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In order for the cell’s genome to be passed intact from one generation to the next, the events of the
cell cycle (DNA replication, mitosis, cell division) must be executed in the correct order, despite the
considerable molecular noise inherent in any protein-based regulatory system residing in the small
confines of a eukaryotic cell. To assess the effects of molecular fluctuations on cell-cycle progression
in budding yeast cells, we have constructed a new model of the regulation of Cln- and Clb-dependent
kinases, based on multisite phosphorylation of their target proteins and on positive and negative
feedback loops involving the kinases themselves. To account for the significant role of noise in the
transcription and translation steps of gene expression, the model includes mRNAs as well as
proteins. The model equations are simulated deterministically and stochastically to reveal the
bistable switching behavior on which proper cell-cycle progression depends and to show that this
behavior is robust to the level of molecular noise expected in yeast-sized cells (B50 fL volume). The
model gives a quantitatively accurate account of the variability observed in the G1-S transition in
budding yeast, which is governed by an underlying sizerþ timer control system.
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Introduction

The cell cycle is the sequence of events by which a growing cell
replicates all its components and divides them more or less
evenly between two daughter cells, so that each daughter cell
receives the information and machinery necessary to repeat
the process (Murray and Hunt, 1993; Morgan, 2007). The most
important component to be replicated and partitioned to the
daughter cells is the genome. In eukaryotes, the replication
and partitioning of DNA molecules occurs in distinct temporal
phases. During S phase, each double-stranded DNA molecule
(chromosome) is replicated to form a pair of identical sister
chromatids, held together by cohesin proteins. During M
phase, the cell forms a bipolar mitotic spindle, which captures
the replicated chromosomes and aligns them on the meta-
phase plate with one chromatid attached to one pole of the
spindle and its sister attached to the other pole, with the
cohesin proteins maintaining tension between the two. When
the replicated chromosomes are all properly aligned on the
mitotic spindle, the cell activates a protease (called ‘separase’)

that cleaves cohesin, thereby promoting separation of the
sister chromatids to opposite poles of the spindle (a process
called anaphase). Subsequently, in telophase, the cell divides
to form two daughter cells, each containing precisely one copy
of every chromosome.

Three fundamental properties characterize mitotic cell
cycles in eukaryotes. First, the processes of DNA synthesis
and mitosis must alternate with each other for a cell lineage to
maintain its ploidy generation after generation. (That there
exist exceptional polyploid tissues does not detract from
the general applicability of this rule.) In a typical eukaryotic
cell cycle, S and M phases are separated by two gap phases:
G1-S-G2-M. Second, the alternating cycle of S and M must
be balanced with other biosynthetic processes that achieve
two-fold increases of all other cell components. To maintain
a stable and favorable DNA-to-size ratio, a cell lineage must
ensure that, on average, the period of the DNA replication-
division cycle is exactly balanced by the mass-doubling time of
the lineage. Third, a cell must be able to halt progression
through the cell cycle if any problems arise in the processes of
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DNA synthesis or mitosis. For example, if DNA is damaged by
radiation or chemical mutagens in G1, a cell will delay entry
into S phase until the damage is repaired. If completion of DNA
synthesis is delayed for any reason, a cell will not enter mitosis
prematurely. If replicated chromosomes have trouble aligning
on the mitotic spindle, cohesins will not be cleaved prema-
turely. These ‘checkpoint’ mechanisms are essential in
maintaining the integrity of the genome from one generation
to the next.

An overriding property of this control system is robust
operation in the face of molecular noise. Cell-cycle events are
controlled by a network of genes, mRNAs and proteins that
react with one another within the small confines of a single
cell. A yeast cell, with a volume measured in femtoliters
(10�15 l) contains, typically, one copy of the gene for each
element of the network, a handful of mRNA molecules
transcribed from that gene, and a few hundreds to thousands
of protein molecules carrying out the gene’s function. With
such small numbers of molecules, considerable fluctuations in
molecule numbers are unavoidable. The control machinery
must carry out its three crucial functions reliably and robustly
in the face of this noise.

Although cell-cycle progression is robust in respect to its
fundamental properties, it is sloppy in many other respects.
Yeast cells vary considerably in age and size at division;
apparently it does not matter so much how long the cycle takes
or how big the cell is when it finally divides, as long as its DNA
is accurately replicated and precisely partitioned during
mitosis. Variability in age and size at division is due partly to
intrinsic noise in the molecular regulatory system and partly to
extrinsic noise such as variability in the cell’s local environ-
ment and inequities in the cell-division process.

Experiments can delineate precisely how variable are
measurable properties of the cell cycle, but they cannot fully
explain the molecular basis of robust-yet-variable progression
through the cell cycle. To that end, one must build a
biophysical model that accurately accounts for both intrinsic
and extrinsic sources of noise. Of the two, intrinsic noise is
more difficult to model adequately. The problem is that the
molecular regulatory network is complicated and its compo-
nents are present in widely different abundances. Of the many
ways to describe molecular fluctuations, it is not entirely clear
which theoretical approach to choose. Sveiczer et al (2001)
added extrinsic noise by introducing sloppiness in the division
process in a deterministic cell-cycle model. Steuer (2004)
added Gaussian white noise to a deterministic model in order
to explore the role of intrinsic noise in the cell cycle. Zhang et al
(2006), Braunewell and Bornholdt (2007), Okabe and Sasai
(2007) and Ge et al (2008)have developed stochastic models of
the yeast cell cycle based on a deterministic Boolean model
proposed by Li et al (2004). These models explored the
robustness of the cell-cycle control network under the
influence of stochastic fluctuations, but they were not
compared quantitatively to experimentally observed statistics
of the yeast cell cycle.

A major obstacle to building a quantitatively accurate
stochastic model of the cell cycle is choosing rate laws for
the reactions of the regulatory network. Cell-cycle regulation
relies on positive feedback loops that create bistable switches
and negative feedback loops that flip the switches on and off

(Tyson and Novak, 2008). To generate these dynamic control
properties, the reaction network must exhibit a certain amount
of ‘nonlinearity’ in the reaction kinetics. The source of this
nonlinearity is unclear. Many modelers, Novak and Tyson
chief among them, have eschewed mass-action kinetics and
used highly nonlinear, phenomenological rate laws like
Hill kinetics or zero-order ultrasensitivity (Goldbeter and
Koshland, 1981). These phenomenological rate laws violate
the assumptions underlying Gillespie’s stochastic simulation
algorithm (SSA), which is widely used to predict the effects of
molecular noise when molecule numbers are low (Gillespie,
1976). (Gillespie’s algorithm assumes that reaction rates are
described by mass-action kinetics.)

