
ORIGINAL RESEARCH
published: 13 January 2022

doi: 10.3389/fnbot.2021.767299

Frontiers in Neurorobotics | www.frontiersin.org 1 January 2022 | Volume 15 | Article 767299

Edited by:

Jingyu Hou,

Deakin University, Australia

Reviewed by:

Nemir Al-Azzawi,

University of Baghdad, Iraq

Deepika Koundal,

University of Petroleum and Energy

Studies, India

*Correspondence:

Ying Yu

yuying.mail@163.com

Received: 30 August 2021

Accepted: 01 December 2021

Published: 13 January 2022

Citation:

Yu Y, Qian J and Wu Q (2022) Visual

Saliency via Multiscale Analysis in

Frequency Domain and Its

Applications to Ship Detection in

Optical Satellite Images.

Front. Neurorobot. 15:767299.

doi: 10.3389/fnbot.2021.767299

Visual Saliency via Multiscale
Analysis in Frequency Domain and Its
Applications to Ship Detection in
Optical Satellite Images
Ying Yu*, Jun Qian and Qinglong Wu

School of Information Science and Engineering, Yunnan University, Kunming, China

This article proposes a bottom-up visual saliency model that uses the wavelet transform

to conduct multiscale analysis and computation in the frequency domain. First, we

compute the multiscale magnitude spectra by performing a wavelet transform to

decompose the magnitude spectrum of the discrete cosine coefficients of an input

image. Next, we obtain multiple saliency maps of different spatial scales through an

inverse transformation from the frequency domain to the spatial domain, which utilizes

the discrete cosine magnitude spectra after multiscale wavelet decomposition. Then, we

employ an evaluation function to automatically select the two best multiscale saliency

maps. A final saliency map is generated via an adaptive integration of the two selected

multiscale saliency maps. The proposed model is fast, efficient, and can simultaneously

detect salient regions or objects of different sizes. It outperforms state-of-the-art bottom-

up saliency approaches in the experiments of psychophysical consistency, eye fixation

prediction, and saliency detection for natural images. In addition, the proposed model

is applied to automatic ship detection in optical satellite images. Ship detection tests

on satellite data of visual optical spectrum not only demonstrate our saliency model’s

effectiveness in detecting small and large salient targets but also verify its robustness

against various sea background disturbances.

Keywords: visual saliency, selective visual attention, wavelet transform, multiscale saliency map, ship detection

INTRODUCTION

In the human neural system, a mechanism called selective visual attention has been evolved to
facilitate our visual perception to rapidly locate the most important regions in a cluttered scene.
Such important regions are said to be perceptually salient because they attract great visual attention.
Typically, visual attention is either driven by fast, pre-attentive, bottom-up visual saliency or
controlled by slow, task-dependent, top-down cues (Itti et al., 1998; Itti and Koch, 2001; Wolfe
and Horowitz, 2004, 2017).

This article is primarily concerned with the automatic detection of bottom-up visual saliency,
which has attracted extensive studies by both psychologist and computer vision researchers in the
area of robotics, cognitive science, and neuroscience (Borji and Itti, 2013). Just like a bottom-up
visual attention mechanism that can rapidly locate salient objects in the human visual pathway, a
computational saliency model has the ability to detect the perceptually salient regions in cluttered
scenes, which is very useful for object detection, image segmentation, intelligent compression,
human fixation prediction, and many more.
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One pioneer work concerning the computational modeling of
bottom-up visual attention was introduced by Itti et al. (1998)
and Itti and Koch (2001). It stimulates the neural mechanism
of the human early vision system and has explicit biological
rationality. Itti’s model (denoted IT) generates a saliency map of
the scene under view by modeling the center-surround contrast
of intensity, color, and orientation, which is expected to indicate
salient regions and predict human fixations. However, since
the model is designed conforming to the neuronal architecture
of a vision system, it is computationally complex and suffers
from over-parameterization. Recently, a kind of algorithm has
been designed for salient foreground segmentation. Achanta
and Suesstrunk (2010) compute saliency maps by use of the
Euclidean distance in the Commission International Eclairage
(CIE) LAB space between a given position’s value and the
maximum symmetric surround mean value of its neighboring
area (denoted MSS). Cheng et al. (2015) used a histogram-
based contrast (HC) to measure the saliency values of input
images. Liu and Yang (2019) exploited color volume and color
difference for salient region detection. These algorithms can
output fine-resolution saliency maps that highlight large-scale
foreground regions. However, since these kinds of algorithms are
not biologically motivated, they cannot be used as a model of
bottom-up visual attention with psychophysical consistency and
often fail to detect salient objects in cluttered scenes.

