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Abstract: Neutrophils are surveillance cells, and the first to react and migrate to sites of inflam-
mation and infection following a chemotactic gradient. Neutrophils play a key role in both sterile
inflammation and infection, performing a wide variety of effector functions such as degranulation,
phagocytosis, ROS production and release of neutrophil extracellular traps (NETs). Healthy term
labour requires a sterile pro-inflammatory process, whereas one of the most common causes of
spontaneous preterm birth is microbial driven. Peripheral neutrophilia has long been described
during pregnancy, and evidence exists demonstrating neutrophils infiltrating the cervix, uterus
and foetal membranes during both term and preterm deliveries. Their presence supports a role in
tissue remodelling via their effector functions. In this review, we describe the effector functions of
neutrophils. We summarise the evidence to support their role in healthy pregnancy and labour and
describe their potential contribution to microbial driven preterm birth.
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1. Neutrophils and Their Effector Functions

Neutrophils, also known as granulocytes, are a type of polymorphonuclear innate
immune cell, and comprise 50–70% of circulating leukocytes. As part of the innate immune
system, they are the first line of defence during infection, however they also play a role
in sterile inflammation and tumorigenesis [1]. Neutrophils are typically characterized
by a distinctive multi-lobulated nucleus and the presence of granules in their cytoplasm.
They originate from the myeloid progenitor cells located within the bone marrow and
extramedullary sites including the spleen. The process that leads to the production of
neutrophils is known as granulopoiesis, with differentiation mainly driven by IL-17, G-CSF,
and IL-1β. Neutrophils are also characterised as a heterogeneous cell type, with various
subpopulations depending on temporal and anatomical factors [2]. They express different
markers on their surfaces that change according to the maturation status, allowing them to
exhibit high plasticity to respond depending on conditions of health and disease [3–5].

There are two major distinct subpopulations: normal density and low-density neu-
trophils, that can be differentiated and retrieved via density gradient separation. Normal
density neutrophils will precipitate with other polymorphonuclear cells, whereas low-
density neutrophils (low density granulocytes (LDGs) co-purify with PBMCs (peripheral
blood mononuclear cells) (Figure 1). Less is understood on the functions of LDGs, however
they are known to exhibit both immunosuppressive and pro-inflammatory properties, and
are abundant in inflammatory conditions that are associated with relative immunosup-
pression such as HIV [6], tuberculosis [7], visceral leishmaniasis [8] and systemic lupus
erythematosus (SLE) [9]. Pregnancy and labour, both term and preterm are associated with
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an increase in circulating normal density and low-density neutrophils [10–12], suggesting
they play a functional role. Circulating neutrophils migrate into tissue in response to certain
triggers. In this review, we summarise the effector functions of neutrophils, and their role in
both the physiological and pathological processes relating to pregnancy, term and preterm
labour. The effector functions of neutrophils are summarised below and are illustrated in
Figure 2.
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Figure 1. Isolation of immune cells. Blood fractioning and separation by density centrifugation. The
top layer contains plasma. The dense halo contains several leukocyte populations: mainly PBMC
(peripheral blood mononuclear cells) including lymphocytes and monocytes. This fraction also
contains low-density neutrophils. The bottom layer contains red blood cells (RBC, erythrocytes) and
granulocytes: neutrophils, basophils, and eosinophils. Image created with Biorender.com.

1.1. Migration and Chemotaxis

The process of migration involves several steps: tethering, rolling, adhesion, crawling
and transmigration, reviewed by Kolazkowska et al. [13]. The mechanism of tethering
and adhesion is highly dependent on the expression and interaction between selectins and
integrins, as well as the presence of cytokines, chemoattractants and/or growth factors
secreted by activated resident sentinel leukocytes. Neutrophil motility is enhanced by
the presence of chemoattractants that can direct and organise the migration towards the
target along a chemotactic gradient. Chemoattractants include chemokines (IL-8 and
RANTES), complement anaphylatoxins (C3a and C5a), formyl peptides (e.g., N-formylated
oligopeptides) and chemotactic lipids (e.g., leukotriene B) [14].

1.2. Phagocytosis and Opsonisation

Neutrophils phagocytose (from Greek phagein “eat” and kytos “cell”) by engulfing
particles or microorganisms. The mechanism involves the recognition and ingestion via
direct recognition of target or opsonins by neutrophil receptors. Phagocytosis is more
effective when bacteria are opsonised and coated by opsonins like immunoglobulins
or complement proteins. Opsonising antibodies and the complement protein C3b are
recognised by surface cell Fc and C3 receptors, respectively. When the opsonised particle
attaches to the surface, the membranes invaginate enclosing the microorganism within an
internal vesicle. Other opsonins include fibronectin, lipopolysaccharide-binding protein
(LBP), thrombospondin, lung surfactant protein A, and conglutin [15].
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Figure 2. Neutrophil effector functions. Neutrophils from the circulation are able to migrate into tissue via a chemotactic gradient. At sites of infection and
inflammation they perform several effector functions: phagocytosis, degranulation, production of ROS (reactive oxygen species) via respiratory burst, microbial
killing, and release of neutrophil extracellular traps (NETs). Neutrophil activation is enhanced if previously primed. Created with BioRender.com.
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1.3. The Role of the Complement System in Enhancing Neutrophil Phagocytosis

The complement cascade can be activated via 3 different pathways (the classical, the al-
ternative and the lectin pathway), all converging on the activation of C3 convertase, thereby
defragmenting C3 to C3a and C3b [16]. Activation of C5 convertase leads to the release
of C5a from C5 and formation of the membrane attack complex further down the cascade.
The complement proteins C1q, C3b, C4b and iC3b can all bind to pathogens. Recognition of
bacteria via immunoglobulins (IgM and IgG) will also activate the complement cascade via
the classical pathway, leading to an amplification of complement deposition [15]. Among a
variety of membrane surface receptors, neutrophils express Fc-receptors that will recognise
Ig-coated pathogens [17] as well as Complement Receptor 1 (CR1, CD35) and Complement
Receptor 3 (CR3, CD11b/CD18 or MAC-1) that will bind with different affinity to pathogens
opsonised by C1q, C3b, C4b and iC3b [15]. Therefore, interaction between the complement
proteins and neutrophils serves to co-locate pathogens with neutrophils, thereby enhancing
phagocytosis, but also chemotaxis via the C5a receptor (C5AR1, CD88) [17].