In this situation, we have two options: (1) to use SSA with
propensities computed from phenomenological rate laws
instead of mass-action kinetics, to gain some impression of
the effects of molecular noise on the control system, even
though this approach may not produce quantitatively accurate
results or (2) to replace the phenomenological rate laws by
more complex sets of pseudo-elementary (mass-action)
reactions that can be reliably simulated by SSA. Mura and
Csikasz-Nagy (2008) have chosen the first option, applying
SSA to a comprehensive deterministic model of the budding
yeast cell cycle proposed by Chen et al (2004). Sabouri-Ghomi
et al (2008) and later Kar et al (2009) have taken the second
approach, exploring the roles of noise in a ‘toy’ model of the
budding yeast cell cycle (Tyson and Novak, 2001), which can
be reformulated in pseudo-elementary reactions. In particular,
Kar et al (2009) studied the effects of intrinsic and extrinsic
noise on the statistics of size and cycle time distributions in
yeast cell populations. They concluded that intrinsic noise
makes a considerably greater contribution to cell-cycle
variability than extrinsic noise, and that mRNA abundances
are the major source of intrinsic noise. To keep variability
within observed bounds, Kar et al had to assume that mRNA
molecules are more abundant and less stable than implied by
recent high-throughput studies of budding yeast mRNAs
(Arava et al, 2003; http://web.wi.mit.edu/young/expression/
halflife2.html).

We set out to extend these results by developing a more
comprehensive model of the cell-cycle control network, based
only on mass-action kinetics. We did not follow the approach
of Sabouri-Ghomi et al (2008) and Kar et al (2009), who
‘unpacked’ the Michaelis–Menten kinetics in earlier models.
Instead, we have followed the lead of Qu et al (2003), who
proposed that multisite phosphorylation of target proteins by
cyclin-dependent kinase (CDK) proteins is the likely source of
nonlinear kinetic effects in cell-cycle control mechanisms. This
idea has been clearly explicated by Kapuy et al (2009), who
noted that multisite phosphorylation sequences may be
modeled by mass-action rate laws that are suitable for either
deterministic simulation (by stiff integrators) or stochastic
simulation (by SSA). In this paper, we implement a generic
model of cell-cycle controls (Tyson and Novak, 2008), using
multisite phosphorylation sequences wherever appropriate.
Using realistic estimates of mRNA and protein abundances, we
carry out exact stochastic simulations of noise in various
phases of the cell cycle and compare our results to recent
experimental measurements (Di Talia et al, 2007) of variability
in progression through G1 phase in budding yeast cells.
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The budding yeast cell cycle

In order to place our results in context, we briefly summarize
some specific details of the physiology and molecular biology
of the budding yeast cell cycle (for more details see Pringle and
Hartwell, 1981; Nasmyth, 1996; Lew et al, 1997; Mendenhall
and Hodge, 1998). Saccharomyces cerevisiae has an unusual
style of growth and division. Mother cells produce buds that
balloon out from their sides. As the bud grows, the mother cell
replicates its chromosomes. Mitosis occurs in the neck
between mother and bud. At anaphase, one set of sister
chromatids goes to the mother cell, and the other set goes to
the bud. The cell divides at the neck to produce a large mother
cell and a small daughter cell. Soon after birth, the mother cell
repeats the process. The daughter cell, on the other hand, has
a long G1 period before producing her first bud and entering
S phase. Years ago, Hartwell et al (1974) identified this
characteristic commitment step in the budding yeast cell cycle
(bud initiation, onset of DNA synthesis and spindle pole body
duplication) and called it ‘START.’

In budding yeast, the central regulator of the cell cycle is a
cyclin-dependent protein kinase (Cdc28) encoded by the
CDC28 gene. The activity of Cdc28 depends on the availability
of a regulatory partner, a cyclin molecule of type Cln1–3 or
Clb1–6. When associated with cyclin, Cdc28 phosphorylates
different target proteins and thereby triggers crucial events of
the cell cycle. Right after birth, in early G1 phase, only Cln3 is
available to partner with Cdc28. When enough of this
particular dimer is formed (Polymenis and Schmidt, 1997), it
activates two transcription factors, SBF, a heterodimer of Swi4
and Swi6 (Tyers et al, 1993), and MBF, a heterodimer of Mbp1
and Swi6 (Wijnen et al, 2002). These transcription factors
drive production of Cln1,2 and Clb5,6 proteins (Dirick and
Nasmyth, 1991; Koch et al, 1993). In early G1 phase, SBF is not
active because it is sequestered by Whi5 (de Bruin et al, 2004;
Costanzo et al, 2004). As Cln3–Cdc28 complex accumulates
beyond a threshold level, it phosphorylates Whi5 multiple
times (there are 12 consensus CDK phosphorylation sites in
Whi5 and 10 are phosphorylated in vivo; Wagner et al, 2009).
Phosphorylated Whi5 translocates from nucleus to cytoplasm,
where it is no longer available to bind to and inhibit SBF
(de Bruin et al, 2004; Costanzo et al, 2004). How MBF activity
is regulated is still poorly understood; it may be through
phosphorylation of Swi6 by Cln3-dependent kinase (Wijnen
et al, 2002). The four ‘start cyclins’ (Cln1,2 and Clb5,6)
transcribed by SBF and MBF initiate the processes of budding,
spindle pole body duplication and DNA replication.

These start cyclins also inactivate Sic1 and Cdh1 (Schneider
et al, 1996; Zachariae et al, 1998), which are inhibitors of Clb1-
6 in G1 phase. Sic1 is a stoichiometric inhibitor of Clb–Cdc28
complexes (Schwob et al, 1994). Start cyclins phosphorylate
Sic1 multiple times, and once Sic1 is hyperphosphorylated, it
is degraded by SCF-mediated proteolysis. Degradation of Sic1
leads to increasing levels of Clb5 and -6, which initiate DNA
synthesis in budding yeast (Verma et al, 1997). Cdh1, in
conjunction with the anaphase promoting complex (APC),
polyubiquitinates Clb proteins, causing them to be rapidly
degraded by proteasomes (Visintin et al, 1997; Schwab et al,
1997). Start cyclins phosphorylate Cdh1 multiple times (there
are 11 CDK phosphorylation sites in Cdh1), preventing its

binding with Clb1 and -2. Inactivation of Cdh1 allows Clb1,2
levels to rise to initiate mitosis.

After Cdh1 is depressed and Sic1 is degraded, the rising
activity of Clb1,2–Cdc28 initiates mitotic events and also
inactivates SBF (Amon et al, 1993; Koch et al, 1996), causing a
loss of Cln1,2 from the cell. Clb1,2-kinase also inhibits MBF
activity, but complete inactivation of MBF requires a core-
pressor, Nrm1 (de Bruin et al, 2006). As the level of start
cyclins drops, Cdh1 does not reactivate, because Clb1,2-
dependent kinase keeps Cdh1 phosphorylated and inactive. At
the metaphase–anaphase transition, when all chromosomes
are aligned on the metaphase plate, another ancillary protein
of the APC, Cdc20, is activated. Among the substrates of APC-
Cdc20 are Pds1 (an inhibitor of the protease that cleaves
cohesin) and Clb1-6 (Lim et al, 1998; Shirayama et al, 1999;
Yeong et al, 2000). Clb1,2 protein stores are only partially
depleted by Cdc20-mediated proteolysis in anaphase. Their
complete removal in telophase requires activation of Cdh1,
which is the job of a crucial phosphatase, Cdc14 (Visintin et al,
1998). During most of the cell cycle, Cdc14 is sequestered in
the nucleolus, bound to Net1 in a complex known as regulator
of nucleolar silencing and telophase (RENT) (Shou et al, 1999;
Visintin et al, 1999). At anaphase, Clb1,2-kinase phosphor-
ylates Net1 multiple times (there are six CDK phosphorylation
sites in Net1; Azzam et al, 2004), resulting in the release of
Cdc14 from RENT. Cdc14 moves into both nucleus and
cytoplasm, where it promotes re-establishment of G1 phase
by two mechanisms: (1) it dephosphorylates and activates
Cdh1 (Jaspersen et al, 1999) and (2) it activates Sic1 by
promoting its synthesis and inhibiting its degradation (Visintin
et al, 1998). Active Cdh1 finishes the destruction of Clb1 and
-2, and Sic1 inhibits any remaining Clb-dependent kinase
activity. As a result, cell division is triggered, and the mother
and daughter cells are returned to G1 phase. The only cyclin
that remains in early G1 is Cln3.