Another kind of bottom-up saliency model is computed
in the frequency domain. These frequency-domain models are
not explicitly motivated by a biological mechanism, but they
are computationally simple and have good consistency with
psychophysics. As a pioneer saliency work of frequency domain,
Hou and Zhang (2007) designed a saliency model by use
of the Fourier spectral residual (SR) computation. Yu et al.
(2009) proposed the pulsed functions of the discrete cosine
transform (PCT) to compute visual saliency. Guo and Zhang
(2010) introduced a spatiotemporal saliency approach by using
a so-called phase spectrum of quaternion Fourier transform
(PQFT). Li et al. (2013) compute visual saliency via a scale-space
analysis in the hypercomplex Fourier transform (HFT) domain.
After that, Yu and Yang (2017) proposed a visual saliency
model by using the binary spectrum of Walsh–Hadamard
transform (BSWHT).

As for why the frequency domain models can calculate
visual saliency, our previous works (Yu et al., 2011a,b) have
demonstrated the biological rationality of frequency-domain
approaches. These works have verified that whitening or
flattening the principal components or the cosine transform
coefficients simulates the suppression of the same visual features
(iso-feature suppression) in the spatial domain. The iso-feature
suppression is just the biological mechanism of bottom-up visual
saliency generated in the primary visual cortex (V1) (Zhaoping,
2002; Zhaoping and Peter, 2006). However, due to the excessive
suppression of low-frequency components in the image by
whitening the principal components, existing frequency-domain
models are easy to detect small salient targets, but they have poor
ability to highlight large-scale salient regions.

To make the frequency domain model have better detection
ability for both large and small salient targets, in this article,

we propose a bottom-up visual saliency model based on
multiscale analysis and computation in the frequency domain.
The proposed model performs multiscale wavelet analysis and
computation in the cosine transform domain. It can generate
multiscale saliency maps of the scene under view. Unlike the
spatial domain approaches, our model computes in the frequency
domain, which significantly reduces computational cost for
a saliency algorithm. Moreover, the multiscale computation
of visual saliency also has biological plausibility because the
receptive fields of visual neurons in the primary visual cortex
(V1) have various ranges of center-surround mechanism (Itti
and Koch, 2001; Zhaoping, 2002; Zhaoping and Peter, 2006).
As compared with the existing frequency domain approaches,
our model has a better ability to detect small salient objects and
meanwhile highlight large-scale salient regions.

Ship target detection in optical satellite images is important
in monitoring commercial fishery, oil pollution, vessels traffic,
and other marine activities. However, there remain challenges
with the ship detection algorithm for its application in a
marine surveillance system. One challenge is the existence of
sea clutters and heterogeneous regions, which poses difficulties
for discriminating ship targets from various background
disturbances. Another challenge is that a marine surveillance
system needs fast algorithms because it needs to analyze and
process large amounts of data in real-time. In this work, we
apply our multiscale saliency model to detect the ship signatures
in the optical satellite images. It may meet the demands of a
marine surveillance system and can detect ships of different sizes
accurately. Tests over the Maritime SATellite Imagery (MASATI)
dataset prove the robustness and effectiveness of our model when
it is applied to ship detection in optical satellite images.

The rest of this article is organized as follows. Section
Proposed Model describes the proposed bottom-up visual
saliency model based on multiscale analysis and computation
in the frequency domain and explains its biological plausibility.
Section Experimental Validation presents our model’s
experiments on psychophysical patterns, eye fixation prediction,
and saliency detection for natural images. In section Applications
to Ship Detection in Optical Satellite Images, we apply the
proposed saliency model to automatic ship detection in optical
satellite images. Finally, this article is concluded in section
Conclusion and Discussion.

PROPOSED MODEL

This section begins by introducing the proposed model of
bottom-up visual saliency step by step, and then gives a complete
flow of the model from the input image to a final saliency map.

Visual Feature Channels
Several works (Treisman and Gelade, 1980; Zhaoping, 2002;
Zhaoping and Peter, 2006) have verified that the interaction and
integration of the low-level visual features can produce a bottom-
up saliency map in the primary visual cortex (V1). To begin
with, we will compute these low-level visual feature maps before
integrating them as a whole. For a given image M (e.g., resized
to 128 × 128 px), we use r, g, and b to denote the red, green,
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and blue color channels of the image, respectively. According to
Itti et al.’s (1998) general-tuned color model, one intensity and
three general-tuned color feature channels I, R, G, and B are
calculated as

I =
r+g+b

3
(1a)

R = r −
g+b

2
(1b)

G = g −
r+b

2
(1c)

B = b−
r+g

2
(1d)

Note that the general-tuned red, green, and blue channels R, G,
and B are set to zero at locations with a negative value.