1.4. Neutrophil Degranulation

Another effector function of activated neutrophils is their ability to degranulate and
release contents required for direct microbial killing. Following stimulation by chemoattrac-
tants or opsonised particles, neutrophils release the contents of their cytoplasmatic granules.
Neutrophils acquire their granules during the maturation process in the bone marrow. The
process of degranulation requires that the membranes of the granule fuses with another
cellular membrane; it can be either the phagocytic vesicle (intracellular degranulation) or
the plasma membrane (extracellular degranulation) [18]. Neutrophils contain four different
types of granules or vesicles (see Table 1 for summary). Most of the contents are microbici-
dal agents, therefore implicated in the killing and digestion of ingested particles [19,20].
Primary granules (also known as azurophilic because they stain with azure dye) are the
most toxic and are peroxidase positive. Primary granules contain lysozymes, defensins,
myeloperoxidases (MPO), proteinases, neutrophil elastase (NE) and sialidase. In contrast,
secondary and tertiary granules are peroxidase negative, and overlap certain contents such
as lysozymes, matrix metalloproteinases and the C3b receptor. The secondary granules
usually discharge their content outside the cell. Finally, secretory vesicles contain plasma
and albumin is the most typical marker. In addition to resulting in pathogen cell death, the
release of the granule contents will cause collateral damage to the surrounding tissues and
prolong the inflammatory response.

Upon activation, neutrophils express genes of pro-inflammatory and pro-labour me-
diators such as cytokines, chemokines, and cyclooxygenase-2 (COX-2). Cyclooxygenase
(COX, PGH synthase) is an enzyme that catalyses the metabolic conversion of arachidonic
acid to prostaglandins (PGs) and thromboxanes (TXs). There are two isoforms of COX:
COX-1 and COX-2, the latter being constantly expressed at basal levels and further induced
in cases of inflammation. Human neutrophils express COX-2 resulting in the production
of PGE2. The activity of COX-2 is enhanced by cytokines and factors such as TNF-α and
LPS [21,22].

Table 1. Content of neutrophil granules and secretory vesicles.

Function Primary/
Azurophilic

Secondary/
Specific

Tertiary/
Gelatinase Secretory Vesicles

Microbicidal

Myeloperoxidase
Lysozyme
Defensins

Cationic proteins
Azurocidin

Cap57

Lysozyme
Lactoferrin
Pentraxin 3
Lipocalin 2

Haptoglobin

Cathelicidin
Lysozyme

Serine proteases Neutrophil elastase
Cathepsins
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Table 1. Cont.

Function Primary/
Azurophilic

Secondary/
Specific

Tertiary/
Gelatinase Secretory Vesicles

Metalloproteinases Proteinases Collagenase (MMP-8)
Gelatinase B (MMP-9)
Leukolysin (MMP-25)
Collagenase (MMP-8)

Leukolysin (MMP-25)
Proteinase

3 (myeloblastin)

Acid hydrolases

Cathepsins B
β-glucuronidase

Glycerophosphatase
N-acetylglucosaminidase

α-mannosidase

β2-microglobulin

Others

Heparin binding protein
(HBP)

Sialidase
Presenilin

Granulophysin
α1-antitrypsin

Histaminase
Heparanase

Stomatin
B12 binding protein

Cytochrome b
C3b receptor

C3bi receptor

Heparin-binding
protein (HBP)

Plasma proteins
(including albumin)

Alkaline phosphatase

1.5. Respiratory Burst

Upon activation, neutrophils can release reactive oxygen species (ROS) during a
respiratory burst. This involves the active participation of the enzyme NADPH oxidase
(also known as NOX2 in humans), as well as myeloperoxidase. These enzymes are located
in the phagolysosome membranes of neutrophils [23]. Secretion of cytochrome (one of the
components of the electron transport chain) catalyses the one electron reduction in oxygen
to superoxide anions. Superoxide anions are very reactive, being able to spontaneously
recombine with other molecules, producing reactive free radicals. As a result, releasing of
reactive oxygen species (ROS), superoxide anion (O2

−) and hydrogen peroxide (H2O2) can
lead to direct microbial killing [18].

1.6. NETosis

Finally, another impressive defence mechanism of neutrophils is their ability to release
Neutrophil Extracellular traps (NETs), in which neutrophils can expel their contents to the
exterior, including DNA chromatin and histones, as well as granule proteins (including
MPO, NE, azurocidin, proteinase 3, cathelicidin), creating a very complex extracellular struc-
ture that can, as per its name, entrap and finally kill bacteria and other microorganisms [24].

1.7. The Role of Neutrophils in Sterile Inflammation

The innate immune system is activated through signalling via pattern recognition
receptors (PRRs), as they recognise pathogen-associated molecular patterns (PAMPs). Ex-
amples of PRRs are the membrane receptors Toll-like receptors (TLR), and the intracellular
receptors NOD-like receptors (NLRs). After recognition of a ligand/protein this will
activate internal downstream signalling pathways, typically involving NF-κβ and MAP ki-
nases, resulting in the active participation of leukocytes such as neutrophils. Inflammation
can occur in the absence of infection, described as “sterile inflammation”. PRRs in this case
include damage-associated molecular patterns (DAMPs) and will recognise endogenous
molecules or signals, ultimately triggering the same downstream pathways [25]. Important
mediators of sterile inflammation and recruitment of neutrophils are IL-1 and IL-33 [25–27].
DAMPs linked with neutrophil recruitment include activation of the inflammasome leading
to IL-1β production, as well as mitochondrial activity, since formation of peptides resembles
formyl peptides [28,29].