The model

Di Talia et al (2007) made careful observations of single
budding yeast cells to measure the variability of specific
cell-cycle events and to investigate the mechanisms control-
ling the START transition. (They defined STARTas the activation
of SBF in late G1 phase.) By mathematical modeling of the
molecular events controlling the yeast cell cycle, we seek to
reconcile the variability observed by Di Talia et al in cell size
and age at START and at the G1-S transition with the vari-
ability expected of the macromolecular regulatory network
in a yeast-sized cell, with B10 mRNA molecules and B1000
protein molecules per gene involved in the network.

The model we propose is based on a general theory of cell-
cycle organization presented in Chen et al (2004) and Tyson
and Novak (2008). In their view, the mitotic B-type cyclins
(Clb1,2) are involved in a power struggle with G1-phase
stabilizers (Cdh1 and Sic1). As described in the previous
section, Cdh1 degrades Clb1,2 and Sic1 inhibits Clb1,2-kinase
activity, whereas the kinases phosphorylate both Cdh1 and
Sic1 and nullify their effects. The mutual antagonism between
these two sets of proteins creates a bistable switch, with an
‘OFF’ state (low Clb-dependent kinase activity) corresponding
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to G1 phase of the cell cycle, and an ‘ON’ state (high Clb-
dependent kinase activity) corresponding to S-G2-M phases of
the cell cycle. The START transition is driven by upregulation of
Cln1,2 and Clb5,6 production, because these cyclins, by
opposing Cdh1 and Sic1, flip the switch from OFF to ON. As
mitotic Clb-dependent kinases rise, they downregulate the
production of Cln1,2 and Clb5,6, which have already served
their purpose (this is a negative feedback loop). Exit from
mitosis, on the other hand, is accomplished by a different
negative feedback loop. High activity of mitotic Clb-kinase
promotes the activation of Cdc20 (which degrades Clb1,2)
(Zhu et al, 2000; Rudner and Murray, 2000) and Cdc14 (which
activates Cdh1 and Sic1) (Azzam et al, 2004), thereby flipping
the switch from ON to OFF. As mitotic cyclins are degraded,
Cdc14 returns to its inactive state. In the next paragraphs we
provide more details about how these feedback loops are
implemented in our mathematical model.

To build a mathematical model of any regulatory network,
one must introduce certain assumptions and simplifications to
limit the complexity of the model while still capturing the
molecular details that are relevant to the experiments under
consideration. In this paper, we are interested primarily in the
statistical properties of populations of budding yeast cells as
they were observed to progress, one-by-one, through the cell-
division cycle by Di Talia et al (2007, 2009), with special
emphasis on a critical event in G1 phase when the cell-cycle
inhibitor, Whi5, is phosphorylated and transported out of the
nucleus. To this end, we must include the interactions among
Whi5, SBF, and the start cyclins (Cln1,2 and Clb5,6) whose
levels of expression are controlled by SBF. In this model
(Figure 1), we have chosen to combine the start cyclins into a
single variable, called ‘ClbS,’ and to ignore the role of MBF, a
second transcription factor whose mode of regulation is still
poorly understood. A crucial role of the start cyclins, in
addition to initiating bud emergence and DNA synthesis, is to
flip the bistable switch (described in the previous paragraph)
from OFF to ON. To model the bistable switch, we combine
the mitotic cyclins into a single variable ‘ClbM’ and the
G1-stabilizers (Cdh1 and Sic1) into a single component with
the properties of Cdh1.

As is commonly done in this field, we assume that Cdc28
subunits are always available to bind to any cyclin partners
that accumulate in the cell. Hence, the model focuses on the
synthesis and degradation of cyclins and ignores fluctuations
in Cdc28 level.

Clb3 and -4 may be involved in DNA replication and help to
promote the G2/M transition (Richardson et al, 1992), but cells
deleted of both CLB3 and CLB4 genes are viable with no
detectable phenotype (Fitch et al, 1992). As not much is
known about their regulation (Mendenhall and Hodge, 1998),
we do not include them in this model of cell-cycle controls.

In order for our model cells to exit mitosis and return to G1,
we must propose a simplified version of the ‘mitotic exit
network’ (Azzam et al, 2004; Stegmeier and Amon, 2004). To
this end we focus attention on the inhibition of Cdc14 by Net1.
Mitotic exit in this model (Figure 1) is driven by phosphoryla-
tion of Net1, which causes Net1 to release Cdc14, allowing free
Cdc14 to flip the bistable switch from ON to OFF. The
phosphorylation of Net1 during anaphase and telophase is a
complex process involving several kinases (Clb2, Cdc5 and

Cdc15) and phosphatases (Cdc14 and Cdc55), an E3-ubiquitin
ligase (APC-Cdc20) and a protease (Esp1), and a G-protein
signaling network (Tem1) (Queralt et al, 2006). We have
reduced this complex machinery to a simple antagonism
between ClbM (phosphorylating Net1) and a constitutively
active phosphatase (Ht1) whose job is to activate Net1. This
highly simplified exit module is sufficient to return mitotic
cells to G1 phase, so that we can study the START transition in
the next cell cycle.

Figure 1 provides additional details about the production of
ClbS at START in our simplified model. In G1 phase, Whi5 binds
to and inhibits the transcription factor SBF that controls
expression of CLBS. In a newborn cell, Cln3 is the only cyclin
available to pair with Cdc28 and phosphorylate Whi5. Cells
need a threshold amount Cln3-kinase activity to counteract the
effect of a phosphatase (Hi5) that keeps Whi5 in its active
(unphosphorylated) form. Newly divided mother cells have
enough Cln3 to phosphorylate Whi5 and to start a new cell
cycle promptly. (Later we will describe a genetic mechanism
that biases mother cells to contain more Cln3 molecules than
daughter cells.) Newborn daughter cells are too small to
execute START (Whi5 phosphorylation and SBF activation). As
the cell grows, enough Cln3 accumulates to prime the
phosphorylation of Whi5. Multiply phosphorylated Whi5
moves from the nucleus to the cytoplasm, releasing some
SBF to upregulate the synthesis of ClbS. Then ClbS-kinase
promotes further phosphorylation of Whi5 and additional
release of SBF. This auto-enhancement by ClbS of its own
production was recently shown by Skotheim et al (2008) to
have a significant function in the START transition.