In the primary visual cortex (V1) of the human brain, similar
neurons have lateral inhibition, that is, excited neurons will
inhibit the surrounding similar neurons so that the unique targets
in the visual scene are highlighted and become the salient targets
obtained by the visual attentionmechanism (Zhaoping and Peter,
2006). Referring to the lateral inhibition process, we can consider
that a red flower in the green grass is salient. If the color feature
energy is considered as the sum of the pixels of the color feature
channel, then the green feature channel has the largest energy in
the scene. Conforming to the characteristics of selective visual
attention, our model adjusts the weight of each color feature
channel to reduce the weight factor of the feature channel with
large energy. In this article, the weight factors of each feature
channel in the visual saliency map are defined as







ωM =
max(M)

√

∑128
i=1

∑128
j=1 M

, if
∑128

i=1

∑128
j=1 M 6= 0

ωM = max(M), if
∑128

i=1

∑128
j=1 M = 0

(2)

where M denotes any one of the general-tuned feature channels
I, R, G, and B, whereas i and j are the horizontal and vertical
coordinates of the corresponding channel.

Multiscale Saliency Computation in the
Frequency Domain
After calculating the visual feature channels of the input image,
we perform multiscale saliency computation and analysis in the
frequency domain. Given a visual feature channelM, we use the
discrete cosine transform (DCT) to transform each visual feature
channel of the image into a frequency domain:

F = DCT(M) (3)

where “DCT(·)” denotes a 2-dimensional discrete cosine
transform, and F is the DCT coefficients matrix of the input
visual feature channel. Next, the magnitude matrix AM and
the sign matrix SM of the DCT coefficients matrix F are
computed as

{

AM = abs(F)
SM = sign(F)

(4)

where the notation “abs(·)” is an absolute value function, and
the notation “sign(·)” denotes a signum function. For most input
images, the magnitude values of low-frequency coefficients are
much greater than those of high-frequency coefficients since the
natural images have a strong statistical correlation in the visual
space. Our previous works (Yu et al., 2011a,b) have verified that
whitening or flattening the principal components or the cosine
transform coefficients simulates the suppression of the same
visual features (iso-feature suppression) in the spatial domain.
The iso-feature suppression is just the biological mechanism
of bottom-up visual saliency generated in the primary visual
cortex (V1) (Zhaoping, 2002; Zhaoping and Peter, 2006). Most
frequency domain-based models (e.g., Yu et al., 2009, 2011a,b;
Guo and Zhang, 2010; Yu and Yang, 2017) can detect relatively
small salient objects by setting the values of the magnitude
matrix to one. For salient objects with very large sizes, they
often highlight the contour of a large object because whitening
(flattening) the magnitude matrix will lose some important low-
frequency information.

To make the frequency domain model have better detection
ability for both large and small salient targets, in this work,
we propose a bottom-up visual saliency model based on
multiscale analysis and computation in the frequency domain.
The proposed model not only detect small salient objects but
also highlight the whole body of those salient objects with
very large size. We consider utilizing the wavelet transform to
perform multiscale modulation on the magnitude matrix of the
DCT coefficients.

Wavelet transform is widely used in image decomposition and
reconstruction, which can decompose an image into multiscale
components. In this article, we employ wavelet transform to
decompose the magnitude matrix of each visual feature channel
and suppress the low-frequency components of the magnitude
matrix to a certain extent. Since the salient targets have different
sizes in the image, the retention degree of the values in the
required magnitude matrix is different. Therefore, we perform
multiscale decomposition and reconstruction of the magnitude
matrix of each feature channel, and construct a multiscale
reconstruction magnitude matrix set

{

A′
M,N

}

, where M is the
feature channel set, andN denotes the decomposition scale. This
process ensures that the optimal reconstructed magnitude matrix
of the input image can be retained. In the j-scale space, the Mallat
decomposition formula of the low-frequency subband is
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(5)

and the corresponding reconstruction formula is

Bss
j

k,m
=

∑

i,l

[Bss
j−1

i,l
h(k− 2i)h(m− 2l)+ Bds

j−1

i,l
g(k− 2i)h(m− 2l)

+Bsd
j−1

i,l
h(k− 2i)g(m− 2l)+ Bdd

j−1

i,l
g(k− 2i)g(m− 2l)] (6)
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where h and g denote low-pass and high-pass filtering,
respectively. As has been noted before, the suppression
of cosine transform coefficients of an image is equivalent
to the suppression of the same visual features (iso-feature
suppression) in the spatial domain. Therefore, through such a
multiscale decomposition and reconstruction operation upon the
magnitude coefficients in the DCT domain, our model simulates
the cortical center-surround or iso-feature suppression of various
scales in the spatial domain. For this reason, our model can
compute the multiscale saliency information simultaneously,
which is very helpful to detect salient objects of different sizes.