Sterile inflammation is typical of the process seen in wound repair, as well as au-
toimmune conditions. It is not surprising that neutrophils have long been implicated in
sterile inflammation, since one of the roles of neutrophils is clearance of dead cells and
cell debris. The release of proteases degrades the extracellular matrix (ECM) to allow
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tissue remodelling; and release other factors such as prostaglandins will promote vessel
growth [25,29].

2. Neutrophils during Healthy Pregnancy

Pregnancy involves a complex immunological state that requires a balance between
tolerance and immunosuppression to allow growth of the semi-allogeneic foetus, whilst
maintaining an effective defence mechanism that can protect against infection [30]. There is
acknowledgement of a highly active and regulated immune response with shifts between
predominance of an anti-inflammatory and pro-inflammatory immune milieu, depending
on gestational timepoint and anatomical location [31,32]. In the most simplistic description,
the first trimester is described as a pro-inflammatory phase, to enable implantation. The
second phase resembles an anti-inflammatory phase, where a shift in cytokine bias towards
T helper 2 phenotype is thought to contribute to foetal growth. Thirdly, a pro-inflammatory
switch is seen in preparation for labour, with influx of immune cells into gestational tissue.
Recent signatures from peripheral blood immune cells also support a systemic immune
clock for human pregnancy [33].

2.1. Peripheral Blood Neutrophils in Healthy Pregnancy

There is an increase in white blood cell counts in pregnancy, especially towards
the end; and a further increase at the time of labour [34]. This increase in leukocyte
counts is mainly driven by an increase in peripheral granulocyte numbers [35], with
several studies confirming that pregnancy is associated with a mild neutrophilia [36]. The
immunophenotype of maternal peripheral neutrophils has been shown to reflect increased
activation during pregnancy compared to non-pregnant women. Increased capacity for
phagocytosis [37,38], increased ROS production [4,39,40], and arginase metabolism [41]
have all been demonstrated in peripheral blood neutrophils of pregnant women compared
to non-pregnant controls. Furthermore, response to common pathogens associated with
an infectious aetiology of preterm birth is heightened in neutrophils taken from pregnant
women compared to non-pregnant controls [42].

We have previously also demonstrated that a subtype of neutrophils, LDGs, are
present in the peripheral blood of pregnant women. These cells have enhanced arginase
expression, and we have shown that this contributes to T cell hypo-responsiveness, which
may contribute to the relative immunosuppression seen in pregnancy [43]. Furthermore,
we have shown an increase in circulating LDGs in pregnancy, compared to non-pregnant
controls, with increased expression of CD15 and CD16 [44]. Furthermore, we have reported
that LDGs taken from maternal peripheral blood at term, preceding the onset of labour, are
more activated than NDGs with increased CD15, CD66b and CD63 expression, consistent
with exhibiting a pro-inflammatory phenotype [45].

The mechanism and rationale for the increase in activity of peripheral blood neu-
trophils, especially LDGs is not fully understood. Some explanation for the increase in
circulating cells comes from a combined effect of increased bone marrow production, con-
sistent with an increase in circulating immature granulocytes [46], and impaired neutrophil
apoptosis [10]. Increased concentrations and activation are likely to provide an impor-
tant pregnancy related mechanism for enhancing the innate immune response, whilst
compensating for the attenuation of the cell mediated immune response [47]. It has also
been postulated that an enhanced systemic inflammatory response in pregnancy could be
mediated by particulate debris or soluble products derived from the placenta [48].

2.2. Neutrophils at the Maternal–Foetal Interface in Healthy Pregnancy

Neutrophils are detected in the decidua of healthy human pregnancy from as early
as the first trimester. It is thought that decidual neutrophils play a key role in tissue
remodelling and placental vascularization-like spiral artery remodelling [49]. Detection of
neutrophils in amniotic fluid is also seen and increases with advancing gestational age [50].
Their presence is likely to ensure protection against any invading pathogens in a highly
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sterile environment, to protect the growing foetus. In contrast, there is sparse distribution
of neutrophils in myometrium and the cervix prior to the onset of labour [51,52].

3. The Role of Neutrophils in Human Term Labour

Successful pregnancy requires uterine quiescence, the foetus to be contained in the
amniotic sac, and the cervix to remain long and closed [53,54]. The process of parturition
requires the onset of uterine contractions, rupture of the foetal membranes, and dilatation
of the cervix. This ultimately leads to delivery of the foetus and the placenta, and sub-
sequent involution of the uterus and tissue repair of the cervix. These events are driven
by mechanical, inflammatory, and endocrine processes, whose regulation are complex
and interlinked [55,56]. These key processes depend on pro-labour mediators such as
COX-2, prostaglandins, matrix metalloproteinases and pro-inflammatory cytokines such as
IL-8 [57–59], all of which can be produced by neutrophils [60–63]. Despite the triggers of
term labour being poorly understood, it is associated with both systemic and local sterile
inflammation, with much evidence to support a functional role for neutrophils. Figure 3
illustrates the physiological processes and their anatomical locations where neutrophils are
considered to play a key role in term birth.

3.1. Peripheral Blood Neutrophils and Term Labour

The onset of labour is consistently associated with neutrophilia [12,64]. Furthermore,
peripheral blood neutrophils taken from women in labour show signs of increased ac-
tivation compared to women not in established labour [11]. In addition, an increase in
markers of migration such as CD11a/b and CD62L is seen in vivo, and in vitro studies
have confirmed the increased migratory capacity of neutrophils taken from women in
labour [12,64]. Taken together, this implies they are primed for migration to sites such as
the maternal–foetal interface and the cervix to play a role in the processes required for
labour, such as tissue remodelling.