The cell-division cycle in budding yeast is coupled to cell
growth at the START transition (Hartwell and Unger, 1977;
Johnston et al, 1977; Lord and Wheals, 1980), primarily
through the action of Cln3-kinase (Miller and Cross, 2001;
Cross et al, 2002). In order for the level of Cln3 protein to be
indicative of cell growth, it must be produced at an accelerated
rate relative to other regulatory proteins (in particular, the
phosphatase Hi5 in Figure 1). In our model equations (Table I),
the synthesis rate of Cln3 protein increases quadratically with
cell volume (V2), whereas the synthesis rates of other proteins,
for example, ClbS, ClbM, and Cdc14, are proportional to V.
This assumption is supported by the fact that mRNAs (like CLN3)
with low intrinsic initiation rates experience a proportionally
greater enhancement of translation with increasing availability
of ribosomal precursors (Lodish, 1974). Furthermore, the
translation of CLN3 mRNA molecules is affected by a specific 50

leader sequence that is sensitive to cell growth rate (Polymenis
and Schmidt, 1997). Newcomb et al (2002) showed that the
transcription factor AZF is a glucose-dependent positive
regulator of CLN3; in the presence of glucose, CLN3 mRNA
level rises higher than other mRNAs (e.g. CLN2 mRNA). The
V2 factor is meant to reflect these transcriptional/translational
controls over Cln3 production rate.

The bistable switching behavior that underlies progression
through the cell cycle in our model relies on the mutual
antagonism between ClbM and Cdh1 and on a requirement
that the phosphorylation of Cdh1 depends ultrasensitively on
the ratio of ClbM kinase activity to Cdc14 phosphatase
activity. In earlier models of the yeast cell cycle (Chen et al,
2000, 2004), we relied heavily on zero-order ultrasensitivity

A model of yeast cell-cycle regulation
D Barik et al

4 Molecular Systems Biology 2010 & 2010 EMBO and Macmillan Publishers Limited



(Goldbeter and Koshland, 1981), which depends on saturation
of enzyme by substrate in Michaelis–Menten kinetics. In that
case, the signaling enzyme (say, the kinase) will be all tied up
in the enzyme–substrate complex and will be unavailable to
phosphorylate other target proteins. An alternative mechan-
ism to achieve ultrasensitivity is multisite phosphorylation
(Gunawardena, 2005; Salazar and Hofer, 2007; Kapuy et al,
2009), which works well in the opposite limit, where enzyme
binds only transiently to substrate. The enzyme quickly carries
out phosphorylation (or dephosphorylation) and dissociates
from the substrate. Multisite phosphorylation can be classified
as either processive (each enzyme–substrate encounter results
in multiple phosphorylations of the substrate) or distributive
(each enzyme–substrate encounter results in a single phos-
phorylation event). Multiple phosphorylations can happen in
a specific order (‘ordered’ phosphorylation) or in a random
order (‘disordered’ phosphorylation).

Kapuy et al (2009) have shown that an ordered, distributive,
multisite phosphorylation mechanism can produce very robust,
ultrasensitive, signal-response curves and bistable switching
behavior, and so we adopt this mechanism in our model.
Furthermore, we assume a ‘threshold rule’ on the activity
of multiphosphorylated proteins, that is, the first q phospho-
rylation states (0, 1, y q) are identically active (or inactive)
and the higher phosphorylation states (qþ 1, qþ 2, y N)

are identically inactive (or active). Our assigned values of
N and q for each multiphosphorylated protein are given in
the legend to Figure 1. For example, for Whi5 (N¼6, q¼2) we
assume that the unphosphorylated form (Whi5) and the first
two phosphorylated forms (Whi5P1 and Whi5P2) are ‘active,’
that is, they bind to the unphosphorylated form of SBF to form
the complexes Cmp, CmpP1 and CmpP2 (the phosphorylation
state of Cmp refers to its Whi5 component) and thereby inhibit
CLBS transcription. Higher phosphorylation states of the
complex do not exist, because, we assume, Whi5P3,yWhi5P6

do not bind to SBF. For SBF (N¼4, q¼0), which is
phosphorylated by ClbM, we assume only the free, unpho-
sphorylated form is an active transcription factor, whereas
SBFP1, y, SBFP4 are all inactive forms, as well as SBF
molecules in the complexes Cmp, CmpP1 and CmpP2.

The dynamic properties of the model are governed by 60
differential equations (Table I) involving 71 kinetic parameters
(Table II). Verbal descriptions of the variables and parameters
are provided in Supplementary Tables S1 and S2. The kinetic-
parameter values have been estimated from experimental
measurements as best we are able. The degradation rate
constants for all proteins are calculated from protein half-life
measurements done by Belle et al (2006). We set the synthesis
rate constant for each protein so that the average number of
protein molecules calculated for an asynchronous population

Figure 1 Molecular mechanism for cell-cycle control in budding yeast. A solid arrow represents a chemical reaction and a dotted arrow represents an enzymatic activity
on a reaction. Dashed arrows represent multisite phosphorylation chains. A T-shaped arrow with balls on the cross bar indicates a reversible binding reaction. Parameter
values for multisite phosphorylation/dephosphorylation of regulatory proteins: for Whi5, N¼6 and q¼2; for SBF, N¼4 and q¼0; for Cdh1, N¼10 and q¼0; for Net1,
N¼8 and q¼5. Hi5, Hbf and Ht1 are three unregulated phosphatases, which oppose cyclin-dependent kinases on the Whi5, SBF and Net1 phosphorylation chains,
respectively. The synthesis and degradation reactions of Whi5, SBF, Cdh1, Net1, Hbf, Hi5 and Ht1 are not shown here. The diagram includes synthesis and degradation
of MbS, the mRNA for ClbS, which is the only regulated mRNA species in the model. The mRNAs encoding all other proteins in the model are assumed to be synthesized
and degraded by simple birth-death processes.
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Table I Dynamical equations of the model