To recover the multiscale channel conspicuity maps in the
visual space, we perform an inverse DCT on the reconstructed
magnitude matrix and the corresponding sign matrix SM as

FM,N = abs(IDCT(SM · A′
M,N )) (7)

where FM,N denotes the N -scale conspicuity map for a
given channel M, and “IDCT(·)” is the inverse discrete cosine
transform. Afterward, we utilize the obtained one intensity and
three-color conspicuity maps at the N -scale to compute the
saliency map:

SN = 8 ∗ (ωI · FI,N + ωR · FR,N + ωG · FG,N + ωB · FB,N )(8)

where ωI , ωR, ωG, and ωB denote the weight factors of
corresponding feature channels I, R, G, and B, which are
calculated by using Equation (2). The notation 8 denotes a 2-
dimensional Gaussian low-pass filter. The notation SN is the
N -scale saliency map of the input image.

Final Saliency Map
To generate the optimal visual saliency map from the multiscale
saliency maps {SN }, we introduce an evaluation function to
evaluate the multiscale saliency maps. More often than not, the
more complete the salient region in multiple saliency maps of
the same scene, the better the saliency map with less background
interference. The evaluation function is defined as the noise
coefficient of the saliency map multiplied by the information
entropy, where the noise coefficient is the sum of the product of
the pixels corresponding to the background interference matrix
and the saliency map matrix. According to the visual attention
characteristics that the central area of the image is more likely
to become the salient region, the background interference matrix
is constructed as a gradient matrix with the same resolution as
the saliency map, with a maximum value of 1 and a minimum
value of 0. Information entropy is often used as the quantitative
standard for evaluating images. In this work, we use information
entropy to characterize the degree of confusion of a saliency
map. The greater the entropy, the more chaotic the saliency map,
that is, the more background interference. Therefore, for a given
saliency map S, the corresponding evaluation function H can be
defined as

H = E
∑

x

∑

y

S(x, y)K(x, y) (9)

where E is the information entropy of the saliency map S,
and K denotes the background interference matrix. x, y are the

horizontal and vertical coordinates of a matrix. According to the
definition of the evaluation function, the smaller the function
value, the better the saliency map.

To improve the adaptability of the model in this article,
two saliency maps with the lowest value of the evaluation
function are selected. Next, the evaluation function values of
the corresponding saliency map are exchanged as coefficients to
construct the fusion map, and the fusion map is used as the final
saliency map § after central bias optimization. This calculation
process is formulated as

§ = ψ · (H2S1 +H1S2) (10)

where ψ is the central bias matrix. S1 denotes the saliency map
with the smallest evaluation function value, whereas H1 is the
corresponding evaluation function value of S1. When there is
little difference in the values of the evaluation function, the two
saliency maps generate the final saliency map close to their mean
value. When the difference of H1 and H2 is large, S2 has a weak
effect on the generation of the final saliency map.

To sum up, the proposed computational model from input
imageM to final saliency map § is as follows:

Step 1. Compute one intensity and three general-tuned color
feature channels I, R, G, and B by using Equation (1), and
calculate the weight factor ωM for each feature channel by using
Equation (2).

Step 2. Perform a DCT transformation on each feature
channel, and calculate the magnitude matrix AM and the sign
matrix SM of the DCT coefficients by using Equations (3)
and (4).

Step 3. Perform multiscale wavelet transform on all feature
channels to obtain the multiscale reconstruction magnitude
matrix set

{

A′
M,N

}

by using Equations (5) and (6).
Step 4. Performing an inverse DCT transformation on the

magnitude matrix A′
M,N and the corresponding sign matrix

SM to compute the N -scale conspicuity map FM,N by using
Equation (7).

Step 5. Performing a weighted summation of the conspicuity
map of all four feature channels to compute theN -scale saliency
map SN by using Equation (8).

Step 6. Compute the evaluation function value of the N -scale
saliency map SN by using Equation (9).

Step 7. The two saliency maps with the smallest value of the
evaluation function are selected to generate a final saliency map
§ by using Equation (10).

The complete flow of the proposed model is illustrated in
Figure 1. We initially resize the input image to a suitable scale
and decompose it into the general-tuned intensity, red, green,
and blue feature channels. Each of the four general-tuned feature
channels is subjected to a DCT. Next, we use a multiscale wavelet
transform to decompose the DCT magnitude spectrum of each
channel and then obtain the decomposed multiscale magnitude
spectra for every single channel. Afterward, the decomposed
magnitude coefficients are subjected to an inverse DCT so that
the six multiscale conspicuity maps of each feature channel
can be generated. Then, for each scale, we integrate the four
conspicuity maps to form a saliency map. Finally, a final saliency
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FIGURE 1 | An illustration of our model for saliency detection. (A) Input image. (B) Four general-tuned visual channels. (C) Discrete cosine transform (DCT) magnitude

spectra and corresponding signum spectra. (D) Wavelet decomposed multiscale magnitude spectra for every single channel. (E) Six multiscale conspicuity maps for

every single channel. (F) Six multiscale saliency maps after channel-wise integration. (G) A final saliency map after scale-wise combination.

map is obtained by combining the two multiscale saliency maps
with the smallest H-value. Note that the saliency map is a
topographically arranged map that represents the visual saliency
of a corresponding visual scene. It can be seen from Figure 1 that
the salient objects are the strawberries, which pop out from the
background in the final saliency map.

