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Summary
Background Mobile plasmids play a key role in spurring the global dissemination of multidrug-resistant (MDR)
K. pneumoniae, while plasmid curing has been recognized as a promising strategy to combat antimicrobial
resistance. Here we exploited a K. pneumoniae native CRISPR system to cure the high-risk IncFII plasmids.

Methods We examined matched protospacers in 725 completely sequenced IncFII plasmids from K. pneumoniae
genomes. Then, we re-engineered a native CRISPR-Cas3 system and deliver the CRISPR-Cas3 system via
conjugation. Plasmid killing efficiency and G. mellonella infection model were applied to evaluate the CRISPR-
Cas3 immunity in vitro and in vivo.

Findings Genomic analysis revealed that most IncFII plasmids could be targeted by the native CRISPR-Cas3 system
with multiple matched protospacers, and the targeting regions were highly conserved across different IncFII
plasmids. This conjugative endogenous CRISPR-Cas3 system demonstrated high plasmid curing efficiency in vitro
(8-log decrease) and in vivo (∼100% curing) in a Galleria mellonella infection model, as well as provided
immunization against the invasion of IncFII plasmids once the system entering a susceptible bacterial host.

Interpretation Overall, our work demonstrated the applicability of using native CRISPR-mediated plasmid curing to
re-sensitize drug-resistant K. pneumoniae to multiple antibiotics. This work provided strong support for the idea of
utilizing native CRISPR-Cas systems to tackle AMR in K. pneumoniae.
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Introduction
Antimicrobial resistance (AMR) has emerged as an ur-
gent threat to global public health.1 Klebsiella pneumoniae
is one of the most commonly detected multidrug-
resistant (MDR) pathogens in clinical settings,
frequently associated with various resistance
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determinants, such as the extended-spectrum β-lacta-
mase and carbapenemase genes.2 Plasmids served as
important vectors that promoted the spread of AMR in
K. pneumoniae and other Gran-negative pathogens.3 In
K. pneumoniae, IncFII plasmids (including IncFIIK,
IncFII, IncFIIY, and IncFIIS) is the most predominant
. Chen), Jiangxi2154@sina.com (X. Jiang).
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Research in context

Evidence before this study
The rapid spread of multidrug-resistant (MDR) Klebsiella
pneumoniae poses a major threat to modern medicine,
jeopardizing our ability to treat life-threatening infections.
Mobile plasmids play a key role in spurring the global
dissemination of MDR K. pneumoniae, while plasmid curing
has been recognized as a promising strategy to combat
antimicrobial resistance. CRISPR (clustered regularly
interspaced short palindromic repeats)-Cas (CRISPR-
associated) systems have been repurposed as a novel
approach for MDR plasmid curing. Cas9 nuclease has been
extensively reprogrammed for genome editing in a broad
range of organisms, especially eukaryotes. However, for most
prokaryotes, the heterologous CRISPR-Cas9 machineries are
difficult to exploit due to their large size and severe toxicity to
host cells. Hence, repurposing the broadly distributed
endogenous CRISPR-Cas systems is emerging as a new
CRISPR-based genome-editing strategy in prokaryotes. We
previously revealed a significant inverse correlation between
the presence of native I-E CRISPR-Cas3 systems and the
presence of MDR plasmids in clinical K. pneumoniae isolates.
We, therefore, searched PubMed and Google Scholar for
studies published between Jan 1, 1990, and Sep 1, 2022,
containing the terms “K. pneumoniae”, “CRISPR-Cas”, and
“plasmid curing”. We identified 4 studies, including two
studies from us, that showed the relationship between native
type I-E CRISPR-Cas system and antibiotic-resistance in
K. pneumoniae. Notably, we found no evidence for the
application of native type I-E CRISPR-Cas system to control
the acquisition of MDR plasmids.

Added value of this study
Our study is a step toward the development of K. pneumoniae
endogenous CRISPR-Cas3 system to combat the antibiotic

resistance in vitro and in vivo. In this study, we re-engineered a
native CRISPR-Cas3 system from a clinical K. pneumoniae strain
and integrated it into a high-copy-transferable plasmid. This
conjugative endogenous CRISPR-Cas3 system demonstrated
high plasmid curing efficiency in vitro and in vivo in a Galleria
mellonella infection model, as well as immunization against
the invasion of MDR plasmids in a susceptible bacterial host.
Our work provided strong support for the idea of utilizing
native CRISPR-Cas3 systems to tackle antimicrobial resistance
(AMR) in K. pneumoniae. Besides the native CRISPR-Cas
systems in K. pneumoniae, other endogenously encoded
CRISPR-Cas systems have also been increasingly considered as
a promising genetic manipulation strategy in prokaryotes.
The application of native CRISPR-Cas systems for clinical
intervention should be further explored.

Implications of all the available evidence
MDR K. pneumoniae has emerged as a global problem
hindering the treatment of bacterial infections. Effective
strategies to combat MDR K. pneumoniae are urgently needed,
and MDR plasmid curing could be a promising approach to
reduce AMR prevalence, and sensitize bacteria to antibiotics.
We developed an endogenous CRISPR-Cas3 mediated
platform for the curing of high-risk resistant plasmids in
K. pneumoniae, which is highly efficient in eliminating
plasmids by targeting multiple sites of the conservative
plasmid backbone, thereby re-sensitizing MDR strains to
antibiotics. Further, we are currently optimizing this
endogenous system through customized CRISPR array
assembly to improve its applications and coverages. The
current study confirmed the concept of using endogenous
CRISPR-Cas3-mediated plasmid curing to re-sensitize resistant
strains to antibiotics.
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plasmid incompatibility type, and plays a critical role in
worldwide dissemination of AMR in K. pneumoniae.4–13

Novel strategies to combat AMR are urgently needed.
CRISPR (clustered regularly interspaced short palin-
dromic repeats)-Cas (CRISPR-associated) system has
been repurposed as a novel approach for AMR plasmid
curing, which can cause single (class 1, Cas3) or double-
stranded (class 2, Cas9) breaks in the AMR plasmid and
leads to plasmid degradation.3 Cas9 nuclease has been
extensively reprogrammed for genome editing in a
broad range of organisms, especially eukaryotes.14