3.2. Neutrophils and the Uterus in Term Labour

Neutrophil infiltration of the myometrium is seen during labour [52,61] and un-
surprisingly this coincides with an increase in cell adhesion molecule expression to aid
transmigration [12]. Expression of the chemoattractant CXCL8 mRNA was found to be
higher in myometrium of women at term during labour compared to term not in labour,
which may explain in part the increased abundance of neutrophils during labour [65].
Consistent with this, a parallel increase in IL-8 concentrations and neutrophil counts are
seen in the lower uterine segment in women who are in active labour. This is also associated
with increased concentrations of matrix metalloproteinases 8 and 9 [66]. Transcriptomic
studies have shown increased gene expression in the myometrium of labouring women of
110 genes, clustered into groups reflecting acute inflammation and immune cell traffick-
ing [65]. Immunohistochemistry staining of the cytokines IL-6, IL-8 and TNF-α appear to
be restricted to leukocytes in myometrial biopsies, suggesting immune cell infiltration is
the predominant source of local myometrial inflammation [62].

3.3. Neutrophils and the Foetal Membranes in Term Labour

Leukocytes, including neutrophils, are known to infiltrate foetal membranes at the
time of term labour [61,62], and this is accompanied by an increase in the concentrations
of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8 [61,62], and pro-labour mediators
such as COX-2 and PGE2 synthases [67,68].
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Figure 3. The role of neutrophils in term birth and microbial-driven preterm birth. The number of
circulating peripheral blood neutrophils increase during healthy pregnancy. Neutrophils can migrate
into tissue following a chemotactic gradient. Term labour (left) is associated with infiltration of neu-
trophils in the lower uterine segment, foetal membranes and cervix. Their detection is accompanied
by an increase in cytokines such as IL-8 and MMPs participating in the degradation of the extracellular
matrix, therefore contributing to tissue remodelling. Neutrophils are also a source of COX-2 and
PGE2, therefore can contribute to uterine contractility membrane activation and cervical dilation.
In cases of infection (right), neutrophils are detected in foetal membranes and amniotic fluid, along
with an increase in pro-inflammatory mediators. Ex vivo experiments using neutrophils demonstrate
their capacity to perform phagocytosis, NETosis and release of pro-inflammatory mediators. Finally,
an adverse vaginal microbial composition is associated with an increase in cervical neutrophils,
inflammatory mediators and complement activation. Image created with Biorender.com.

3.4. Neutrophils and Cervical Remodelling in Term Labour

To facilitate vaginal delivery, cervical dilation is one of the processes that occurs during
labour. It is a complex process involving softening, effacement and ripening of the cervix.
Biochemical changes are required, including a decline in collagen synthesis, an increase
in collagenase activity, local immune cell infiltration, and increased concentrations of
cytokines and prostaglandins [69]. Several studies have demonstrated cervical infiltration of
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neutrophils from biopsies taken at the time of labour [52,61,66,70]. Furthermore, the content
of the cervical mucous plug is rich in neutrophils [71]. There are conflicting opinions about
the importance of cervical neutrophils in causing the cervical changes required for labour,
since not all human and murine studies have demonstrated increased neutrophil density in
the presence of cervical ripening [52,72]. Despite this, the key mediators of cervical ripening
are products of neutrophil activation and have been shown to co-localise in association
with neutrophil infiltration. IL-8, a pro-inflammatory cytokine that is a chemoattractant
and activates neutrophils, is increased in the cervix at the time of labour [52,73]. Matrix
metalloproteinases, which are contents of neutrophil granules, are also increased in the
cervix at the time of labour [74] and contribute to collagen degradation during cervical
ripening [66,73,75].

4. The Role of Neutrophils in Preterm Labour

Preterm birth (PTB) is defined as a birth occurring before 37 completed weeks of
pregnancy and can be further classified as extremely preterm (<28 weeks), very preterm
(28–32 weeks), and moderate to late preterm (32–36 weeks). There are 15 million babies born
preterm each year, with global rates averaging 10%, although significant variations (5–18%)
exist depending on geographical location [76]. PTB is the biggest cause of childhood
mortality under the age of 5, with morbidity and mortality increasing with decreasing
gestational age at delivery [77]. Roughly two thirds of births are spontaneous, with women
presenting either with preterm prelabour rupture of membranes (PPROM), or with uterine
contractions and cervical dilation. The causes of preterm birth are multifactorial, but
the most common causal factors are infection and/or inflammation. Extreme and very
preterm birth are most likely to have evidence of infection and/or inflammation, and babies
born with evidence of foetal inflammatory response have a worse prognosis for any given
gestational age.

Since neutrophils play a major role in infection and inflammation, they are also likely
to play a key role in infection and inflammation in the context of preterm birth. The most
common source of intrauterine infection is ascending pathogenic microbes from the cervical-
vaginal interface [78]. The presence of intrauterine infection is associated with neutrophil
infiltration and pro-inflammatory cytokine production [79]. PPROM often presents with or
leads to clinical signs of chorioamnionitis, with neutrophil invasion of the chorioamnion
being the hallmark of histological chorioamnionitis [80]. Evidence also exists to support the
role of neutrophils in driving local inflammation at the cervical-vaginal interface in women
who deliver preterm [7,81–83].

Inflammation in the absence of infection, also referred to as sterile inflammation, has
also been widely reported in the context of preterm birth [84–86]. DAMPs, also known as
alarmins, are endogenous molecules that send a danger message as part of a response to
inflammation. Alarmins that have been commonly associated with preterm labour include
high mobility group box 1 (HMGB1), IL-1α, and cell free DNA. HMGB1 [87,88] and IL-1
α [89,90] concentrations are higher in amniotic fluid of women who have evidence of sterile
inflammation and deliver preterm. Cell free DNA activates Toll-like receptor 9 (TLR-9),
and animal models support the concept of cell free DNA leading to preterm delivery via
leukocyte migration and inflammation at the maternal–foetal interface [91,92].

The more recent ability to interrogate the role of microbial communities in a culture
independent way by utilising next generation sequencing may divert us away from the
concept of sterile inflammation alone in driving preterm birth. Figure 3 illustrates the
pathological processes and their anatomical locations where neutrophils are considered to
play a key role in preterm birth.