It is worth noting again that the flattening modulation of
image frequency domain coefficients approximately simulates the
suppression of the same visual features (iso-feature suppression)
in the spatial domain. Such a mechanism of iso-feature
suppression generates bottom-up visual saliency in the primary
visual cortex (V1). In this work, we employ multiscale frequency
domain modulation by using a multiscale wavelet transform
on the magnitude coefficients in the DCT domain. This
calculation process is equivalent to flattening the frequency
domain coefficients in different degrees (see Figure 1D), rather
than in a single way, to calculate the multiscale visual saliency
(see Figure 1F) in the spatial domain.

EXPERIMENTAL VALIDATION

In this section, we compare our model with eight bottom-
up saliency approaches: Itti’s model (IT) (Itti et al., 1998),
maximum symmetric surround mean value (MSS) (Achanta and
Suesstrunk, 2010), histogram-based contrast (HC) (Cheng et al.,

2015), spectral residual (SR) (Hou and Zhang, 2007), pulsed
cosine transform (PCT) (Yu et al., 2009), PQFT (Guo and Zhang,
2010), hypercomplex Fourier transform (HFT) (Li et al., 2013),
and binary spectrum of Walsh-Hadamard transform (BSWHT)
(Yu and Yang, 2017). All saliency approaches are conducted
on psychophysical pattern tests, human eye fixation prediction,
and saliency detection for natural images. The experiments
provide an objective evaluation as well as a visual comparison
of all saliency maps. Moreover, we give a comparison of the
computational time cost of all saliency approaches.

In the experiments of human eye fixation prediction and
natural image saliency detection. We will employ three popular
objective evaluation metrics: the precision-recall (P-R) curve
(Davis and Goadrich, 2006), the receiver operating characteristic
(ROC) curve (Tatler et al., 2005), and the area under the curve
(AUC). For each saliency map, several binary maps are generated
by segmenting the saliency map with a threshold τ varying from
0 to 255. We can obtain the true positive (TP), the false positive
(FP), the false negative (FN), and the true negative (TN) by
comparing a binary map with the ground truth (GT) map. Then,
the Recall and the Precision metrics for a binary map can be
calculated as

{

Recall = TP
TP+FN

Precision = TP
TP+FP

(11)

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2022 | Volume 15 | Article 767299

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu et al. Visual Saliency via Multiscale Analysis

FIGURE 2 | Test on psychophysical patterns for all 9 saliency approaches.

TABLE 1 | The receiver operating characteristic (ROC)- area under the curve (AUC) scores of all nine saliency methods.

Method Ours SR PQFT PCT HFT BSWHT MSS HC IT

All fixations 0.7889 0.6228 0.7570 0.7605 0.7653 0.7761 0.6558 0.5766 0.5365

First fixations 0.8252 0.6274 0.7696 0.7723 0.7902 0.7913 0.6698 0.5850 0.5444

The P-R curve can be plotted with the averaged Precision vs.
Recall values overall saliency maps generated from a saliency
approach.Moreover, we compute the true positive rate (TPR) and
the false positive rate (FPR) according to the following formulas:

{

TPR = TP
TP+FN

FPR = FP
FP+TN

(12)

The ROC curve can be plotted with the averaged TPR vs. FPR
values overall saliency maps generated from a saliency approach.
Then we compute the area under the ROC curve that is denoted
as a ROC-AUC score. Note that most published articles use these
three metrics to evaluate a saliency map’s ability to predict eye
fixations or detect salient regions.

Psychophysical Consistency
Psychophysical patterns have been widely used in attention
selection tests not only to explore the mechanism of bottom-
up attention but also to evaluate the saliency models (e.g., Itti
et al., 1998; Hou and Zhang, 2007; Yu et al., 2009, 2011a,b; Guo
and Zhang, 2010; Li et al., 2013). Figure 2 shows the saliency

maps of all saliency approaches on seven psychophysical patterns
(including salient targets of unique color, orientation, shape,
missing feature, or conjunction feature). It can be seen that IT,
MSS, and HC fail to detect (highlight) the salient targets with
distinctive orientation or shape. SR cannot detect color saliency
since it only computes in an intensity channel. As frequency-
domain approaches, PQFT, PCT, HFT, BSWHT, and our method

(denoted as “Ours”) can successfully detect salient objects with
distinctive orientation ormissing features (the 5th pattern). It can

be noticed that PCT and our method can find all salient objects

with distinctive colors; whereas PQFT and HFT cannot highlight
the color pop-out in the 1st pattern. In this test, PCT and our
method are the best performers, which are highly consistent with
human perception in these psychophysical patterns.

