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Deep learning technology is now used for medical imaging. YOLOv2 is an object

detection model using deep learning. Here, we applied YOLOv2 to FDG-PET images

to detect the physiological uptake on the images. We also investigated the detection

precision of abnormal uptake by a combined technique with YOLOv2. Using 3,500

maximum intensity projection (MIP) images of 500 cases of whole-body FDG-PET

examinations, we manually drew rectangular regions of interest with the size of each

physiological uptake to create a dataset. Using YOLOv2, we performed image training as

transfer learning by initial weight. We evaluated YOLOv2’s physiological uptake detection

by determining the intersection over union (IoU), average precision (AP), mean average

precision (mAP), and frames per second (FPS).We also developed a combinationmethod

for detecting abnormal uptake by subtracting the YOLOv2-detected physiological

uptake. We calculated the coverage rate, false-positive rate, and false-negative rate by

comparing the combination method-generated color map with the abnormal findings

identified by experienced radiologists. The APs for physiological uptakes were: brain,

0.993; liver, 0.913; and bladder, 0.879. The mAP was 0.831 for all classes with

the IoU threshold value 0.5. Each subset’s average FPS was 31.60 ± 4.66. The

combination method’s coverage rate, false-positive rate, and false-negative rate for

detecting abnormal uptake were 0.9205 ± 0.0312, 0.3704 ± 0.0213, and 0.1000

± 0.0774, respectively. The physiological uptake of FDG-PET on MIP images was

quickly and precisely detected using YOLOv2. The combination method, which can be

utilized the characteristics of the detector by YOLOv2, detected the radiologist-identified

abnormalities with a high coverage rate. The detectability and fast response would thus

be useful as a diagnostic tool.
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INTRODUCTION

Deep learning technology has developed rapidly and is now
used in real-world settings such as automated driving, games,
image processing, and voice recognition (1–4). Deep learning
has also been applied to the field of medical imaging; e.g.,
in the classification of computed tomography (CT) images
in different slice positions (5) and its training algorithm (6),
research concerning the diagnosis and processing of pulmonary
nodules by deep learning for feature extraction, detection, false-
positive reduction, and benign malignant classification (7), and
a study using deep learning to improve the performance of the
automatic detection of lesions on mammograms (8). In such
applications, knowledge of anatomy is required to process and
diagnose medical images, and an inexperienced person may
not be able to process and diagnose the images appropriately.
However, if automatic object detection using deep learning (9–
14) can be used for medical imaging, it could be possible to
perform highly reproducible processing without the requirement
of the knowledge and experience of physicians and radiologists.

Fluorodeoxyglucose-positron emission tomography (FDG-
PET) (15) is an imaging method in which FDG labeled with
fluorine-18 (F-18) is injected into the body, and two 511 keV
annihilation photons which are produced by the positron decay
of F-18 are simultaneously injected into the opposing detectors
and reconstructed. FDG is an analog of glucose and accumulates
in tumors with increased glucose metabolism as well as in organs
in vivo, such as the brain, where glucose consumption as energy
is high. It is therefore necessary to determine whether each site
of high FDG uptake is a physiological uptake or an abnormal
uptake. It has been demonstrated that a convolutional neural
network (CNN) was useful for classifying FDG-PET images into
normal, abnormal, and equivocal uptakes (16). In the present
study, we investigated the precision of an object detection model,
You Only Look Once version 2 (YOLOv2) (17), which uses deep
learning to automatically detect the physiological uptakes on
maximum intensity projection (MIP) images of FDG-PET in a
rectangular region. We also developed a combination method
to generate images in which abnormal uptakes were enhanced
by subtracting only the detected physiological uptakes from the
original MIP images. For an evaluation of the potential clinical
uses of this combination method, we calculated the coverage rate
by comparing the generated images to the abnormal uptakes that
were identified by previous imaging findings.

MATERIALS AND METHODS

Subject and PET-CT Scans
The study included a total of 500 patients (287 males and 213
females, age 61.3 ± 17.0 years [mean ± SD]) who underwent
a whole-body FDG-PET examination for the screening of
malignant tumors between January andMay 2016 at our institute.
All MIP images were acquired using either a GEMINI TF64
PET-CT scanner (Philips Healthcare, Cleveland, OH, USA), or
a Biograph64 PET-CT scanner (Siemens Healthcare, Erlangen,
Germany). This study was approved by our institute’s Ethics
Committee [#017-0365].

Automatic Detection
The Creation of the Datasets
A total of 3,500 MIP images of the 500 patients (seven images
per patient at every 10◦ to ±30◦ from the front) were generated
in the workstation equipped with the PET-CT scanners. We
defined five classes of physiological uptake to be automatically
detected: brain, heart, liver, kidney, and bladder. All image data
were converted from Digital Imaging and Communications in
Medicine (DICOM) files to Joint Photographic Experts Group
(JPEG) files for further use.