[X]¼Number of molecules of species X per cell

dV

dt
¼ a � V

d½Cln3�
dt

¼ ks;n3 � V2

P2

� �
� ½Mn3� � gn3 � ½Cln3�

d½ClbM�
dt

¼ ks;bM � V
P

� �
� ½MbM� �

kd;bMa

V � ½Cdh1� � ½ClbM� �
kd;bMi

V � ½Cdh1PT� � ½ClbM� � gbM � ½ClbM�

d½ClbS�
dt

¼ ks;bS � V
P

� �
� ½MbS� � gbS � ½ClbS�

d½Cdc14�
dt

¼ ks;c14 � V
P

� �
� ½Mc14� þ kd;r þ gt1

� �
� ½RENTT� �

ka;r

V � ½Net1RT� � ½Cdc14� � gc14 � ½Cdc14�

d½SBF�
dt

¼ks;bf � V þ kd;c þ gi5

� �
� ½Cmp� þ ½CmpP1� þ ½CmpP2�
� �

þ kd;bf

V
� ½Hbf� þ

k0d;bf

V
� ½Cdc14�

� �
� ½SBFP1�

� ka;c

V
� ½Whi5� þ ½Whi5P1� þ ½Whi5P2�
� �

þ kp;bf

V
� ½ClbM� þ gbf

� �
� ½SBF�

d½SBFPi�
dt

¼ kp;bf

V
� ½ClbM� � ½SBFPi�1� þ

kd;bf

V
� ½Hbf� þ

k0d;bf

V
� ½Cdc14�

� �
� ½SBFPiþ1� �

kp;bf

V
� ½ClbM� þ kd;bf

V
� ½Hbf� þ

k0d;bf

V
� ½Cdc14� þ gbf

� �
� ½SBFPi�; for 1pip3

d½SBFP4�
dt

¼
kp;bf

V � ½ClbM� � ½SBFP3� �
kd;bf

V � ½Hbf� þ
k0

d;bf

V � ½Cdc14� þ gbf

 !
� ½SBFP4�

d½Hbf�
dt

¼ ks;hbf � V
P

� �
� ½Mhbf� � ghbf � ½Hbf�

d½Whi5�
dt

¼ks;i5 �
V

P

� �
� ½Mi5� þ kd;c þ gbf

� �
� ½Cmp� þ kd;i5

V
� ½Hi5� þ

k0d;i5
V
� ½Cdc14�

� �
� ½Whi5P1�

� ka;c

V
� ½SBF� þ kp;i5

V
� ½Cln3� þ

k0p;i5
V
� ½ClbS� þ gi5

� �
� ½Whi5�

d½Whi5Pi�
dt

¼ kd;c þ gbf

� �
� ½CmpPi� þ

kp;i5

V
� ½Cln3� þ

k0p;i5
V
� ½ClbS�

� �
� ½Whi5Pi�1� þ

kd;i5

V
� ½Hi5� þ

k0d;i5
V
� ½Cdc14�

� �
� ½Whi5Piþ1�

� ka;c

V
� ½SBF� þ kp;i5

V
� ½Cln3� þ

k0p;i5
V
� ½ClbS� þ kd;i5

V
� ½Hi5� þ

k0d;i5
V
� ½Cdc14� þ gi5

� �
� ½Whi5Pi�; for 1pip2

d½Whi5Pi�
dt

¼ kp;i5

V
� ½Cln3� þ

k0p;i5
V
� ½ClbS�

� �
� ½Whi5Pi�1� þ

kd;i5

V
� ½Hi5� þ

k0d;i5
V
� ½Cdc14�

� �
� ½Whi5Piþ1�

� kp;i5

V
� ½Cln3� þ

k0p;i5
V
� ½ClbS� þ kd;i5

V
� ½Hi5� þ

k0d;i5
V
� ½Cdc14� þ gi5

� �
� ½Whi5Pi�; for 3pip5

d½Whi5P6�
dt

¼
kp;i5

V � ½Cln3� þ
k0

p;i5

V � ½ClbS�
 !

� ½Whi5P5� �
kd;i5

V � ½Hi5� þ
k0

d;i5

V � ½Cdc14� þ gi5

 !
� ½Whi5P6�

d½Hi5�
dt

¼ ks;hi5 � V
P

� �
� ½Mhi5� � ghi5 � ½Hi5�

d½Net1�
dt

¼ ks;t1 � V
P

� �
� ½Mt1� þ kd;r þ gc14

� �
� ½RENT� þ

kd;t1

V � ½Ht1� � ½Net1P1� �
ka;r

V � ½Cdc14� þ
kp;t1

V � ½ClbM� þ gt1

� �
� ½Net1�

d½Net1Pi�
dt

¼ kd;r þ gc14

� �
� ½RENTPi� þ

kp;t1

V
� ½ClbM� � ½Net1Pi�1� þ

kd;t1

V
� ½Ht1� � ½Net1Piþ1�

� ka;r

V
� ½Cdc14� þ kp;t1

V
� ½ClbM� þ kd;t1

V
� ½Ht1� þ gt1

� �
� ½Net1Pi�; for 1pip5

d½Net1Pi�
dt

¼
kp;t1

V � ½ClbM� � ½Net1Pi�1� þ
kd;t1

V � ½Ht1� � ½Net1Piþ1� �
kp;t1

V � ½ClbM� þ
kd;t1

V � ½Ht1� þ gt1

� �
� ½Net1Pi�; for 6pip7

d½Net1P8�
dt

¼
kp;t1

V � ½ClbM� � ½Net1P7� �
kd;t1

V � ½Ht1� þ gt1

� �
� ½Net1P8�
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Table I Continued

d½RENT�
dt

¼ ka;r

V � ½Cdc14� � ½Net1� þ
kd;nt

V � ½Ht1� � ½RENTP1� � kd;r þ
kp;nt

V � ½ClbM� þ gt1 þ gc14

� �
� ½RENT�

d½RENTPi�
dt

¼ ka;r

V
� ½Cdc14� � ½Net1Pi� þ

kp;nt

V
� ½ClbM� � ½RENTPi�1� þ

kd;nt

V
� ½Ht1� � ½RENTPiþ1�

� kd;r þ
kp;nt

V
� ½ClbM� þ kd;nt

V
� ½Ht1� þ gt1 þ gc14

� �
� ½RENTPi�; for 1pip4

d½RENTP5�
dt

¼ ka;r

V � ½Cdc14� � ½Net1P5� þ
kp;nt

V � ½ClbM� � ½RENTP4� � kd;r þ
kd;nt

V � ½Ht1� þ gt1 þ gc14

� �
� ½RENTP5�

d½Ht1�
dt

¼ ks;ht1 � V
P

� �
� ½Mht1� � ght1 � ½Ht1�

d½Cmp�
dt ¼ ka;c

V � ½SBF� � ½Whi5� þ
kd;cm

V � ½Hi5� þ
k0

d;cm

V � ½Cdc14�
 !