However, their applications in prokaryotes are rather
limited, in part because the expression of heterologous
Cas9 is frequently hindered by the exceptionally diverse
and frequently poor DNA homeostasis in microbial
cells.15–18 For most prokaryotes, the exogenous CRISPR-
Cas9 machineries are difficult to exploit due to their
large size and severe toxicity to host cells.19
Consequently, the application of heterologous Cas9-
mediated genome editing in some prokaryotes remain
to be challenging.15 Hence, repurposing the broadly
distributed endogenous CRISPR-Cas systems is
emerging as a new CRISPR-based genome-editing
strategy in prokaryotes.20,21

We previously revealed a significant inverse correla-
tion between the presence of native I-E CRISPR systems
and the presence of IncFII-MDR plasmids in clinical
K. pneumoniae isolates.22,23 Interestingly, I-E CRISPR-
Cas matched protospacers were commonly found in
IncFII-MDR plasmids.22,23 This suggested that the native
type I-E CRISPR-Cas system can be reprogrammed to
control the acquisition of IncFII plasmids, thereby
reducing the IncFII plasmid-associated AMR. Notably,
this type I-E CRISPR-Cas system, similar to the
Cascade–Cas3 system, displayed great potential for large
genetic element deletion, including gene clusters,
www.thelancet.com Vol 88 February, 2023
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genomic islands, prophages and plasmids, a task that
Class 2 systems (e.g. Cas9) were less efficient.24 An
important distinction between the two systems is that
CRISPR-Cas3 system cleaves and degrade DNA through
the action of a 3′-to-5′ exonuclease, whereas Cas9 only
cleaves DNA.25 The DNA degradation effect of CRISPR-
Cas3 system could further improve the cleavage potency
by interfering DNA repair.25

In this study, we explored the application of an
endogenous type I-E CRISPR-Cas system to cure the
epidemic multi-drug-resistant IncFII plasmids. We
initially extracted the spacer sequences from 207
sequenced K. pneumoniae genomes from NCBI data-
base. We then examined the matched protospacers in
725 completely sequenced IncFII plasmids from 932
K. pneumoniae genomes from the public domain. An
efficient conjugative system was developed to deliver the
native CRISPR-Cas3 nuclease to cure high-risk IncFII-
MDR plasmids in clinical isolates. Our results also
further demonstrated that the presence of type I-E
CRISPR-Cas system could provide immunity to the in-
vasion of IncFII resistant plasmids. Overall, this study is
the first step toward the development of K. pneumoniae
endogenous CRISPR-Cas3 system to combat the
antibiotic resistance.
Methods
Bacterial strains
The bacterial strains and plasmids used or generated in
this work are listed in Dataset and Table S1. Two clinical
K. pneumoniae strains, JS187 (PRJNA422509) and
HD5914 (PRJNA904520), were used as the conjugative
recipients for the endogenous CRISPR-Cas3 system.
Escherichia coli S17-1 (TpR SmR recA, thi, pro, hsdR-
M + RP4: 2-Tc: Mu: KmR Tn7 λpir) was used for
plasmid cloning and as the conjugative donor.26 All the
bacteria were grown in Luria–Bertani (LB) broth or on
LB agar plates at 37 ◦C. When necessary, appropriate
antibiotics were added at the following final concentra-
tions: apramycin (Apr, 100 mg/L), ampicillin (Amp,
100 mg/L), and meropenem (MEM, 1 mg/L for JS187
and 16 mg/L for HD5914).

Characterization of K. pneumoniae plasmids
A total of 932 completely sequenced K. pneumoniae ge-
nomes, including 3117 complete plasmids, were
retrieved from the NCBI genome database (http://ftp.
ncbi.nih.gov/genomes/, dated as 9/1/2021). The
detailed replicons of these plasmids were further
determined by the PlasmidFinder tool (≥90% identities
and ≥90% coverage).27 Antibiotic resistance genes were
annotated using Mega BLAST with the default param-
eters against the CRAD 2020 and ResFinder database
(https://cge.cbs.dtu.dk/services/ResFinder/). MDR was
defined as resistan to three or more antimicrobial clas-
ses based on the in-silico resistance gene mining
www.thelancet.com Vol 88 February, 2023
results.27 Virulence genes were identified by BLAST
against the VFDB database (http://www.mgc.ac.cn/VFs/
main.htm), and the rmpA/rmpA2, aerobactin (iuc) and
salmochelin (iro) alleles were classified using Kleborate
v0.3.0 (https://github.com/katholt/Kleborate/). The
complete conjugal modules in the plasmid sequences
were characterized using oriTfinder,28 which detects the
origin of transfer site (oriT), relaxase genes, type
IV coupling protein (T4CP) genes, and the type IV
secretion system gene clusters (T4SS).

Analysis of the protospacers on IncFII plasmids
In our previous study, we identified 71 CRISPR loci
from 207 sequenced K. pneumoniae genomes, which
contains 34 different layouts of CRISPR array and 415
distinct spacers.22 We then used blastn to query the
presence of the protospacers on the 725 IncFII plasmids
(characterized as above), with a minimum of 90%
identities (29/32 nt).22 The IncFIIK plasmid p187-2
(GenBank accession no. CP025468.1) from our previ-
ous studies was used as a reference plasmid for com-
parison.23,29 The CGView (http://cgview.ca/) was used to
visualize the IncFII plasmids to exemplify the conser-
vative backbone sequences targeted by the CRISPR-Cas
system (E-value, ≤0.1).

Construction of CRISPR-Cas conjugative delivery
system
Plasmids were constructed using the in-fusion cloning
method through the NEBuilder HiFi DNA assembly kit
(New England BioLabs, Beijing). The list of primers is
provided in Table S2. The pEmpty (empty plasmid) and
pCRISPR (with CRISPR-Cas3 system) plasmids were
constructed by polymerase chain reaction (PCR) ampli-
fication of fragments with 25–60 bp homology overlaps.
The native type I-E CRISPR-Cas3 system was amplified
from the K. pneumoniae KP8 (CP025636.1).23 The
oriTRP4 fragment was amplified from pJTOOL-3, while
the pBR322 replicon and apramycin-resistant gene
aac(3)-IV were amplified from a modified pUC-
19(AprR).23 The fragments were then assembled using
the NEBuilder HiFi DNA assembly kit to generate the
pEmpty (oriTRP4, pBR322 replicon and aac(3)-IV,
without CRISPR-Cas3) or pCRISPR (oriTRP4, pBR322
replicon, aac(3)-IV and CRISPR-Cas3) plasmids,
respectively. The pEmpty and pCRISPR plasmid vectors
are schematically shown in Fig. 3aii. The pEmpty and
pCRISPR were transferred into E. coli S17 cells, which
contained the broad-host RP4 transfer machinery,
allowing the conjugative transfer of pEmpty and
pCRISPR into other strains.