4.1. The Role of the Vaginal Microbiome and Ascending Infection/Inflammation

The vaginal microbial community is typically dominated by Lactobacillus spp. in
women of reproductive age. Changes to the homeostatic state can lead to dysbiosis, with
expansion of pathogenic microorganisms commonly associated with bacterial vaginosis,
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such as Gardnerella vaginalis. Healthy pregnancy is associated with the dominance of
Lactobacillus spp., and increased stability in the vaginal microbial composition, due to the
influence of increased concentrations of oestrogen [93–95]. The last decade has led to a
vast increase in our understanding of which microbial communities are associated with
protection against preterm birth, and which are associated with increased risk. Consistently,
it has been shown that vaginal microbial communities dominated by Lactobacillus crispatus
are associated with a lower risk of preterm birth, whereas a dominance of Lactobacillus iners,
and bacterial vaginosis (BV) associated taxa such as Gardnerella, Ureaplasma, Prevotella and
Mycoplasma is associated with a higher risk [96,97].

The vaginal microbiome at the time of rupture of membranes is also highly diverse,
with general reduction in Lactobacillus spp. and increased richness; with typical predom-
inance of taxa from non-lactobacilli and heterogenous communities (community state
type IV, (CST IV)), such as G. vaginalis, Meghasphaera, Prevotella, etc. [98–101].

Evidence is emerging supporting the role of microbial-induced inflammation in modi-
fying risk, with higher cervical-vaginal concentrations of cytokines such as IL-8, IL-6 and
IL-1β and complement proteins C3b, C5 and C5a seen in association with in these high-risk
vaginal microbial signatures [102–104]. It is plausible, that the predominant leukocyte
influencing the local immune milieu is the neutrophil, with early studies beginning to
support this [105–107].

4.2. Peripheral Blood Neutrophils and Preterm Labour and PPROM

Products of the microbiota can be translocated into the circulation, priming and en-
hancing neutrophil’s function [108]. The use of peripheral blood neutrophil concentrations
as a predictor of preterm birth has been explored in women presenting in threatened
preterm labour and PPROM, using the neutrophil-to-lymphocyte ratio (NLR) and total
neutrophil counts [109,110]. Several studies show an increase in neutrophil counts and the
NLR in women who subsequently deliver preterm [12,111]. Peripheral blood neutrophils
exhibit a more activated immunophenotype in women who deliver preterm. Gervasi et al.
collected peripheral blood from women who had a healthy pregnancy and subsequent
term labour and compared the granulocyte phenotype with women who delivered preterm.
Using flow cytometry, they identified that granulocytes expressed higher levels of CD11b,
CD15 and CD66 in women who delivered preterm [112]. Similarly, Yuan and colleagues
also assessed the mean fluorescence intensity (MFI) of cell surface activation markers and
adhesion molecules; CD11a, CD11b, CD62L were more highly expressed in women who
delivered preterm compared to term [12]. In vitro assays demonstrate that neutrophils
are the leukocytes with the greatest capacity to migrate, and that migration is highest in
neutrophils taken from women with PPROM or in preterm labour, compared to women
not in labour [113]. This supports priming of neutrophils in the periphery to facilitate
migration to gestational tissue as part of the pathological processes of preterm parturition.

4.3. Foetal Membrane and Amniotic Fluid Neutrophils in Preterm Labour and PPROM

Chorioamnionitis, which refers to inflammation of the foetal membranes is observed
in over 40% of cases of all preterm births, but as high as 94% in women who deliver
between 21–24 weeks [79,114,115]. It is more commonly associated with PPROM, and
with amniotic fluid cultures positive for bacteria [79]. Histological evidence of chorioam-
nionitis is characterised by maternal peripheral neutrophil infiltration of the chorioamnion.
Several studies have confirmed that the most significant source of neutrophils is from
the mother [80,116,117] although evidence also exists to suggest some contribution from
the foetus [117]. The neutrophils migrate towards a chemotactic gradient, with in vitro
evidence demonstrating the chemotactic effect of both unstimulated and LPS stimulated
foetal membranes [118]. Conditioned media from LPS stimulated foetal membranes leads
to the release of cytokines, chemokines, and reactive oxygen species from neutrophils, as
well as neutrophil degranulation and NET release [118]. Additionally, explants from foetal
membranes from both term [119] and preterm [120] pregnancies reveal complement activa-
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tion, as well as presence of pro-inflammatory cytokines (IL-6, IL-8) and MMPs (MMP-9), all
mediators influencing a pro-inflammatory milieu in foetal membranes, highly likely due to
the local activity of neutrophils. Neutrophils are highly likely to play a predominant role in
influencing the pro-inflammatory milieu in foetal membranes.

Amniotic fluid also contains inflammatory mediators and immune cells, that can
be used clinically to establish the presence of intra-amniotic inflammation and infection.
Amniotic fluid cytokines such as IL-8, IL-6, IL-1β [121], and complement proteins C5a and
C3a [122,123] are increased in women who deliver preterm with or without intra-amniotic
infection. Levels of MMP-8 [124] were higher in women with microbial invasion of the
intra-amniotic cavity (MIAC) who ended up delivering preterm, compared to women
who delivered at term. Neutrophil elastase was also reported in cases of PPROM, with
even higher levels if they also had MIAC [125]. These immune mediators are likely to
reflect activation of local neutrophils in response to ascending pathogens. Ex vivo studies
demonstrate that amniotic fluid neutrophils can phagocytose bacteria typically associated
with MIAC (S. agalactiae, U. urealyticum, G. vaginalis, E. coli) [126]. They are also likely to be
able to perform NETosis, given that amniotic fluid neutrophils are surrounded by bacteria
and a NET-like structure when taken from women with microbial culture positive amniotic
fluid [127,128].