� ½CmpP1� � kd;c þ
kp;cm

V � ½Cln3� þ
k0p;cm

V � ½ClbS� þ gbf þ gi5

� �
� ½Cmp�

d½CmpP1�
dt

¼ka;c

V
� ½SBF� � ½Whi5P1� þ

kp;cm

V
� ½Cln3� þ

k0p;cm

V
� ½ClbS�

� �
� ½Cmp� þ kd;cm

V
� ½Hi5� þ

k0d;cm

V
� ½Cdc14�

� �
� ½CmpP2�

� kd;c þ
kd;cm

V
� ½Hi5� þ

k0d;cm

V
� ½Cdc14� þ kp;cm

V
� ½Cln3� þ

k0p;cm

V
� ½ClbS� þ gbf þ gi5

� �
� ½CmpP1�

d½CmpP2�
dt

¼ ka;c

V � ½SBF� � ½Whi5P2� þ
kp;cm

V � ½Cln3� þ
k0p;cm

V � ½ClbS�
� �

� ½CmpP1� � kd;c þ
kd;cm

V � ½Hi5� þ
k0

d;cm

V � ½Cdc14� þ gbf þ gi5

 !
� ½CmpP2�

d½Cdh1�
dt

¼ ks;h1 � V
P

� �
� ½Mh1� þ

kd;h1

V � ½Cdc14� þ k0d;h1

� �
� ½Cdh1P1� �

kp;h1

V � ½ClbS� þ
k0

p;h1

V � ½ClbM� þ gh1

 !
� ½Cdh1�

d½Cdh1Pi�
dt

¼ kp;h1

V
� ½ClbS� þ

k0p;h1

V
� ½ClbM�

� �
� ½Cdh1Pi�1� þ

kd;h1

V
� ½Cdc14� þ k0d;h1

� �
� ½Cdh1Piþ1�

� kp;h1

V
� ½ClbS� þ

k0p;h1

V
� ½ClbM� þ kd;h1

V
� ½Cdc14� þ k0d;h1 þ gh1

� �
� ½Cdh1Pi�; for 1pip9

d½Cdh1P10�
dt

¼
kp;h1

V � ½ClbS� þ
k0

p;h1

V � ½ClbM�
 !

� ½Cdh1P9� �
kd;h1

V � ½Cdc14� þ k0d;h1 þ gh1

� �
� ½Cdh1P10�

d½Mn3�
dt

¼ ks;mn3 � P � gmn3 � ½Mn3�

d½MbM�
dt

¼ ks;mbM � P � gmbM � ½MbM�

d½Ga�
dt
¼

ka;g

V � ½SBF� � P � ½Ga�
� �

� kd;g � ½Ga�

d½MbS�
dt

¼ ks;mbS � ½Ga� � gmbS � ½MbS�

d½Mc14�
dt

¼ ks;mc14 � P � gmc14 � ½Mc14�

d½Mhbf�
dt

¼ ks;mhbf � P � gmhbf � ½Mhbf�

d½Mi5�
dt

¼ ks;mi5 � P � gmi5 � ½Mi5�

d½Mhi5�
dt

¼ ks;mhi5 � P � gmhi5 � ½Mhi5�

d½Mt1�
dt

¼ ks;mt1 � P � gmt1 � ½Mt1�

d½Mht1�
dt

¼ ks;mht1 � P � gmht1 � ½Mht1�
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of cells closely matches the experimentally measured values
in Ghaemmaghami et al (2003). For phosphorylation and
dephosphorylation reactions, we do not have experimentally
measured rate constants so we assigned what we consider to
be realistic values for those parameters, so that the model
compares well with the observations of Di Talia et al (2007).
We assume that cell size (V) grows exponentially, as indicated
in Di Talia et al (2007), with specific growth rate
(a¼0.007 min�1) corresponding to a mass-doubling time
(MDT¼ln(2)/a) of about 100 min.

We model mRNA turnover by a simple birth–death process,
although in reality mRNA production and destruction likely
involve complex processes of gestation and senescence
(Pedraza and Paulsson, 2008). As a single mRNA molecule

may be translated into 10–100 protein molecules, fluctuations
at the mRNA level are amplified at the level of expressed
proteins. For a simple birth–death process of mRNA turnover,
the half-life of mRNA must be very short (B1 min) in order to
keep protein-level fluctuations within reasonable bounds
(Swain et al, 2002; Pedraza and Paulsson, 2008; Kar et al,
2009). As we show in Supplementary Appendix 1, the longer
mRNA half-lives reported in the website (http://web.wi.
mit.edu/young/expression/halflife2.html) can be accommo-
dated by a more complex (and more realistic) model of mRNA
gestation and senescence. To do so would roughly double the
number of variables and reactions in our model, whose only
roles would be to track fluctuations in mRNA species that are
currently unobservable. Hence, we have chosen to model

Table I Continued

d½Mh1�
dt

¼ ks;mh1 � P � gmh1 � ½Mh1�

½Net1RT� ¼
X5

i¼0

½Net1Pi�; ½RENTT� ¼
X5

i¼0

½RENTPi�; ½Cdh1PT� ¼
X10

i¼1

½Cdh1Pi�

Cell division is triggered when ClbM level drops below 12.5 nM. At division V-f�V for daughter cell and V-(1�f)�V for mother cell and all molecular species
(except Cln3) are partitioned to the daughter and mother cell according to their volume at birth. Cln3 is apportioned 75% to the mother cell and 25% to the
daughter cell.

Table II Parameter values

Parameter min�1 Parameter min�1 Parameter min�1

a 0.007 ks,mbS 11.5 kd,c 0.2
kd,g 12.0 k0d;h1 1.65 kd,r 0.075
gbM 0.03 gbS 0.1 gn3 0.14
gbf 0.01 ghbf 0.01 gc14 0.02
ghi5 0.01 gt1 0.015 gi5 0.01
gh1 0.01 gmn3 1.0 ght1 0.01
gmbS 0.25 gmc14 0.7 gmbM 0.7
gmi5 0.7 gmhi5 0.7 gmhbf 0.7
gmh1 0.7 gmht1 0.7 gmt1 0.7

Parameter fL molec�1 min�1 Parameter fL molec�1 min�1 Parameter fL�1 min�1

kd,bMi 1.7�10�5 kd,bMa 0.025 ks,bM 0.27
ka,c 0.0417 ka,r 0.042 ks,bS 0.3
ka,g 0.25 kp,h1 0.033 ks,i5 0.715
k0p;h1 0.18 kp,bf 0.0625 ks,h1 0.275
kp,i5 0.1835 k0p;i5 0.0475 ks,t1 0.725

kp,cm 0.1835 k0p;cm 0.0475 ks,c14 0.38
kp,t1 0.042 kp,nt 0.042 ks,hi5 0.1275
kd,h1 0.134 kd,bf 4.6�10�3 ks,hbf 0.1275
k0d;bf 0.0165 kd,i5 9.6�10�3 ks,ht1 0.102
k0d;i5 0.033 kd,cm 9.6�10�3

k0d;cm 0.033 kd,t1 3.3�10�3

kd,nt 3.3�10�3

Parameter molec min�1 Parameter molec min�1 Parameter Dimensionless

ks,mn3 7.5 ks,mbM 5.25 P 1.0
ks,mc14 5.25 ks,mhbf 7.0 f 0.4
ks,mi5 5.25 ks,mhi5 7.0
ks,mt1 5.25 ks,mh1 5.25
ks,mht1 7.0

Parameter molec fL�1 min�1 Parameter fL�2 min�1

ks,bf 1.53 ks,n3 0.0024

A model of yeast cell-cycle regulation
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mRNA turnover by a simple birth–death process with a short
‘effective’ half-life for each mRNA species, in order to simulate
correctly the expected fluctuations at the protein level.