Plate mating conjugation assay to deliver the
CRISPR-Cas3 nuclease
The donors and recipients were cultured to the loga-
rithmic phase, mixed in 10:1 ratio, and then resus-
pended in 20 μl MgSO4 (10 mM). The 20 μl
3
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resuspension was spotted on the Luria Bertani (LB) plate
and incubated at 37 ◦C overnight.23 The cultures were
then scraped from the plate and serially diluted, fol-
lowed by plating on plates with appropriate antibiotics:
apramycin and ampicillin for the selection of total
transconjugants (K. pneumoniae is naturally-resistant to
ampicillin), while apramycin and meropenem for
transconjugants retaining IncFII plasmids. The conju-
gation frequency was calculated as the number of
transconjugants per recipient.

Quantitation of mRNA expressions of Cas operon in
K. pneumoniae
To examine whether the transferred CRISPR-Cas3 sys-
tem can successfully express in the new hosts, we
applied real-time PCR to assess the transcription of the
core Cas operons (Cas1, Cas2, and Cas3). K. pneumoniae
strains harboring the engineered plasmid (pEmpty or
pCRISPR plasmid) were grown overnight under anti-
biotic selection. Overnight cultures were diluted 1:100
in LB with 100 mg/L apramycin, and grown to loga-
rithmic phase (OD600 = 0.4). RNA of each strain was
isolated using MiniBEST Universal RNA extraction kit
(TaKaRa), following the manufacturer’s instructions.
RNA samples for real-time PCR were pre-treated with
DNase I (TaKaRa). Real-time PCR was conducted on a
7500 system (Applied Biosystems, Foster City, CA,
USA) using SYBR Premix ExTag (Takara). All assays
were performed in triplicate with three independent
RNA preparations.

Plasmid killing efficiency in vitro
Donors (E. coli S17 with pEmpty or pCRISPR) and re-
cipients (JS187 and HD5914) were grown overnight. We
chose two blaKPC-IncFII plasmid-harboring
K. pneumoniae strains with different clonal back-
grounds, JS187 (ST11) and HD5914 (ST751). A total of
180 μL donors and 20 μL recipients were added in 5 mL
LB. Bead-supplemented conjugations were conducted
similar to a previously published method,30 with the
addition of 1 mL soda lime glass beads (0.5 mm diam-
eter). Plasmid elimination was proceeded by incubating
the culture at 37 ◦C with 60 RPM agitation for 72 h.
Cultures were homogenized by vortexing, serially
diluted and spot-plated on plates containing appropriate
antibiotics for the selection for K. pneumoniae with or
without blaKPC-IncFII plasmid. Plates were incubated at
37 ◦C for 16–20 h. Colonies were counted manually.
Killing efficiency was calculated by the ratio of cells on
MEM (Meropenem)-selective to non-selective (Amp-se-
lective) plates.

Plasmid eliminating efficiency by cumulative
CRISPR interference
We have previously demonstrated that the plasmid
elimination frequency correlated with cumulative
CRISPR-Cas interference during the proliferation.23
Here, we evaluated the plasmid curing efficiency in
putative “escaper” isolates, in which the plasmid sur-
vived from the CRISPR-Cas3 killing in vitro in the
first few generations of growth. K. pneumoniae strains
JS187 and HD5914, harbouring blaKPC positive IncFII
plasmids, were used as the test strains to examine the
curing efficiency of IncFII plasmids.29 pEmpty or
pCRISPR plasmid was conjugatively delivered into
K. pneumoniae strains JS187 and HD5914, followed by
selection on agar plates supplemented with apramycin
(100 mg/L) and meropenem (1 mg/L or 16 mg/L), as
well as PCR confirmation. These obtained trans-
conjugants were named JS701 (JS187 carried pEmpty
plasmid), JS801 (HD5914 carried pEmpty plasmid),
JS704 (JS187 carried pCRISPR plasmid) and JS804
(HD5914 carried pCRISPR plasmid), respectively.
Overnight culture of these strains were diluted 1000-
fold in 3 ml LB broth with no antibiotics. The cul-
tures were incubated for 24 h (OD600 = 1.0) at 37 ◦C
with shaking at ∼200 rpm. The cultures were then
diluted and plated simultaneously on nonselective LB
agar plates and selective plates (MEM) to determine
the number of colonies forming units (cfu, colony-
forming units). Killing efficiency is determined by
the ratio of cells on selective to nonselective plates.
The experiments were conducted using four randomly
picked JS704/JS804 colonies. Moreover, blaKPC real-
time PCR was conducted to confirm the colony
counting results. After the plasmid killing, we ob-
tained the IncFII plasmid cured JS187, and we
applied Pulsed-field gel electrophoresis (PFGE) assay
to further confirm the plasmid deletion.

Plasmid immunization of the delivered CRISPR-Cas
system
We applied both electro transformation and conjuga-
tion assays to examine whether the acquired CRISPR-
Cas system will prevent the invasion of target plas-
mids. The protospacer 4 and protospacer 6 were
synthesized by annealing single-stranded, comple-
mentary oligonucleotides and then cloned into a Bsa I
site in the modified pACYC-184 plasmid (chloram-
phenicol-resistant) (pACYC-184 spacer)23 to perform
the transformation experiment, and the pACYC-184
empty plasmid was used as no-protospacer control
(pACYC-184 control). Notably, pACYC-184 is a
plasmid cloning vector containing the p15A origin of
replication, which allows pACYC-184 to coexist in
cells with plasmids of the ColE 1 compatibility group
(pBR322, pUC19). The IncFII-p187-2 plasmid cured
JS187 strain was introduced the pEmpty or pCRISPR
plasmid, to generate the recipient strains JS1001
(harboring pEmpty) and JS1002 (harboring pCRISPR),
respectively. 1 μg of plasmid DNA was electroporated
to 100 μl electrocompetent cells using a 2-mm elec-
troporation cuvette. A pulse of 2.5 kV, 25 μF, and 200
Ω for 50 ms was used for electroporation. Cells were
www.thelancet.com Vol 88 February, 2023
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then resuspended in 1 ml of non-selective LB me-
dium and incubated 1 h at 37 ◦C (for thermosensitive
plasmids) for recovery before plating on selective
media (chloramphenicol-positive). The transformation
efficiencies of pACYC-184control and pACYC-
184spacer were compared in JS1001 (Empty) and
JS1002 (CRISPR). The transformation efficiency of
pACYC-184control in JS1001 was set as 100%, and
the transformation efficiency was calculated by
dividing the number of transformants for the pACYC-
184spacer by the number of transformants for
pACYC-184control.