It is worth stating that this article proposes a visual saliency
method based on frequency domain calculation. At present, all
frequency-domain visual saliency methods do not calculate pixel
by pixel, and the output saliency map does not have a clear
and accurate object contour. Before outputting the final saliency
map, these frequency-domain methods need to do low-pass
filtering to obtain an applicable and smooth visual saliency map.
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FIGURE 3 | Qualitative analysis of the saliency maps for eye fixation prediction.

Nevertheless, the advantages of frequency-domain methods are
also obvious. They can indicate the salient positions and regions
in the visual scene, and can better predict the gaze or fixations
driven by a human’s bottom-up attention mechanism.

Eye Fixation Prediction
In this subsection, we validate the proposed saliency maps by use
of the dataset of 120 color images from an urban environment
and corresponding human eye fixation data from 20 subjects
provided by Bruce and Tsotsos (2009). These images consist of

indoor and outdoor scenes, of which some have very salient
items, and others have no particular regions of salience.

To quantify the consistency of a particular saliency map with
a set of fixations of the image, wey employ the ROC-AUC score
as an objective evaluation metric. It is worth noting that the
ROC-AUC score is sensitive to the number of fixations that are
used in the calculation. Former fixations are more likely to be
driven by the bottom-upmanner, whereas later fixations aremore
likely to be influenced by top-down cues. In this test, we calculate
the ROC-AUC scores for each image by using all fixations and
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FIGURE 4 | Visual comparison of all saliency approaches on ECSSD dataset.

repeating the process but using only the first two fixation points.
Table 1 lists the ROC-AUC score averaged over all 120 images for
each saliency approach. As can be seen, our method obtains the
highest ROC-AUC scores in both tests and therefore has the best
capability for predicting eye fixations.

Figure 3 gives the saliency maps for six representative images
from the data set, which provides a qualitative comparison of
all saliency methods. We generate corresponding ground truth
images by using a Gaussian filter to perform convolution on the
fixation map for all subjects. Some of these images have small
salient objects, and others have large-scale regions of interest.
Analyzing the qualitative results, we can see that our method
shows more resemblance to the ground truth than the other 8
saliency approaches. The regions highlighted by our proposed
method overlap to a surprisingly large extent with those image
regions looked at by humans in free viewing. Good performance
concerning color pop-out is also observed with our method as
compared to other approaches. MSS, HC, and IT can obtain fine
resolution saliency maps, but they are more likely to focus on
large-scale structures and therebymiss some small salient objects.

Saliency Detection for Natural Images
In this subsection, we compare our method with 8 other saliency
approaches on the Extended Complex Scene Saliency Dataset
(ECSSD) dataset (Shi et al., 2016) that includes 1,000 natural
images and corresponding GT images. Figure 4 gives the saliency
maps for eight sample images from the ECSSD dataset, which

provide a visual comparison of all saliency methods. It can be
seen that MSS, HC, and IT can obtain high-resolution saliency
maps, but they suffer from cluttered backgrounds. PQFT, PCT,
HFT, and BSWHT can detect small salient objects effectively, but
sometimes they fail to highlight the whole salient objects with
relatively large size. Note that our proposed method can enhance
the salient regions and meanwhile suppress background clutters
heavily. Moreover, since our method computes visual salience
in a multiscale manner, it can detect both small and large scale
salient regions simultaneously.

To evaluate the detection accuracy objectively, we plot the P-R

curves and the ROC curves for all saliency approaches as shown

in Figures 5A,B. Note that a high ROC or P-R curve indicates

the saliency maps have a high resemblance with the GT images.
As can be seen, our method and HFT obtain comparatively high
curves as compared to other saliency approaches. Nevertheless,
it can be noticed that our method is slightly better than HFT.
Table 2 lists the ROC-AUC score averaged over all 1,000 images
for each saliency method. As expected, our method obtains the
highest ROC-AUC score. This means that our method achieves
the best performance in this saliency detection test.

It should be noted that this article mainly studies the
computation of bottom-up visual saliency. Bottom-up attention
or saliency studies mostly use psychophysical patterns (section
Psychophysical Consistency) and Bruce and Tsotsos’s eye fixation
prediction dataset (section Eye Fixation Prediction). These two
datasets were created specifically for the bottom-up attention
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FIGURE 5 | (A) P-R curves on the ECSSD dataset. (B) ROC curves on the ECSSD dataset.

TABLE 2 | The ROC-AUC scores of all nine saliency methods.

Method Ours SR PQFT PCT HFT BSWHT DN MSS HC IT

AUC 0.7990 0.5805 0.6681 0.6813 0.7895 0.6954 0.6333 0.7091 0.6755 0.5493

tests. For more testing, we conducted tests on the ECSSD dataset
in this section. The ECSSD dataset is particularly used for
foreground region segmentation methods. They are not only
purely bottom-up but also need more top-down calculations.
Nevertheless, our method still achieves good performance in
this test.