RNA sequencing of neutrophils and macrophages isolated from amniotic fluid from
women with MIAC has revealed the cell types have different genes that are upregulated
and downregulated [85], suggesting that even if both cell types are present, they are
implicated in different roles. Neutrophils were enriched for “phagosome” and NOD-like
receptor pathways. The same study compared the transcriptome of neutrophils retrieved by
amniocentesis between women who deliver at term (n = 2) and preterm (n = 4). Although
both clinical groups displayed an abundant inflammatory response (as determined by
concentrations of IL-6 and white cell count), a greater transcriptional activity was observed
in women who delivered preterm [85].

Funisitis, inflammation of the umbilical cord (including the umbilical artery, vein and
Wharton’s jelly) reflects the foetal inflammatory response, and histology reveals infiltration
of foetal-derived neutrophils [79]. The clinical counterpart is the foetal inflammatory
syndrome (FIRS), which is characterised by high levels of levels of IL-6 in cord plasma and
is correlated with worse neonatal outcomes [129].

4.4. Neutrophils and Cervical Remodelling in Preterm Term Labour

Inflammatory mediators in cervical-vaginal fluid (CVF) have frequently been reported
to serve as potential biomarkers for the prediction of preterm birth [130]. The goal for
vaginal microbial health is dominance of Lactobacillus spp. with L. crispatus particularly
protective against adverse pregnancy outcomes (including PPROM, cervical shortening and
sPTB) [101,102,131,132]. In contrast Lactobacillus depletion and high diversity vaginal micro-
biota [94,103,131,133], or dominance of L. iners [131] are associated with an increased risk
of PPROM and sPTB. Dysbiosis and Lactobacillus depletion has been associated with higher
concentration of CVF cytokines and chemokines (ICAM-1, IL-1β, GM-CSF, TNF-α, IL-8,
IL-6) [102–104,134] proteases (MMP-1, MMP-8) [102,135], complement (C3b, C5) [104,136]
and β defensin [137] in the context of preterm birth.

Many of these inflammatory mediators are chemoattractants or products of activated
neutrophils. Neutrophils can be detected in vaginal fluid in cases of bacterial vaginosis [138,139]
and they exhibit a higher expression of CD16 (Fc receptor) [139]. In term labour, neutrophil
presence correlates with IL-8 levels [140]. In the context of PTB, their presence has been
associated with granulocyte elastase [81], and with a higher vaginal pH and decreased presence
of lactobacilli [141].

There is a paucity of studies examining the immunophenotype of neutrophils at
the cervical-vaginal interface in the context of preterm labour, which is likely due to
the challenges of sampling. A study by Hunter et al. sampled 120 women at high risk
of preterm birth between 12–25 weeks and found that cervical neutrophils, although
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not always present, were the most abundant immune cell type at the cervical-vaginal
interface [106]. Furthermore, in women with leukocytes present, higher concentrations of
CVF IL-8, IL-6 and IL-1β were seen. No statistically significant differences were seen in
neutrophil concentrations between women who delivered preterm compared to at term,
however the numbers of preterm deliveries were small (n = 18). Mohd Zaki et al. have also
reported that neutrophils are the predominant leukocyte population at the cervical-vaginal
interface of women at high risk of preterm birth [105]. No significant differences were seen
in neutrophil concentrations between women who delivered at term compared to preterm,
however the study was likely to be underpowered for this outcome as only six women
delivered preterm. RNA-seq was performed on cervical neutrophils from a subset of the
cohort (n = 9). Despite small numbers, the expression of genes involved in neutrophil
activation and degranulation negatively correlated with the presence of G. vaginalis and
positively correlated with the presence of L. iners in matched vaginal swabs. We have
shown that in women at high risk of preterm birth, neutrophils are more likely to be present
at the cervical-vaginal interface if the microbial composition is one of high risk of preterm
birth (CST III/L. iners, or CST IV, diverse), compared to low risk (CST I/L. crispatus, CST
II/L. gasseri, CST V/L. jensenii) [107]. Furthermore, in women that have detectable live
cervical neutrophils, there are higher concentrations of pro-inflammatory mediators such
as C3b, C1q and C4b in the cervical-vaginal fluid. Taken together, these data suggest a
plausible role for cervical neutrophils in microbial driven cervical shortening and PTB [107].

5. Conclusions

Neutrophils are polymorphonuclear cells and are the most predominant circulating
innate immune cells. They play a key role in both inflammation and infection, with effector
functions that lead to direct and indirect cell death and microbial clearance. Activated neu-
trophils secrete pro-inflammatory mediators such as cytokines, proteases and collagenases,
and pro-labour mediators such as COX-2 and PGE2. These mediators are required for the
physiological processes of healthy term labour; cervical remodelling, uterine contractil-
ity, and foetal membrane rupture. However, in cases of microbial driven preterm birth,
the premature recruitment of neutrophils into the cervix, uterus and foetal membranes,
combined with increased activation, are likely to play a key role in triggering PPROM
and PTB. An improved understanding of the functional role of neutrophils in the patho-
physiology of preterm labour could lead to the development of novel predictive tools and
therapeutic strategies.

Author Contributions: Conceptualization L.S. and B.G.-M.; writing—original draft preparation, L.S.
and B.G.-M.; writing—review and editing, I.M. and P.K. All authors have read and agreed to the
published version of the manuscript.

Funding: B.G.M. is funded by the March of Dimes (WSCRP76171) and L.S. is funded by The Parasol
Foundation (DRP2122_05). This work was also supported by the National Institute for Health
Research Comprehensive Biomedical Research Centre at Imperial College Healthcare NHS Trust and
Imperial College London. The views expressed are those of the authors and not necessarily those of
Imperial College, the NHS, the NIHR or the Department of Health.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Acknowledgments: Figures were created with BioRender (www.biorender.com, accessed on 30 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

www.biorender.com


Life 2022, 12, 1512 13 of 18

References
1. Liew, P.X.; Kubes, P. The Neutrophil’s Role During Health and Disease. Physiol. Rev. 2019, 99, 1223–1248. [CrossRef] [PubMed]
2. Xie, X.; Shi, Q.; Wu, P.; Zhang, X.; Kambara, H.; Su, J.; Yu, H.; Park, S.-Y.; Guo, R.; Ren, Q.; et al. Single-Cell Transcriptome

Profiling Reveals Neutrophil Heterogeneity in Homeostasis and Infection. Nat. Immunol. 2020, 21, 1119–1133. [CrossRef]
3. Elghetany, M.T. Surface Antigen Changes during Normal Neutrophilic Development: A Critical Review. Blood Cells. Mol. Dis.