In the conjugation assay, we selected JS187
(K. pneumoniae harboring IncFII-p187-2 plasmid),
JS531 (E. coli Top10 harboring p187-2 plasmid),
HS11286 (K. pneumoniae harboring IncFII-pKPHS2
plasmid) and JS370 (E. coli Top10 harboring p187-2
plasmid) as the donor strains, and JS1001 and
JS1002 as the recipient strains. The conjugation assay
and conjugation frequencies were performed and
calculated as above.

G. mellonella infection model to evaluate the
CRISPR-Cas3 immunity in vivo
G. mellonella larvae were stored at 4 ◦C prior to use.
Larvae with the weight of 150–200 mg were used. For
the CRISPR-Cas3 treated groups, larvae were inocu-
lated with 10 μL of JS902 (E. coli S17 with pCRISPR)
at a concentration of ∼4 × 108 cfu/mL prepared in
sterilized saline, and after 2 h the same amount of
K. pneumoniae JS187 was injected. The empty plasmid
treated group (E. coli S17 with pEmpty) and normal
saline group were used as the control groups. A
minimum of 30 larvae were used in each treatment
group, and they were kept in three Petri dishes at
37 ◦C and inspected daily for 3 days. Survival rates
were recorded for each day. To evaluate the hemo-
lymph burdens in different G. mellonella groups, we
also establish a similar experiment to examine the cfu
counts of bacteria at 24 h, 48 h, and 72 h post
infection (hpi).

Statistical analysis
Statistical significance was assessed using a Mann–
Whitney non-parametric test and A log-rank (Mantel–
638 Cox) test by the GraphPad Prism 9 software.
p < 0.05 was considered statistically significant.

Ethics
The research protocol was approved by the Ethics
Committee of Shanghai Pulmonary Hospital (K21-
371Y).

Role of funders
The funders played no role in the study design, data
collection, data analyses, interpretation, or writing of the
report.
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Results
IncFII plasmids are the dominant multidrug-
resistance plasmid types in Klebsiella pneumoniae
Previous studies demonstrated that IncFII was a major
plasmid incompatibility group carrying AMR genes, and
played a critical role in the dissemination of antibiotic
resistance in Enterobacteriaceae. In this study, we ana-
lysed 3117 plasmids from 932 completely sequenced
K. pneumoniae from the public domain, and obtained
1439 antimicrobial-resistant plasmids (at least harbour-
ing one resistance gene), with 38.5% (554/1439) being
characterized as IncFII plasmids. By contrast, other
epidemic plasmids, for example, the IncX type only
accounted for 4.7% (68/1439). In particular, 63.1% (147/
233) of blaKPC plasmids belonged to IncFII plasmids
(Dataset).

We identified a total of 3327 antibiotic resistance
genes (ARGs) from 77.52% (562/725) of the IncFII
plasmids, covering 172 non-redundant genes that
encode resistance to a wide spectrum of antibiotics
(Fig. S1 and Dataset). These ARGs mediated resistance
to almost all the common clinical antibiotics (Figs. S1
and S2). Notably, most IncFII plasmids were predicted
to be conjugative, and a ∼35-kb conjugation module4

was found in >90% IncF plasmids, suggesting the
ARGs on IncFII plasmids may be readily transferred to
other bacterial hosts through conjugation.

IncFII plasmids are well targeted by K. pneumoniae
native CRISPR -Cas3
To harness the endogenous system for IncFII plasmid
curing, we firstly assessed whether the IncFII plasmids
could be good targets for native CRISPR-Cas3 systems.
To this end, we examined the presence of matched
protospacers on the 725 K. pneumoniae IncFII plasmids
against a set of 415 spacer sequences we identified
previously from 207 K. pneumoniae genomes.22 We
found the presence of 18 matched protospacers among
these IncFII plasmids, and 96.83% (702/725) plasmids
harbours at least one protospacer (Fig. 1a). Importantly,
most of the plasmids could be targeted by multiple
spacers, and more than half of the plasmids (52.4%,
380/725) contained 11–15 protospacers (Dataset, Fig. 1c
and d). Among them, protospacer 1, 2, 3, 5, 6, 7, and 9
were the most abundant (Fig. 1b and e, and Fig. S3), and
a combination of the five protospacer could cover> 70%
of IncFII plasmids.

We then examined the spacer target regions on the
IncFII plasmids. Interestingly, we found most proto-
spacers corresponded to the plasmid stability regions,
such as ssb or the region adjacent to ssb, parB, ardA, psiA
and psiB (Figs. 1f and 2 and Fig. S4). Inactivation of
these plasmid regions will likely interfere the plasmid
stability, leading to the curing of a plasmid from its
bacterial host. The above results suggested that the
native CRISPR-Cas3 carried by K. pneumoniae may be
repurposed to combat the IncFII plasmids.
5
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In vitro IncFII plasmids curing by high-efficiency
conjugative delivery of K. pneumoniae native
CRISPR-Cas3
Based on the protospacer analysis of IncFII plasmids,
we choose K. pneumoniae KP8 (CP025636.1) carried type
I-E CRISPR(CRISPR-Cas3) system for plasmid curing
(Fig. 3a), which harboured 6 matched spacers.23

pCRISPR was derivate from the synthetic pUC-RP4
(pEmpty) plasmid, and carry the pBR322 origin of
replication (high-copy number) and the oriTRP4 of the
IncP RK2 plasmid (moveable) as well as the CRISPR-
Cas3 system from KP8 (Fig. 3aii). pCRISPR can be
mobilized with the help from the chromosomally inte-
grated RP4 plasmid from the E. coli S17-1 donor cells.