Computational Time Cost
Computational speed is an important metric to evaluate
the performance of a saliency model. We also record the
computational time cost per image from the ECSSD dataset
in a standard desktop computer environment. Table 3 gives
each method’s Matlab runtime measurements averaged over the
data set. It can be seen that the traditional frequency-domain
models (SR, PQFT, PCT, and BSWHT) are relatively faster than
other methods. As a multiscale frequency domain calculation
model of visual saliency, our method needs about 10 times the
computational cost of the traditional frequency-domain model.
Nevertheless, it has about the same computational cost as HFT
and MSS and is still faster than HC and IT. Note that all saliency
methods are implemented on such a computer platform as Intel
i7-8650U 1.90GHz CPU, and 16GB of memory.

APPLICATIONS TO SHIP DETECTION IN
OPTICAL SATELLITE IMAGES

In this section, we apply the proposed method to detect
ship signatures in optical satellite images. To validate the
effectiveness of our method, we conduct experiments by use of

real optical satellite images from the MASATI dataset (Antonio-
Javier et al., 2018). All tests in this section are run on a
Windows platform (Microsoft Incorporation, US). The computer
is equipped with a quad-core Intel 2.9 GHz CPU and 32 GB of
memory (Intel Incorporation, US). All the program codes are
implemented in the MATLAB (MathWorks Incorporation, US)
R2017b environment.

Saliency-Based Ship Detection in Optical
Satellite Images
Automatic ship detection in optical satellite images has attracted
intensive investigations (Bi et al., 2012; Jubelin and Khenchaf,
2014; Qi et al., 2015; Zou and Shi, 2016; Li et al., 2020). It
plays a crucial role in a maritime surveillance system. Some
studies perform ship detection by using synthetic aperture radar
(SAR) (Crisp, 2004; Yu et al., 2011a). However, strong speckles
(caused by the coherence of backscattered signals) pose great
difficulties for an automatic ship detection system. Compared
with the SAR data, optical satellite images can provide more
detailed characteristics of ship signatures.

More often than not, automatic ship detection will encounter
two challenges. First, a marine surveillance system needs fast
algorithms since it has to deal with a large amount of data in
real-time. Second, lots of background disturbances always exist
in the optical satellite images. Conventional target detectors use
a constant false alarm rate (CFAR) which automatically adapts to
the statistical distribution of sea clutters and targets of interest
(Chen and Reed, 1987; Reed and Yu, 1990; Yu and Reed, 1993).
However, if the signature of a target has similar intensities as its
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TABLE 3 | Computational time cost per image for all saliency methods over the ECSSD dataset.

Method Ours SR PQFT PCT HFT BSWHT MSS HC IT

Time(s) 0.1272 0.0109 0.0163 0.0147 0.1183 0.0102 0.0934 0.3349 0.2224

surroundings, the CFAR detector cannot discriminate the targets
from their background clutters. It should be noticed that human
vision is superior to existing techniques in observing a slick in the
surrounding sea, and some vessels undetected by conventional
algorithms are visible to the eye. Motivated by this fact, we
employ our proposed saliency method to perform ship detection
in optical satellite images.

Since ships are visually salient and will become dominant
locations in a saliency map, a constant threshold value can be
employed to discriminate the ship targets from sea backgrounds.
However, a constant threshold will produce false alarms when
no ship target appears in the scene under view. Therefore, we
consider designing an adaptive threshold to detect the ship
targets. The threshold value is computed by using the saliency
values of the given saliency map:

Ts = α(µs + 2σs) (13)

where µs and σs are, respectively, the mean value and the
standard deviation of the final saliency map, and α is an
empirically tuned parameter. Note that a small α may lead to
false alarms although it can detect ship targets; whereas a large
α is likely to miss some ship signatures although it avoids false
alarms. Through lots of experiments, we find that the detection
results are reasonable when the parameter α = 4.

An important note about our method’s application to ship
detection in optical satellite images is that the saliency map
should be computed at full resolution. This is different from
the salience computation for a natural image. Note that great
disparities may exist in the size of various ships, and our method
can detect both small and large salient objects simultaneously
when the saliency map is computed at a high resolution.
Therefore, to obtain high-resolution saliency maps with well-
defined boundaries of targets, we directly use full-resolution
optical satellite images to compute their saliency maps. This
computation process can be considered as a human looking at
the scenes at a fine resolution in a very careful manner.

Test on the MASATI Dataset
We conduct our method over the MASATI dataset that contains
6,212 satellite images in the visible spectrum. The dataset was
collected fromMicrosoft Bing Maps (Antonio-Javier et al., 2018),
of which each image has been manually labeled according to
various classes. Since our tests only concern ship detection
from sea backgrounds, we choose three sub-classes: ship, multi,
and detail to test our multiscale saliency-based ship detection
method. The ship sub-class represents images where a single
ship appears within the image. The multi sub-class describes
other images in which two or more instances of ships appear
within them. In both sub-classes, the ships have lengths between
4 and 10 pixels. The detail sub-class are images with large-scale

ships within a length between 20 and 100 pixels. The images
were captured in RGB, and the average image size has a spatial
resolution of around 512× 512 pixels. The dataset was compiled
between March and September of 2016 from different regions
in Europe, Africa, Asia, the Mediterranean Sea, and the Atlantic
and Pacific Oceans. We cannot provide simultaneous ground
truths at present; nevertheless, the referred targets can be visually
interpreted from these optical satellite images. Some typical test
results are shown in Figures 6, 7.