2002, 28, 260–274. [CrossRef] [PubMed]
4. Elghetany, M.T.; Lacombe, F. Physiologic Variations in Granulocytic Surface Antigen Expression: Impact of Age, Gender,

Pregnancy, Race, and Stress. J. Leukoc. Biol. 2004, 75, 157–162. [CrossRef] [PubMed]
5. Lakschevitz, F.S.; Hassanpour, S.; Rubin, A.; Fine, N.; Sun, C.; Glogauer, M. Identification of Neutrophil Surface Marker Changes

in Health and Inflammation Using High-Throughput Screening Flow Cytometry. Exp. Cell Res. 2016, 342, 200–209. [CrossRef]
[PubMed]

6. Cloke, T.; Munder, M.; Taylor, G.; Müller, I.; Kropf, P. Characterization of a Novel Population of Low-Density Granulocytes
Associated with Disease Severity in HIV-1 Infection. PLoS ONE 2012, 7, e48939. [CrossRef]

7. Deng, Y.; Ye, J.; Luo, Q.; Huang, Z.; Peng, Y.; Xiong, G.; Guo, Y.; Jiang, H.; Li, J. Low-Density Granulocytes Are Elevated in
Mycobacterial Infection and Associated with the Severity of Tuberculosis. PLoS ONE 2016, 11, e0153567. [CrossRef] [PubMed]

8. Yizengaw, E.; Getahun, M.; Tajebe, F.; Cruz Cervera, E.; Adem, E.; Mesfin, G.; Hailu, A.; Van der Auwera, G.; Yardley, V.;
Lemma, M.; et al. Visceral Leishmaniasis Patients Display Altered Composition and Maturity of Neutrophils as Well as Impaired
Neutrophil Effector Functions. Front. Immunol. 2016, 7, 517. [CrossRef] [PubMed]

9. Denny, M.F.; Yalavarthi, S.; Zhao, W.; Thacker, S.G.; Anderson, M.; Sandy, A.R.; McCune, W.J.; Kaplan, M.J. A Distinct Subset
of Proinflammatory Neutrophils Isolated from Patients with Systemic Lupus Erythematosus Induces Vascular Damage and
Synthesizes Type I Interferons. J. Immunol. 2010, 184, 3284–3297. [CrossRef]

10. von Dadelszen, P.; Watson, R.W.G.; Noorwali, F.; Marshall, J.C.; Parodo, J.; Farine, D.; Lye, S.J.; Ritchie, J.W.K.; Rotstein, O.D.
Maternal Neutrophil Apoptosis in Normal Pregnancy, Preeclampsia, and Normotensive Intrauterine Growth Restriction. Am. J.
Obstet. Gynecol. 1999, 181, 408–414. [CrossRef]

11. Zhang, J.; Shynlova, O.; Sabra, S.; Bang, A.; Briollais, L.; Lye, S.J. Immunophenotyping and Activation Status of Maternal
Peripheral Blood Leukocytes during Pregnancy and Labour, Both Term and Preterm. J. Cell. Mol. Med. 2017, 21, 2386–2402.
[CrossRef]

12. Yuan, M.; Jordan, F.; McInnes, I.B.; Harnett, M.M.; Norman, J.E. Leukocytes Are Primed in Peripheral Blood for Activation during
Term and Preterm Labour†. Mol. Hum. Reprod. 2009, 15, 713–724. [CrossRef]

13. Kolaczkowska, E.; Kubes, P. Neutrophil Recruitment and Function in Health and Inflammation. Nat. Rev. Immunol. 2013, 13,
159–175. [CrossRef]

14. Metzemaekers, M.; Gouwy, M.; Proost, P. Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords.
Cell. Mol. Immunol. 2020, 17, 433–450. [CrossRef]

15. Peiser, L. Phagocytosis: Enhancement. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1–12. ISBN 978-0-470-01590-2.
16. Galindo-Sevilla, N.; Reyes-Arroyo, F.; Mancilla-Ramírez, J. The Role of Complement in Preterm Birth and Prematurity. J. Perinat.

Med. 2019, 47, 793–803. [CrossRef]
17. Futosi, K.; Fodor, S.; Mócsai, A. Neutrophil Cell Surface Receptors and Their Intracellular Signal Transduction Pathways. Int.

Immunopharmacol. 2013, 17, 638–650. [CrossRef]
18. Segal, A.W. How Neutrophils Kill Microbes. Annu. Rev. Immunol. 2005, 23, 197–223. [CrossRef] [PubMed]
19. Faurschou, M.; Borregaard, N. Neutrophil Granules and Secretory Vesicles in Inflammation. Microbes Infect. 2003, 5, 1317–1327.

[CrossRef]
20. Othman, A.; Sekheri, M.; Filep, J.G. Roles of Neutrophil Granule Proteins in Orchestrating Inflammation and Immunity. FEBS J.