To determine whether our pCRISPR system can
efficiently deliver CRISPR-Cas3 nucleases to
K. pneumoniae, we assessed the plasmid conjugation
frequencies in two K. pneumoniae strains, JS187 (ST11)
and HD5914 (ST751), which originated from two
different genetic backgrounds, and harboured two
different blaKPC-2 plasmids (IncFIIK type in JS187 and
IncFII (pHN7A8) type in HD5914), with different
matched spacers. As shown in Fig. 3ci, conjugation
frequency for pCRISPR in plate mating condition was
high (∼10−1, ranged from 3.6 × 10−2 to 8.68 × 10−1) in
both K. pneumoniae strains. Notably, the cas3 system
was in a conjugative plasmid, so it can self-replicate and
transfer. Further real-time PCR analysis confirmed that
the type I-E CRISPR-Cas3 system was successfully
expressed in the new K. pneumoniae hosts (JS187 and
HD5914) (Fig. 3cii).

Previous studies suggested the in vitro plasmid
curing efficiency may be affected by different conjuga-
tion conditions.30 We therefore tested the curing effi-
ciency of pCRISPR in various conjugation conditions,
including different incubating temperatures (37 ◦C or
25 ◦C), incubation time lengths (24 h, 48 h, and 72 h),
donor to recipient ratios (10:1 or 50:1), agitation speeds
(0 rpm or 60 rpm) and liquid culture mixtures (with or
without 0.5 mm glass beads).30 The results showed that
with or without 0.5 mm glass beads liquid culture, and
0 or 60 rpm resulted in similar killing frequencies
(Fig. S5), but 10:1 donor to recipient ratio and 37 ◦C
outperformed 50:1 ratio and 25 ◦C culture conditions.
We then use 10:1 donor to recipient ratio, 37 ◦C, 60 rpm
agitation and without glass beads as the test condition
for plasmid curing.

The curing efficiency displayed a time dependent
increase, and 72 h incubation yielded the largest
number reduction of MEM-resistant transconjugants
(Fig. 3ciii and civ, Figs. S5 and S6), which is similar
to the results from a previous study.30 Notably, we
only observed apparent curing among the pCRISPR
transconjugants, yet the transconjugants with empty
plasmid were ineffective at reducing antibiotic
resistance (Fig. 3ciii and civ). After 72 h incubation,
the MEM-resistant colonies (both JS187 and HD5914)
www.thelancet.com Vol 88 February, 2023
have decreased almost 90% (Fig. S6). For
K. pneumoniae HD5914, the decrease efficiency
reached ∼95% (Fig. 3ciii and civ). These results
demonstrated that our engineered CRISPR-Cas3 plat-
form can be successfully delivered through conjuga-
tion in vitro, and mediated a remarkable strand break
of the target IncFII plasmids, leading to the elimina-
tion of the resistant plasmids.

IncFII plasmid curing in escapers by endogenous
CRISPR-Cas3
Although our above in vitro conjugation plasmid curing
experiment showed significant elimination of IncFII
plasmids, there still were some “escapers” from the
CRISPR cleavage process. Previous studies demon-
strated that both original and acquired type I-E CRISPR-
Cas system could contribute to restraining the retention
of target plasmids in K. pneumoniae, and complete
plasmid elimination required cumulative CRISPR
interference.23 Here, we further explored whether the
engineered CRISPR-Cas3 platform could effectively
eliminate target plasmids from putative “escapers”
during growth. The K. pneumoniae JS704 (JS187 carried
pCRISPR, blaKPC positive) and JS804 (HD5914 carried
pCRISPR, blaKPC positive) were used to conduct plasmid
killing, and their corresponding isolates carrying
CRISPR-empty plasmids were used as the negative
controls. The proportion of the IncFII plasmid retaining
cells in the population was measured as the ratio of
MEM-resistant cfu to total cfu. Our results showed the
strains with CRISPR-Cas3 system (pCRISPR) had 108-
fold and 103-fold reduction of the population with blaKPC
IncFII plasmids in the JS704 (JS187 carried pCRISPR)
and JS804 (HD5914 carried pCRISPR) (Fig. 4) respec-
tively in 6 h growth. The relative copy numbers of
blaKPC-IncFII plasmids determined by quantitative PCR
in both JS704 and JS804 decreased 1011-fold and 103-
fold compared with the empty plasmid-harbouring
JS701 and JS801, which were consistent with plasmid
curing results (Fig. 4).

To further confirm whether the CRISPR-Cas3-
mediated curing resulted in the complete loss of the
IncFII plasmids, we selected 9 IncFII plasmid-cured
colonies from JS187 and conducted XbaI-PFGE and
S1-PFGE. All the colonies had the same XbaI-PFGE
pattern (Fig. 4ei) as the parent JS187, suggesting they
were isogenic strains, and the S1-PFGE results showed
that all nine curated colonies lost the plasmid of p187-2
(129.684 kb), confirming that the native CRISPR-Cas3
system could successfully eliminate the target IncFII
plasmids in K. pneumoniae (Fig. 4eii).

Prevent the invasion of IncFII-resistant plasmids by
CRISPR-Cas3
Our above results showed that the delivered CRISPR-
Cas3 system could effectively eliminate the IncFII
plasmids. We then explored whether the K. pneumoniae
7
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harboring the CRISPR-Cas3 platform could prevent the
invasion of IncFII plasmids, and we assessed the Cas3-
immunity using in vitro electro-transformation and
conjugation experiments.
For the electro-transformation experiment, two
plasmids (chloramphenicol-resistant) with or without
matched proto-spacers (spacer4&6) were used as
the donor plasmids (pACYC-184spacer and
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www.thelancet.com/digital-health


0.8
0.8

0.2

0.4

0.6

1.0

di
msalp

4195p
sniater

4195-
D

Hfo
noitcarF

0.2

0.4

0.6

1.0

0 24 48 72

Treated with Empty plasmid

Treated with CRISPR plasmid

Treated with Empty plasmid

Treated with CRISPR plasmid

di
msalp

2-781p
sniater

781SJfo
noitcarF

Time(h)
0 24 48 72

Time(h)