Figure 6 shows six sample images with a single ship target
from the ship and the detail sub-classes of the MASATI dataset.
The images contain disturbances of ship wakes, sea waves,
clutters, and heterogeneities, which will cause challenges for a
ship detection task. The 2nd−10th rows of Figure 6 present
the saliency maps of 7 comparison saliency approaches, the
detection results of CFAR, and the saliency maps and detection
results of our method, respectively. It can be seen that PQFT,
PCT, BSWHT, HC, and IT cannot suppress the background
disturbances effectively, particularly for the images with small
ships. Although PQFT, BSWHT, MSS, HC, and IT can detect
large ships, they fail to uniformly highlight the whole salient
regions for these large-scale targets. It seems that HFT finds
both small and large targets in this test, but it highlights some
heterogeneous regions in the 3rd image. The CFAR method fails
to detect small ship targets whereas it causes false alarms even
though it works at a low false alarm rate. It should be noted
that both small and large ship locations in our saliency maps
can pop out relative to the clutter backgrounds and therefore are
successfully detected by our method.

Figure 7 shows six sample images with multiple ship targets

from the multi and the detail sub-classes of the MASATI

dataset. This test is somewhat difficult because the sample

images comprise strong disturbances including reefs, ship wakes,

cloudlets, heterogeneities and clutters of seawater, etc. Moreover,
there may exist a huge disparity in the size of the ships in a
scene (5th and 6th images). The 2nd−10th rows of Figure 7
present the saliency maps of 7 comparison approaches, the
detection results of CFAR, the saliency maps, and the detection
results of our method, respectively. Since PQFT, PCT, and
BSWHT only compute visual saliency on a single scale, they
cannot effectively suppress the background disturbances for these
cluttered scenes. Note that HC, MSS, and IT compute visual
salience in the spatial domain. They cannot suppress the cloudlets
or other disturbances effectively. The CFAR detector inherently
has numerous false alarms and cannot discriminate ships from
these false alarms. It can be seen that our method highlights the
ships and meanwhile suppresses the background disturbances
in the saliency maps. Since our method can compute multiscale
visual saliency, it accurately finds both small and large ship targets
in this difficult test.
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FIGURE 6 | A visual comparison of the saliency maps obtained by all eight approaches, as well as the detection results of CFAR and our method for the MASATI

images with a single ship target.

CONCLUSION AND DISCUSSION

This article investigates automatic detection of bottom-up
visual saliency from the perspective of multiscale analysis

and computation in the frequency domain. We manifested
that multiscale saliency information can be computed by
performing multiscale wavelet decomposition and computation
upon the magnitude coefficients in the frequency domain.
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FIGURE 7 | A visual comparison of the saliency maps obtained by all eight approaches, as well as the detection results of CFAR and our method for the MASATI

images with multiple ships.

The proposed model simulates the multiscale cortical center-
surround suppression and has biological plausibility. The model
is fast and can provide multiscale saliency maps, which
are important for detecting salient objects of different sizes.

Experiments over psychophysical patterns and natural image
datasets showed that the proposed model outperforms state-
of-the-art saliency approaches when evaluated by the ability to
predict human fixations, and by the objective metrics of the
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P-R curves and the ROC-AUC scores. The applications to ship
detection in optical satellite images proved that the proposed
multiscale visual saliency model is very effective in detecting both
small and large ship targets simultaneously from the surrounding
sea and robust against various background disturbances.

The main contribution of this article is to extend the
traditional frequency-domain visual saliency model to multiscale
saliency calculation. The traditional visual saliency model uses
single-scale frequency domain calculation, while our new model
uses multiscale frequency domain calculation. The multiscale
visual saliency calculation is realized by decomposing the
frequency domain coefficients of the input image by multiscale
wavelet transform. The traditional frequency-domain calculation
model has good detection ability for small targets, but weak
detection ability for large targets. The advantage of our multiscale
saliency calculation model is that it can calculate large-scale and
small-scale saliency targets at the same time.

The limitation of this work is that it is only concerned
with the detection of bottom-up visual saliency. It has not
considered top-down influences such as some cues for selecting
suitable scales of salience, or some cues for object recognition
depending on a given vision task. Future work will focus

on a task-dependent attention selection system. It is possible
to add top-down influences for developing more intelligent
vision systems to accomplish various visual search tasks in
engineering applications.
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