Results and discussion

Deterministic calculations

Before carrying out stochastic simulations, we first character-
ize the deterministic properties of the reaction network. In
Figure 2A, we show a one-parameter bifurcation diagram that
plots steady-state and oscillatory ClbM-dependent kinase
activity as a function of cell volume. In this calculation, we
treat Vas a parameter by removing the dynamical equation for
V(t). For small V, the only stable state of the control system is a
steady state of low ClbM-kinase activity, representing the G1
phase of the cell cycle. If V were to increase slowly, the cell
would remain in G1 until V exceeds 32.3 fL (SN2), where the
stable G1 steady state is destroyed by coalescing with an
unstable saddle point. Beyond this size, ClbM level increases
abruptly as Cdh1 is inactivated. However, the system cannot
attain a stable G2/M state of steady high ClbM level, because
this steady state is unstable. The stable, large amplitude limit
cycle oscillations, for V432.3 fL, are created by the negative
feedback loop: ‘ClbM inhibits Net1 inhibits Cdc14 activates
Cdh1 destroys ClbM.’ SN2 is a special type of bifurcation where
the saddle and the node coalesce and give birth to a large
amplitude, infinite period, stable limit cycle (Figure 2B). As we
have explained elsewhere (Tyson et al, 2002), a bifurcation
diagram with these features is ideal for governing cell cycles
with the three fundamental properties mentioned in the
introduction.

In Figure 3, we show a deterministic simulation of the cell-
cycle model for a lineage of cells that grow exponentially and
divide evenly when ClbM concentration drops below 12.5 nM
(B300 molecules per cell) as the cell exits mitosis. At cell
division, we partition all molecular species (proteins and
mRNAs) equally between the two daughter cells. In this
simulation, the various protein species oscillate exactly as
expected from our earlier description of the control system. In
Figure 3, the bottom panel shows the time courses of CLBS and
CLBM mRNAs. The CLBS transcript oscillates because CLBS
is transcriptionally regulated, whereas every other mRNA is

maintained at a constant number of molecules per cell. (At cell
division, there is a brief, two-fold drop in the numbers of
mRNA molecules per cell, but these numbers quickly return to
their steady-state values.)

Stochastic simulations

We use Gillespie’s SSA to simulate the stochastic firing of the
176 elementary reactions comprising our model. In these
stochastic simulations, we use a pseudo-steady state approx-
imation for activation of the CLBS gene,

½Ga� ¼ P
½SBF�

Ksbf þ ½SBF� ; Ksbf ¼
kd;gV

ka;g
; P¼ ploidy ð1Þ

under the assumption that the activation and inactivation of
the CLBS gene responds rapidly to changes in the concentra-
tion of free SBF. (We are assuming that SBF binds to and
dissociates from the CLBS gene very rapidly. Were this not the
case, then transcriptional noise would likely be too large for
reliable operation of the cell-cycle control system.)

In glucose medium, the ratio of average volumes at birth of
daughter and mother cells was observed by Di Talia et al (2007)
to be 40:60. In these simulations, we take into account the
asymmetry of budding yeast division, by assigning a fraction
f of the dividing cell’s volume to the daughter cell and 1�f to
the mother cell, where f¼0.4. At division, we partition mRNA
and protein molecules to mother and daughter cells according
to their volume, except for Cln3. Laabs et al (2003) have shown
that the CLN3 gene is downregulated in daughter cells relative
to mother cells, resulting in a daughter-specific delay of START.
Recently, Di Talia et al (2009) have found that, in a population
of newborn daughter cells, the CLN3 gene is B3 times less
expressed compared with a population of newly divided
mother cells. In our simulations, we have modeled this
observation by partitioning Cln3 molecules asymmetrically:
we give 25% of Cln3 to the daughter cell and 75% to the
mother cell at division.

In the stochastic simulation procedure, we generate entire
trees of budding yeast cells that derive from a single progenitor
(see Figure 4). We trigger cell division (as in deterministic
simulations) when ClbM concentration drops below 12.5 nM
both for daughter and mother cells. In Figure 5A, we present
numbers of various proteins per cell from birth to division.
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Figure 2 One-parameter bifurcation diagrams. (A) Number of ClbM molecules per cell as a function of (fixed) cell volume. Black line: stable steady state; red line:
unstable steady state; blue lines: maximum and minimum levels during a stable limit cycle oscillation. The steady-state curve shows a region of multiple steady states
between two saddle-node (SN) bifurcations at V¼23.8 and 32.3 fL, and a Hopf bifurcation (HB) at V¼23.9 fL. (B) Period of limit cycle oscillation (dashed line) is overlaid
on top of bifurcation diagram.
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In Figure 5B, we superimpose ‘cell-cycle trajectories’ of
several daughter and mother cells on the bifurcation diagram
(Figure 2).

Next, we simulate experiments of Di Talia et al (2007) that
address the question of size control over G1 events. Under the
assumption of exponential growth, size at birth (Vbirth) can be
related to size at budding (Vbud) by

aTG1 ¼ lnðVbudÞ � lnðVbirthÞ ð2Þ

where a is the specific growth rate of the culture and TG1 is the
duration of G1 phase. (Bud emergence and initiation of DNA
synthesis occur simultaneously in wild-type budding yeast
cells.) If START is controlled by cell size, then the duration of G1
phase will be perfectly correlated with volume at birth, and the
slope of aTG1 versus ln(Vbirth) will be�1. On the other hand, if
START is controlled by a timer rather than a sizer, then the slope
will be 0. Di Talia et al (2007) measured birth sizes and G1
durations of single cells by time lapse fluorescence microscopy
and found that, for daughter cells, the scatter plot of aTG1

versus ln(Vbirth) is best fit by two straight lines with a break
point at intermediate birth size. Smaller cells are associated
with the larger slope (�0.7), indicating a strong size control
over small cells. The smaller slope (�0.3) associated with
larger cells indicates that timer control dominates the sizer
mechanism when cells are large at birth. A similar analysis of
mother cells shows no evidence of size control in the
experimental data.

Our simulations of these experiments are shown in Figure 6.
Following the lead of Di Talia et al, we average aTG1 over all
cells in small intervals of Vbirth (bins) to get the red data points
in Figure 6. We suppose that budding and S phase begin when
ClbS level increases above a threshold (37.5 nM, which is
B50% of the maximum ClbS level). For daughter cells
(Figure 6B), the binned data are well fit by a two-slope
(bilinear) model, with slopes�0.59 (for small cells) and�0.25
(for large cells), similar to the experimental measurements. On
the other hand, as observed, mother cells (Figure 6D) are
controlled by a timer (slope¼�0.08) because at birth they are
already larger than the critical size required for START. The
smallest quartile of mother cells show evidence of weak size
control (slope¼�0.36).
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Figure 3 Deterministically simulated time courses of some key regulatory species in the cell-cycle control system. Top panel: blue curve is the number of Cln3
molecules per cell and black curve is cell volume in fL. Arrows indicate times of cell division. Other panels plot numbers of molecules per cell for the indicated proteins.