JS187 HD5914

4
P

R
Tir o

cas genes Repeat Spacer

oriV

pCRISPR Apr 4
P

R
Tir o

oriV

pEmpty Apr

a

b

c

i ii
a b

i

i

iii

ii

iv

ii

iii

Apr

Donor Recipient

Recipient

pUC--CRISPR

Apr

pUC--CRISPRMEM

Amp Amp

Transconjugant

cas3

CRISPR cleavage
and loss of blaKPC plasmid

Total transconjugants

Total transconjugants

Apr

Donor

Donors

Recipient NO CRISPR cleavage 

pUC--Empty

Apr

pUC--Empty

blaKPC

blaKPC

blaKPC

blaKPC

MEM

Amp Amp

Transconjugant

Transconjugant containing blaKPC plasmid (AmpR,MEMR)

Transconjugant losing blaKPC plasmid ( AmpR,MEMS)

Transconjugant containing blaKPC plasmid (AmpR,MEMR)

Transconjugant losing blaKPC plasmid ( AmpR,MEMS)

Transconjugant containing blaKPC plasmid(AmpR,MEMR)

Transconjugant losing blaKPC plasmid( AmpR,MEMS)

AmpR,MEMR

(AmpR,MEMR)

(AprR)

JS187 HD5914
10-2

10-1

100

Tr
an

sc
on

ju
ga

nt
/R

ec
ip

ie
nt

pCRISPR

Cas1 Cas2 Cas3
0

10

20

30

40

50

Re
le

tiv
e

ge
ne

ex
pr

es
si

on KP8
JS704（JS187 Harboring CRISPR）
JS804（HD5914 Harboring CRISPR）

Fig. 3: Conjugative delivery of endogenous CRISPR-Cas3 platform (a) Schematic of the KP8-CRISPR(i) and pEmpty, pCRISPR plasmid (ii). i.
Genes are depicted as arrows in different colours and the IncFII plasmid-matched spacers are shown as colour boxes. ii. The high-copy pBR322
origin of replication was responsible for Cas-operon overexpression, and the oriTRP4 of the IncP RK2 plasmid contributed to the mobilization.

Articles

www.thelancet.com Vol 88 February, 2023 9

www.thelancet.com/digital-health


Articles

10
pACYC-184control), and the JS800 (JS187 losing the
IncFII-p187-2 plasmid) with CRISPR (JS1002) or
without CRISPR (JS1001) was used as the recipient. The
results showed the pre-existed CRISPR-Cas3 system in
JS1002 significantly inhibit the pACYCY-184spacer
plasmid transfer compared with the CRISPR-Cas3
negative strain (JS1001) (p < 0.001, Mann–Whitney
non-parametric test), while the pACYC-184control
plasmid showed similar transform frequency between
JS1001 and JS1002 (Fig. 5bi).

To examine if the pre-existed CRISPR-Cas3 system
can reduce the conjugation efficiency of the target
plasmids, we used four isolates harbouring two different
IncFII plasmids29,31 as the donors, including JS187
(K. pneumoniae harbouring IncFII-p187-2 plasmid,
CP025468.1), JS531 (E. coli Top10 harbouring p187-2
plasmid), HS1128631 (K. pneumoniae harbouring
IncFII-pKPHS2 plasmid, CP003224.1) and JS370 (E. coli
Top10 harbouring pKPHS2 plasmid), while JS1001 and
JS1002 were used as the recipient strains as above. We
observed that the presence of the type I-E CRISPR-Cas3
significantly decreased the conjugation frequencies in
JS1002 by approximately 100-fold for all four donors, in
comparison to the CRISPR-Cas3 negative JS1001
(Fig. 5bii) (p < 0.001, Mann–Whitney non-parametric
test). All these results indicated the acquired CRISPR-
Cas3 platform could provide the clinical isolate the
ability to resist the invasion of IncFII plasmids.

IncFII plasmid elimination by CRISPR-Cas3 platform
in vivo
In order to probe whether the native CRISPR-Cas3
system can be potentially implemented for in vivo
plasmid curing, we applied the G. mellonella infection
model to evaluate the effects of the native CRISPR-Cas3
on IncFII plasmid eliminating in vivo. We firstly injected
the JS902 (E. coli S17-1 harboring CRISPR-Cas3 system)
into G. mellonella, aiming to establish an immune bar-
rier in advance, and 2 h later we injected the targeting
clinical K. pneumoniae stain JS187. Our results showed
the pre-injection of JS902 not only eliminate the p187-2
plasmid, but also improved the survival rates (70%
survival rate in 72 h), compared with the JS187 infection
controls with pre-treated normal saline or Empty
plasmid (100% mortality) (Fig. 6a). In addition, we also
examined the G. mellonella hemolymph bacterial
(b) Cartoon depicting the delivery of pEmpty (i) or pCRISPR (ii) to the re
select total transconjugants and recipients (K. pneumoniae), since nearly a
meropenem was applied to screen the presence of blaKPC plasmids. The p
plasmids, while the green circle represented the blaKPC plasmid cured pCR
plasmid positive (“escaper”) and negative (cured) strains. (c) (i) Conjuga
frequency was reported as the number of total transconjugants (AprR, A
assay were presented as means ± SD from five independent experiment
(Adaptation) and Cas3 (DNA degradation) are three core Cas operon gen
HD5914 (iv) mediated by the CRISPR-Cas3 platform. Markers: Apr, Apram
burdens at 24, 48, and 72 hpi, respectively. We observed
a rapid reduction of JS187 burden from 48 h to 72 h,
when pre-treated with the CRISPR-Cas3 plasmid in
comparison to the empty plasmid (Fig. 6bc). The above
results suggested that CRISPR-Cas3 plasmid conjuga-
tion treatment demonstrated high plasmid curing effi-
ciency (∼100% curing), and reduced the relative
virulence (mortality and hemolymph burdens) in com-
parison with empty plasmid or saline controls, which is
unexpected. In contrast, the pEmpty plasmid group
didn’t showed apparent impact on the survival (Fig. 6a).
One plausible explanation is that CRISPR-Cas3-
mediated p187-2 (blaKPC-IncFII plasmid in JS187)
curing reduced the overall pathogenicity, and the
plasmid p187-2 may harbour virulence factors contrib-
uting to overall pathogenicity of JS187.