2022, 289, 3932–3953. [CrossRef]
21. Maloney, C.G.; Kutchera, W.A.; Albertine, K.H.; McIntyre, T.M.; Prescott, S.M.; Zimmerman, G.A. Inflammatory Agonists Induce

Cyclooxygenase Type 2 Expression by Human Neutrophils. J. Immunol. 1998, 160, 1402–1410.
22. St-Onge, M.; Flamand, N.; Biarc, J.; Picard, S.; Bouchard, L.; Dussault, A.-A.; Laflamme, C.; James, M.J.; Caughey, G.E.;

Cleland, L.G.; et al. Characterization of Prostaglandin E2 Generation through the Cyclooxygenase (COX)-2 Pathway in Human
Neutrophils. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2007, 1771, 1235–1245. [CrossRef] [PubMed]

23. Nguyen, G.T.; Green, E.R.; Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial
Resistance. Front. Cell. Infect. Microbiol. 2017, 7, 373. [CrossRef]

24. Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil
Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [CrossRef]

25. Chen, G.Y.; Nuñez, G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010, 10, 826–837. [CrossRef]
26. Eigenbrod, T.; Park, J.-H.; Harder, J.; Iwakura, Y.; Núñez, G. Cutting Edge: Critical Role for Mesothelial Cells in Necrosis-Induced

Inflammation through the Recognition of IL-1α Released from Dying Cells. J. Immunol. 2008, 181, 8194–8198. [CrossRef] [PubMed]
27. Verri, W.A.; Souto, F.O.; Vieira, S.M.; Almeida, S.C.L.; Fukada, S.Y.; Xu, D.; Alves-Filho, J.C.; Cunha, T.M.; Guerrero, A.T.G.;

Mattos-Guimaraes, R.B.; et al. IL-33 Induces Neutrophil Migration in Rheumatoid Arthritis and Is a Target of Anti-TNF Therapy.
Ann. Rheum. Dis. 2010, 69, 1697–1703. [CrossRef] [PubMed]

http://doi.org/10.1152/physrev.00012.2018
http://www.ncbi.nlm.nih.gov/pubmed/30758246
http://doi.org/10.1038/s41590-020-0736-z
http://doi.org/10.1006/bcmd.2002.0513
http://www.ncbi.nlm.nih.gov/pubmed/12064921
http://doi.org/10.1189/jlb.0503245
http://www.ncbi.nlm.nih.gov/pubmed/14557386
http://doi.org/10.1016/j.yexcr.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/26970376
http://doi.org/10.1371/journal.pone.0048939
http://doi.org/10.1371/journal.pone.0153567
http://www.ncbi.nlm.nih.gov/pubmed/27073889
http://doi.org/10.3389/fimmu.2016.00517
http://www.ncbi.nlm.nih.gov/pubmed/27965662
http://doi.org/10.4049/jimmunol.0902199
http://doi.org/10.1016/S0002-9378(99)70570-3
http://doi.org/10.1111/jcmm.13160
http://doi.org/10.1093/molehr/gap054
http://doi.org/10.1038/nri3399
http://doi.org/10.1038/s41423-020-0412-0
http://doi.org/10.1515/jpm-2019-0175
http://doi.org/10.1016/j.intimp.2013.06.034
http://doi.org/10.1146/annurev.immunol.23.021704.115653
http://www.ncbi.nlm.nih.gov/pubmed/15771570
http://doi.org/10.1016/j.micinf.2003.09.008
http://doi.org/10.1111/febs.15803
http://doi.org/10.1016/j.bbalip.2007.06.002
http://www.ncbi.nlm.nih.gov/pubmed/17643350
http://doi.org/10.3389/fcimb.2017.00373
http://doi.org/10.1126/science.1092385
http://doi.org/10.1038/nri2873
http://doi.org/10.4049/jimmunol.181.12.8194
http://www.ncbi.nlm.nih.gov/pubmed/19050234
http://doi.org/10.1136/ard.2009.122655
http://www.ncbi.nlm.nih.gov/pubmed/20472598


Life 2022, 12, 1512 14 of 18

28. Iyer, S.S.; Pulskens, W.P.; Sadler, J.J.; Butter, L.M.; Teske, G.J.; Ulland, T.K.; Eisenbarth, S.C.; Florquin, S.; Flavell, R.A.;
Leemans, J.C.; et al. Necrotic Cells Trigger a Sterile Inflammatory Response through the Nlrp3 Inflammasome. Proc. Natl.
Acad. Sci. USA 2009, 106, 20388–20393. [CrossRef] [PubMed]

29. Pittman, K.; Kubes, P. Damage-Associated Molecular Patterns Control Neutrophil Recruitment. J. Innate Immun. 2013, 5, 315–323.
[CrossRef] [PubMed]

30. Mor, G.; Aldo, P.; Alvero, A.B. The Unique Immunological and Microbial Aspects of Pregnancy. Nat. Rev. Immunol. 2017, 17,
469–482. [CrossRef]

31. Sykes, L.; MacIntyre, D.A.; Yap, X.J.; Teoh, T.G.; Bennett, P.R. The Th1:Th2 Dichotomy of Pregnancy and Preterm Labour. Mediators
Inflamm. 2012, 2012, 967629. [CrossRef]

32. Racicot, K.; Kwon, J.-Y.; Aldo, P.; Silasi, M.; Mor, G. Understanding the Complexity of the Immune System during Pregnancy. Am.
J. Reprod. Immunol. 2014, 72, 107–116. [CrossRef]

33. Aghaeepour, N.; Ganio, E.A.; Mcilwain, D.; Tsai, A.S.; Tingle, M.; Van Gassen, S.; Gaudilliere, D.K.; Baca, Q.; McNeil, L.;
Okada, R.; et al. An Immune Clock of Human Pregnancy. Sci. Immunol. 2017, 2, eaan2946. [CrossRef]

34. Griffin, J.F.T.; Beck, I. A Longitudinal Study of Leucocyte Numbers and Mitogenesis during the Last Ten Weeks of Human
Pregnancy. J. Reprod. Immunol. 1983, 5, 239–247. [CrossRef]

35. Luppi, P.; Haluszczak, C.; Betters, D.; Richard, C.A.H.; Trucco, M.; DeLoia, J.A. Monocytes Are Progressively Activated in the
Circulation of Pregnant Women. J. Leukoc. Biol. 2002, 72, 874–884. [CrossRef] [PubMed]

36. Chandra, S.; Tripathi, A.K.; Mishra, S.; Amzarul, M.; Vaish, A.K. Physiological Changes in Hematological Parameters During
Pregnancy. Indian J. Hematol. Blood Transfus. 2012, 28, 144–146. [CrossRef] [PubMed]
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