for the photocatalytic hydrogenation process
were unambiguously determined by systematic control experiments, based on which
the photocatalytic mechanism was elucidated. Additionally, the 2CN NPs/CdS NCs
reached the highest applied bias photo-to-current efficiency (0.46%) according to the PEC
investigation. It is anticipated that our work may further inspire the rational design of
heterogeneous hollow structural materials for highly efficient conversions making use of
solar energy.
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