We then transformed the p187-2 plasmid into E. coli
Top10 (JS531), and compared the survival rate in the
same G. mellonella infection model with that of E. coli
Top10 strain (without plasmid). In addition, we also
compared the survival rate between the parental JS187
strain and its p187-2 plasmid cured isogenic strain
JS800 (Fig. 4). The results showed that in both bacterial
hosts (E. coli Top10 and K. pneumoniae JS187) the
presence of p187-2 significantly increased the mortal-
ities in comparison to their p187-2 negative isogenic
counterparts (Fig. 6d) (p < 0.001, log-rank (Mantel– 638
Cox) test), which further confirmed that p187-2
increased the pathogenicity in G. mellonella.
Discussion
MDR K. pneumoniae has emerged as a global problem
hindering the treatment of bacterial infections.32 Of
particular concern is that most of these resistance de-
terminants were harboured by mobile genetic elements,
like conjugative plasmids, facilitating the horizontal
transfer of AMR between different bacterial hosts.
Effective strategies to combat MDR K. pneumoniae are
urgently needed, and plasmid curing could be a prom-
ising approach to reduce AMR prevalence, and sensitize
bacteria to antibiotics.3 Our genomic data mining results
showed that IncFII plasmids are the most common
vectors underlying the rapid spread of various ARGs,
including the genes encoding carbapenemase and
ESBL, in clinical K. pneumoniae strains. Besides ARGs,
cipient K. pneumoniae cells. The ampicillin is used as the antibiotic to
ll K. pneumoniae strains are naturally resistant to ampicillin. Similarly,
urple circle indicated the pCRISPR transconjugants containing blaKPC
ISPR transconjugants. The total transconjugants include both blaKPC
tion frequency of pCRISPR to K. pneumoniae recipients. Conjugation
mpR) per total recipient cells (AmpR). The results of the conjugation
s. (ii) The expression of native CRISPR in K. pneumoniae. Cas1, Cas2
es in type I-E CRISPR. The plasmid killing efficiency of JS187 (iii) and
ycin; Amp, Ampicillin; MEM, Meropenem.
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Fig. 4: Killing efficiency of IncFII plasmids by native CRISPR. Plasmid curing of JS187 (blaKPC, MEM-resistant) (ai, b) and HD5914 (blaKPC, MEM-
resistant) (ci, d) with pEmpty (negative control) or pCRISPR. The plasmid killing efficiency was calculated by the reduced MEM-resistant colonies
(LB with MEM) in total cell counts (LB with no antibiotic) (n = 4). CFU, colony-forming units. p187-2 plasmid (IncFII-blaKPC plasmid) copy
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IncFII plasmids were also found to promote the
dissemination of hypervirulent genes (Fig. S1).13,33 Pre-
vious genomic studies suggested that hybrid virulence
plasmids were likely originated from the recombination
of IncFII and the virulence IncHIB-FIB plasmids.13

Moreover, multiple studies have demonstrated such
hybrid plasmids could be transferred by conjugation to
different types of Klebsiella strains and augmented the
virulence levels of the host strain.13,34,35

Above findings further highlighted the important
role of high-risk of IncFII plasmids, and emphasized an
urgent need to control plasmid-mediated resistance in
clinical K. pneumoniae strains. In this study, we engi-
neered an endogenous CRISPR-Cas3 based platform to
eliminate the high-risk IncFII plasmids, providing an
alternative to tackle AMR in K. pneumoniae. Due to the
simplicity and high efficiency,21 repurposing wide-
spread, endogenously encoded CRISPR-Cas systems for
‘built-in’ genome editing is emerging as a promising
genetic manipulation strategy in prokaryotes. Our pre-
vious studies showed a significantly inverse correlation
between the presence of CRISPR-Cas3 and IncFII
plasmids in K. pneumoniae, indicating the native
CRISPR immunity may influence the dissemination of
this common plasmid type.22,23 This finding prompts us
to consider the possibility of repurposing endogenous
CRISPR-Cas3 system for IncFII plasmid curing. We
firstly analysed the distribution of protospacers on
IncFII plasmids and found 18 matched protospacers on
96.83% IncFII plasmids, targeting multiple sites in the
same plasmid. Among these protospacers, protospacer
1, 2, 3, 5 and 6 were both abundant on IncFII plasmids
and on the CRISPR loci identified in K. pneumoniae.
These photospacers located in the regions adjacent to
ssb, parB, adrA, psiA and psiB, which are involved with
plasmid stability and propagation, and served as good
targets for plasmid curing.23

In this study, the native CRISPR obtained from
K. pneumoniae KP8 isolate was selected for IncFII
plasmid curing, since it carried several common spacers
(spacer 1,3,4,5,6,8). We then used conjugation to deliver
CRISPR-Cas3 nucleases, which has been recognized a
better route over transformable plasmids or phages as
the delivery system.30 We constructed a high copy
number pCRISPR plasmid, which contains the
CRISPR-Cas3 system from KP8. Unlike other Cas9
mediated plasmid curing platforms,36–38 the Cas9 was
usually controlled by an inducible promoter, e.g. pBAD
or pTet, our CRISPR-Cas3 system used the native
number (aii) and pHD5914 plasmid (IncFII-blaKPC plasmid) copy numbe
HD5914 harbouring pEmpty plasmid) or JS704/JS804 (JS187/HD5914 harb
of JS187 and its derivatives. Marker: XbaI-digested DNA of Salmonella Bra
plasmid (129,684 bp, CP025468.1). JS704: JS187 harbouring pCRISPR; JS
and JS805-JS900: p187-2 cured JS187. Two examples of potential recomb
JS709 and a larger size of p187-1 plasmid (246,557 bp, CP025467.1) an
promoter in K. pneumoniae, without the needs of
external inducers. In addition, the high plasmid copy
number also help to maintain higher-level expression of
CRISPR-Cas3 modules. We observed over 20-fold Cas
expressions in pCRISPR transformants in comparison
to parental KP8 strain (Fig 3cii).