The JPEG files were loaded into the in-house MATLAB
software program (MATLAB2019b, The MathWorks, Natick,
MA, USA), and this program was used to draw rectangular
regions of interest (ROIs) to enclose each physiological uptake
(Figure 1). The ROI data were outputted as a text file, which
included the object name, the coordinates, and the size of each
ROI. We divided the supervised data into five subsets for nested
cross-validation (18). Each 100 patients contributed 700 images;
we used 2,800 images from 400 patients for training, and the
remaining 700 images for testing (Figure 2). Each subset was an
independent combination of 400 patients for training and 100
patients for test images, to prevent the mixing of patient images
between the training and testing images within the subsets. To
effectively learn for the training dataset, we performed data
augmentation (19, 20) using image rotation from −15◦ to 15◦ in
3◦ steps and a zoom rate from 0.9 to 1.1 in 0.1 steps.

Training Images for Model Creation
We developed a software program for object detection with a
deep learning technique via the in-house MATLAB software; we
used a deep learning-optimized machine with an Nvidia Quadro
P5000 graphics card (Nvidia Corp., Santa Clara, CA), which
provides 8.9 Tera floating-point single-precision operations
per sec, 288 GB/sec memory bandwidth, and 16 GB memory
per board. We performed the image training as transfer learning
by initial weight using YOLOv2, with the MATLAB deep
learning Toolbox and Computer Vision System Toolbox. The
training model hyperparameters were as follows: maximum
training epochs, 10; initial learning rate, 0.00001; mini-batch size,
96. We used stochastic gradient descent with momentum for
optimization with an initial learning rate. We set the momentum
and L2 regulation to 0.9 and 0.0001, respectively. We performed
image training five times based on the training subsets shown in
Figure 2.

Evaluation of the Created Models
We incorporated the predicted bounding boxes into the
MATLAB software in order to reveal the region of each
physiological uptake as a bounding box. We also evaluated
each physiological uptake by determining the average precision
(AP), the mean average precision (mAP) (21), and the frames
per second (FPS) for an estimation of the efficiency of the
created model. The AP and mAP values were calculated
by each intersection over union (IoU). We examined the
bounding boxes based on the supervised ROI according to the
“evaluateDetectionPrecision” and “evaluateDetectionMissRate”
functions in the MATLAB Computer Vision Toolbox.
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FIGURE 1 | The software for training outlined ROIs over the physiological uptakes. The yellow bounding boxes enclose physiological uptakes.

FIGURE 2 | A total of 3,500 images were divided into five subsets to complete a nested cross-validation.
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FIGURE 3 | The process of the combination method. (A) The detection of physiological uptake by YOLOv2. (B) Only physiological uptakes detected by YOLOv2 were

subtracted from the original images. (C) A color map is generated by coloring the pixels above the threshold.

Combination Method
The Creation of Color Maps
Each physiological uptake (brain, heart, liver, kidney, and
bladder) detected by the created model described above in
section Automatic Detection (Figure 3A) was cropped from
the original MIP image with a five-pixel margin on the
coordinate information of the bounding boxes. For the clipped
physiological uptake images, we performed threshold processing
to set <50% of the maximum pixel values to zero, and we
applied a two-dimensional (2D) Gaussian smoothing kernel
with a standard deviation of 1.2. The images generated by
this process were subtracted from the original MIP images
(Figure 3B); the histogram of the images was drawn, and the
mode of frequency was determined. The threshold was defined
as the value of the pixel value plus 100. Higher uptakes other
than physiological uptakes were emphasized in the image by
displaying red pixels above the threshold value (Figure 3C). Our
new combination method was thus defined as the generation of
these images as a color map derived from the series of methods
described above.

Evaluation of the Created Color Maps
We evaluated the combination method by comparing the
abnormal imaging findings between the abnormal findings
obtained by two experienced radiologists (SF, 5 years; KH, 18
years) and the color maps generated by the combination method.
The radiologist’s findings were evaluated according to the
presence/absence of abnormalities in each of the seven regions
(brain, head/neck, chest, abdomen, pelvis, heart, intestine).When
the region colored on the color map corresponded to the region
diagnosed as abnormal by the radiologist, it was considered to be
correctly detected.