This system displayed a high conjugation frequency
(∼10−1) in the selected K. pneumoniae strains. The con-
jugative transfer of the native CRISPR-Cas3 system into
recipient K. pneumoniae cells resulted in a significant
reduction of meropenem resistant population (blaKPC
IncFII plasmids) (Fig. 3c). This indicated our con-
jugative CRISPR-Cas3 system can effectively reduce the
resistance burden in a population. Although we still
found a small percentage of “escapers” from the
CRISPR-Cas3 conjugation mediated cleavage process,
these “escapers” can be effectively eliminated during
propagation, as the constitutively expressed CRISPR-
Cas3 system could continually cleavage the plasmids
through the accumulative CRISPR immunity. Unlike
the Cas9 system of which the escaper primarily origi-
nated from protospacer or cas9 mutations, resulting in
the loss of the cleavage activities, the “escapers” in Cas3
system were mainly due to the alterations to the
expression of CRISPR RNAs,39 and the system remains
the cleavage activities. In addition, CRISPR-Cas3 creates
a single-strand nick at the DNA sequence, followed by
processive exonucleolytic degradation of the targeted
strand; while CRISPR-Cas9 only cause double-strand
DNA break without additional degradation.25 Conse-
quently, previous study40 observed CRISPR-Cas9 system
failed to completely cure AMR genes harboured by high
copy number plasmids. In this case, the CRISPR-Cas3
could be more efficient, which deserves further com-
parison. Furthermore, the multiple native cleavage sites
that existed in our native CRISPR-Cas3 system also
improved the cleavage efficiency in clinically complex
MDR plasmids.25 In addition, our results showed that
the native type I-E CRISPR could inhibit the invasion of
target plasmids in K. pneumoniae. As such, once a strain
obtains this CRISPR-Cas3 system, it could actively pre-
vent the acquisition of other IncFII plasmid DNA.

We also evaluated the activity of the native CRISPR-
Cas3 nuclease in removing the IncFII plasmids in vivo
using a G. mellonella infection model. Similar to the
in vitro results, at 72 hpi, the conjugative delivery of
exogenous CRISPR-Cas3 significantly reduced the
MEM resistant population in comparison with
the empty plasmid treated group, confirming that the
r (cii) determined by quantitative PCR in either JS701/JS801(JS187/
ouring pCRISPR plasmid). (e) XbaI (i)and S1 (ii) PFGE of genomic DNA
enderup H9812. The red arrows in S1-PFGE (ii) represent the p187-2
531: E. coli Top 10 harbouring p187-2 plasmid. JS708, JS709, JS800,
ination events associated with p187-2 curing are found in JS708 and
d p187-4 plasmid (106,402 bp, CP025470.1).
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Fig. 5: Plasmid immunization of CRISPR-Cas3 platform in clinical isolates. (a) Cartoon depicting the transformation (i) and conjugation (ii)
processes. In the transformation process, two plasmids (chloramphenicol-resistant) were constructed with or without matched proto-spacers
(spacer4&6) (pUC-19control and pUC-19spacer) and were used as the donor plasmids, while the JS800 (the IncFII-p187-2 plasmid cured JS187)
with or without CRISPR were used as the recipient (JS1001 and JS1002). In the conjugation assay, JS187 (K. pneumoniae harbouring IncFII-p187-2
plasmid, CP025468.1), JS531 (E. coli Top10 harboring p187-2 plasmid), HS11286 (K. pneumoniae harbouring IncFII-pKPHS2 plasmid,
CP003224.1) and JS370 (E. coli Top10 harbouring p187-2 plasmid) were used as the donors and the recipients were the same as transformation
process. (b) The transformation and conjugation efficiencies of different plasmids and donors. (i) The transformation efficiency of Empty
plasmid was set as 100% and those of plasmid spacer4&6 were calculated verse the empty plasmid. (ii) Conjugation inhibition efficacy of p187-2
and pKPHS2 in JS800 strains with or without KP8 CRISPR. The conjugation efficiency of plasmids in JS1001 was set as 100%. Data are presented
as means ± SD from three independent experiments.
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CRISPR-Cas3 system could effectively cure the IncFII
plasmids in vivo. Intriguingly, our results indicated that
along with the curing of MEM resistant IncFII p178-2
plasmids, the overall virulence was significantly
reduced in the G. mellonella infection model, suggesting
that plasmid borne genes contributed to the overall
virulence in JS187. Our results demonstrated the native
CRISPR-platform may not only reduce the AMR burden
but the plasmid-mediated virulence. As the IncFII-
hypervirulent plasmids are increasingly described,12,13,41

future work is needed to evaluate how effective our
system act against these IncFII-hypervirulent plasmids.

The study has some limitations. Firstly, a native
CRISPR array from a clinical strain (KP8) was used in
this study, and the spacers primarily target the IncFII
www.thelancet.com Vol 88 February, 2023
plasmids, which limits its application against other
AMR genes or plasmids. We are currently optimizing
this endogenous system through customized CRISPR
array assembly to make this platform for other targets
curing. Secondly, although the Galleria mellonella model
showed good efficacy to test plasmid curing efficiency
in vivo (∼100% curing), a more relevant animal model or
human gut microbiome editing experiment are needed
to assess the in vivo resistance gene curing efficacy, and
the animal model is currently under development in our
lab. Lastly, only two different IncFII plasmids [IncFII
(pHN7A8) and IncFIIK] from distinct K. pneumoniae
backgrounds [JS187 (ST11, CG258) and HD5914
(ST751)] were tested in our study. The IncFII (pHN7A8)
and IncFIIK type plasmids were the two most common
13
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IncFII plasmid identified in K. pneumoniae. Although
our results showed great efficacy in curing the two
IncFII plasmids in JS187 and HD5914, additional
strains and plasmids should be included in future
studies to define the target curing efficacy in different
K. pneumoniae bacterial hosts.

Taken together, we developed an endogenous
CRISPR-Cas3 mediated platform for the curing of high-
risk IncFII resistant plasmids in K. pneumoniae. This
platform is highly efficient in eliminating IncFII plas-
mids by targeting multiple sites of the conservative
plasmid backbone, thereby re-sensitizing MDR strains
to antibiotics. Interestingly, in vivo G. mellonella model
demonstrated that the platform not only re-sensitize
carbapenem susceptibility, but also reduce the relative
virulence. The current study confirmed the proof of
concept of using endogenous CRISPR-Cas3-mediated
plasmid curing to resensitize resistant strains to anti-
biotics, and its application for clinical intervention
should be further evaluated.
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