We defined the coverage rate as the percentage of correctly
detected abnormalities relative to the radiologist’s findings of the
presence of abnormalities. A false-positive result was defined as
when a site with no abnormalities on the radiologist’s findings
was colored on the color map. And also, a false-negative
result was defined as when the site noted as abnormal by the

radiologist was not colored on the color map. We defined
the false-positive rate as the ratio of false-positive results to
the radiologist’s findings of no abnormalities and the false-
negative rate as the ratio of false-negative results to the site
of colored on the color map. In addition, we obtained false-
positive and false-negative rates for each site. These values were
calculated for the evaluation of the detection precision of the
combination method.

RESULTS

Average Precision of Each Class
The average precision of each class automatically detected by
YOLOv2 is shown in Figure 4. At the IoU of 0.5, physiological
uptakes in the brain were detected with rather high precision (AP:
0.993), followed by high APs in the liver (0.913), bladder (0.879),
and kidneys (0.843). The detection of the cardiac uptakes were
the worst, with an AP of 0.527 at the IoU of 0.5.

Figure 5 shows the mean average precision of each
physiological uptake (brain, heart, liver, kidney, and bladder)
detected by YOLOv2. The mAP value was decreased over the
threshold IoU of 0.5. The mAP was 0.831 with the threshold IoU
of 0.5. The average FPS for each subset was 31.60± 4.66.

Coverage Rate, False Positive Rate, and
False Negative Rate of the Combination
Method
Table 1 shows the coverage and false-positive rate of the color
maps generated by the combination method. The coverage rate,
false-positive rate, and false-negative rate for detecting abnormal
uptake were 0.9205 ± 0.0312, 0.3704 ± 0.0213, and 0.1000 ±

0.0774, respectively.
Table 2 shows the false-positive rate and false-negative rate

by site by the combination method. The false-positive rate was
highest in the head/neck, at 0.7629 ± 0.0385. The false-negative
rates were higher in the abdomen and head/neck, 0.2047 ±

0.1254 and 0.2000± 0.4472, respectively.
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FIGURE 4 | Average precision of each physiological uptake.

FIGURE 5 | The mAP values of the physiological uptakes.

DISCUSSION

We evaluated the precision of a network model of deep learning
for object detection (i.e., YOLOv2) for detecting physiological
uptakes on FDG-PET images with a rectangular region, and we
developed a combinationmethod using YOLOv2 and subtraction

processing for the detection of abnormal uptakes. The detector
was created by training with a dataset of 3,500 MIP images with
data augmentation processes (such as rotation and zooming) and
the mAP of 0.831 with the IoU of 0.5. The average FPS was >30.
The results demonstrated high detection precision and a high
speed for the detection of physiological uptakes. In particular, the
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TABLE 1 | Coverage rate, false-positive rate, and false-negative rate of the new

combination method.

Coverage rate False positive rate False negative rate

Subset A 0.8719 0.3796 0.2310

Subset B 0.9343 0.3356 0.0543

Subset C 0.9554 0.3684 0.0329

Subset D 0.9129 0.3857 0.0970

Subset E 0.9279 0.3828 0.0851

Mean ± SD 0.9205 ± 0.0312 0.3704 ± 0.0213 0.1000 ± 0.0774

physiological uptakes of the brain could be detected with fairly
high precision, with an AP of 0.993 with the IoU of 0.5. The next-
highest values were found for the liver, bladder and kidneys at
0.913, 0.879, and 0.843, respectively.

However, as shown in Figure 4, the detection of physiological
uptakes in the heart resulted in lower APs compared to those
in the other classes. One possible reason for the very high APs
(>0.9) in physiological uptakes in the brain and liver compared
to the slightly lower APs in other classes is that FDG-PET
provides metabolic images rather than anatomical images like
CT or magnetic resonance imaging (MRI). The brain and liver
showed no differences in the MIP images due to the minimal
differences in metabolism between individuals. However, the
shape and degree of uptakes of the bladder and kidneys varied
greatly on the images, as there were large individual differences
in uptakes depending on the degree of urination. In addition,
normal heart uptakes were more difficult to diagnose than the
other four classes because of the variety of uptake patterns (22),
which may have contributed to the low AP for the heart.

With regard to limitations of the detection of physiological
uptakes, the number of features for the detector that was
necessary for the training of the created models was limited.
In other words, for the further improvement of the detection
precision, we have to consider increasing the number of training
images and the number of patterns of data augmentation because
the present study was performed with rotation and zooming of
the images. However, our findings demonstrated that higher AP
and mAP values could be obtained by varying the degree of
rotation and the zoom rate as data augmentation. In addition,
regarding the pixel data, the raw data of the DICOM files (which
had the dynamic range of pixel values) would be taken into
account for the evaluation of the new method’s precision because
the present study was performed using JPEG images. Moreover,
it has been reported that the mAP was improved by color
operations and geometric operations (23), and the precision of
the mAP could be changed by performing procedures other than
those used in the present study.

Regarding the CNN models, although our results showed
sufficient precision and response speed for the real-time
detection, further improvements of the detection precision
and speed may be obtained by using a network model for
object detection other than YOLOv2, such as DetectNet (24),
Single Shot MultiBox Detector (25), and Faster R-CNN (26).
New network models such as Feature Pyramid Networks (27)

TABLE 2 | False-positive rate and false-negative rate by site.

False positive rate False negative rate

Brain 0.0137 ± 0.0254 0.2000 ± 0.4472

Head/neck 0.7629 ± 0.0385 0

Chest 0.3523 ± 0.1460 0.0331 ± 0.0197

Abdomen 0.3326 ± 0.1873 0.2047 ± 0.1254

Pelvis 0.1674 ± 0.0341 0.0667 ± 0.0726

Heart 0.0331 ± 0.0296 0.0761 ± 0.0288

Intestine 0.3754 ± 0.0602 0.1198 ± 0.1539

and Mask R-CNN (28), which are based on Faster R-CNN
with additional technologies, have been reported to improve
processing speed and average precision. There is also an
improved version of YOLOv2 with a deeper network model,
YOLOv3 (29). However, the detection precision shown as
the mAP was 0.831 with the IoU of 0.5, and the average
FPS was over 30 FPS in the present study. These results
demonstrated that the detection was sufficiently accurate and
faster compared to other studies aimed at real-time detection
(30). Therefore, although there is room for further improvement
in the detection performance due to factors such as the number
of training images, data augmentation, and different network
models, we observed that the detection performance obtained
herein (including the speed response) was sufficient for use in
image diagnoses.

We took advantage of the detection of physiological uptake by
the detector created using YOLOv2, an object detection model
based on deep learning technology. The combination method
was our newly developed method for detecting abnormal uptakes
by combining YOLOv2 and a subtraction process. The color
maps generated by the combination method showed great merit,
with a very high coverage rate of>92% for the abnormal findings
identified by the highly experienced radiologist. We used MIP
data in this study because of the smaller size of the data and
the ability to evaluate the whole body in a single image. The
use of MIP images not only reduced the learning time even
when the number of images was increased but also provides
more information in one image than can be obtained when
using tomographic images. For example, because it is often
difficult to distinguish between normal and abnormal uptakes
in a single tomographic image, the diagnosis is usually made by
examining both the upper and lower slices. For these reasons,
there are advantages to using MIP images for diagnoses using
deep learning.

However, the false-positive rate obtained by this detector was
∼37%, which is not very low; this result might be due to the
use of MIP images with 2D data. The generation of a false high
uptake might be caused by overlapping of low uptake when
the three-dimensional (3D) structure of the body was rendered
into a 2D image, and this effect might be the reason for the
increase of false-positive results. It was thus difficult to reduce
the number of false positives with MIP images, and there was
a limit to the precision of the combination method with MIP
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data. Incorporating tomographic data could be one solution.
Moreover, the false-positive rate by site was the highest in the
head/neck. As for the neck region, Purohit BS reported (31) that
FDG uptake by normal lymphoid tissue act as a confounding
factor for the diagnosis of neck tumors. This was the reason we
did not define the uptakes at this site as a physiological uptake.
As a result, the false-positive rate was higher than any other site
due to detecting physiological uptakes incorrectly. However, the
head/neck was the only site with a false-negative rate of zero and
did not miss the lesion. Regarding to the false-negative rate, it
was higher in the abdomen and brain because abnormal uptakes
within physiological uptakes were more common in these sites
than in other sites, and these uptakes could not be detected.

Although we applied the dataset to the 2D network model
as YOLOv2 due to the limitation of computer resources, there
are 3D network models (32–36) that can be used with one-
time training with the whole data. We have also considered
these 3D network models for the evaluation of precision in a
future study. Furthermore, we have to take into consideration
changing window width of the MIP images to distinguish
between physiological uptakes and tumors because the MIP
technique has a limitation to detect abnormal uptakes within
physiological uptakes. However, in light of the accurate detection
of the physiological uptakes observed herein and the coverage
rate for abnormal uptake indicated by a radiologist, our present
results have established this combination method as a useful
diagnostic tool with real-time detection.

CONCLUSIONS

We investigated the precision of the detection of physiological
uptakes and developed a combination method for diagnoses
based on FDG-PET images. With the use of using YOLOv2, the
physiological uptake of FDG on MIP images was automatically
detected with high precision and high speed. In addition,
the combination method, which utilizes the characteristics of

the detector by YOLOv2, detected abnormalities identified by
the experienced radiologist with a high coverage rate. The
combination method’s detection performance and fast response
demonstrated its usefulness as a diagnostic aid tool.
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