Figure 4 Cell-cycle pedigree generated from a representative stochastic
simulation.
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Experiments of Di Talia et al (2007) suggest that Whi5
phosphorylation and export from the nucleus is the key event
that is correlated to cell size. After Whi5 is translocated to the
cytoplasm, SBF activity drives CLBS expression, and down-
stream events follow in due course. Inspired by their
experiment, we calculate the time interval, denoted T1,
between cell birth and SBF activation (when SBF level
increases above 15 nM). The correlation of aT1 to ln(Vbirth) is
plotted for daughter cells in Figure 7A. As before, we bin the
data and fit with two straight lines (Figure 7B). The correla-
tion of aT1 with ln(Vbirth) behaves identically with that
of aTG1 (Figure 8). The offset between these two lines,
aT2¼a(TG1�T1), is roughly constant (T2E15 min), indepen-
dent of size at birth. These properties of the model agree
nicely with the experiments of Di Talia et al (2007). Analogous

simulations for mother cells match the experimental results as
well (Supplementary Figure S1). Also, in the model as in
experiments, there is no correlation between T2 and size at
birth (not shown).

In Table III, we show that the statistical properties of our
simulated cell populations are in excellent agreement with
measured means and s.d. of budding yeast cell-cycle proper-
ties. (Relevant histograms are provided in Supplementary
Figures S2 and S3.) In particular, the time period (T1) from cell
division to SBF activation is the noisiest part of the daughter
cell cycle (CV¼74%), because during this time the number of
molecules of all molecular species are small and highly
fluctuating. In our simulated mother cells, T1 is very short
(B6 min) and highly variable (CV¼115%), which is consistent
with the observation of Di Talia et al (2007) that the T1 duration
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Figure 5 Stochastic simulation of the budding yeast cell cycle. (A) Time courses of some key regulatory proteins. (B) Cell-cycle trajectories (blue line) superimposed
on the bifurcation diagram (Figure 2). Arrows show the direction of progress through the cell cycle and the abrupt jump from right to left indicates a cell-division event. A
cell-cycle trajectory is the locus of [ClbM](t) (the blue line in panel A) versus V(t), plotted parametrically in time from cell birth to cell division. A newborn cell starts at the left
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of mother cells is too short to measure experimentally. Because
of the strong size control operating in daughter cells, the
coefficient of variation in volume at division is less than the
coefficient of variation in cycle time. But for mother cells,
which have only weak size control at best, the CVs are almost
identical.

The average numbers of transcripts and proteins per gene
per cell, computed from asynchronous populations of mother
and daughter cells are recorded in Table IV. Protein abun-
dances are in rough agreement with measured quantities
(Ghaemmaghami et al, 2003), except for Cdc14. (We do not
understand how the reported abundance of Cdc14 can be five-
fold larger than that of Net1. The abundance of Cdc14 may
have been overestimated.) In addition, we plot histograms of
some representative mRNAs and proteins (Figure 9) for an
asynchronous population of mother cells. Recently, Zenklusen
et al (2008) have used fluorescent in situ hybridization in
budding yeast cells to measure abundances of selected mRNAs
for both regulated and constitutively expressed genes.
Although they did not measure any of the mRNAs we are
interested in, the shapes of their histograms are similar to the
histograms we have calculated.

In Figure 10, we plot the effects of ploidy on the CVs of
various cell-cycle properties. Our simulations are in good
quantitative accord with the measurements in Supplementary
Table S8 of Di Talia et al (2007), except for the CV of age at
division for mother cells. In general, in our simulations, CV
decreases with increasing ploidy by the expected inverse-
square-root dependence. In Supplementary Table S3, we
record how the means of these properties depend on ploidy.
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Table III Mean and coefficient of variation for cell cycle properties, calculated
from the model; experimental values (in parentheses) are from Di Talia et al
(2007)

Quantity Daughter cells Mother cells

Mean (min) CV Mean (min) CV

Age @ div 114.25 (112) 0.2242 (0.22) 89.35 (87) 0.1990 (0.14)
TG1 40.66 (37) 0.4834 (0.50) 20.73 (16) 0.4815 (0.50)
TSG2M 73.59 (76) 0.2231 (0.20) 68.62 (72) 0.1958 (0.17)
T1 23.64 (20) 0.7404 6.34 (B2) 1.15
T2 17.02 (17) 0.5131 14.38 (14) 0.3967

Mean (fL) Mean (fL)
Vbirth 27.52 (28) 0.2253 (0.20) 41.27 (40) 0.2253 (0.18)
Vdivision 60.80 0.1919 76.64 0.1930

CV¼coefficient of variation¼mean/(s.d.). Age@division¼cell cycle time¼
TG1SG2M. TG1¼T1+T2.

Table IV Average number of transcripts and protein molecules in an
asynchronous population of cells

Cell Gene

CLN3 CLBS CLBM CDC14 CDH1 NET1 WHI5

Transcript
Daughter 7 8 7 7 7 7 7
Mother 7 10 7 7 7 7 7

Protein
Daughter 207 913 364 225 1515 1809 433
Mother 397 1409 564 341 1684 1791 307

Protein
Experimenta NM 1800 600 8550 NM 1590 1440

NM, not measured.
aExperimental values from Ghaemmaghami et al (2003). CLBS¼CLN2+CLB5,
CLBM¼CLB1+CLB2.
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In Table V, we compute the contributions of size-dependent
and size-independent noise to the variability of TG1. These
quantities are calculated exactly as described in Di Talia
et al (2007). Our simulated values for daughter cells agree
quite well with the measured values in Table I of Di Talia
et al (2007). For mother cells, the agreement is less good:
our model seems to attribute more mother-cell variability
to size-dependent noise than is warranted by experiments.
This discrepancy is related to the fact that, in our simula-
tion (Figure 6D), small mother cells show some size control
of TG1, which is not observed in Figure 2D of Di Talia
et al (2007).

In Figure 11, we show how the CV of protein abundance
varies with mean protein abundance. This graph has been
simulated by a method similar to the ‘gating’ used by Newman
et al (2006) to reduce the effects of external noise. For an
asynchronous population of simulated cells, we selected a
small sample of cells from a narrow window around the mean
cell size of the population. From this sample, we calculated the
mean and CV of the number of molecules of every protein in
our model, doing so for all three ploidy levels (haploid,
diploid, tetraploid). The graph shows the expected linear
dependence (slope¼�1) of log(CV2) on log(mean). For low-
abundance proteins, our simulations are in good quantitative
agreement with the measurements in Figure 2G of Newman
et al (2006). At high abundance, Newman’s measurements
level off at B10%, due presumably to sources of extrinsic
noise that are not included in our model. In Supplementary
Figure S4, we plot CV versus mean abundance for specific
proteins in our model. We observe the expected dependence of
CVon mean�1/2, except for ClbS and ClbM, the two proteins in
our model whose total abundances oscillate dramatically
during the cell cycle.

Finally, we have investigated the role of asymmetric CLN3
expression in mother and daughter cells just after cell

division. As explained in Di Talia et al (2009), two transcrip-
tion factors, Ace2 and Ash1, accumulate specifically in
daughter cells where they repress the expression of CLN3
relative to mother cells. Consequently, in early G1, daughter
cells contain significantly less Cln3 protein than mother cells,
beyond the difference expected on the basis of their smaller
cell size. Di Talia et al studied double-mutant cells, denoted
ACE2* ASH1*, for which Ace2 and Ash1 accumulate symme-
trically in mother and daughter cells. To simulate their mutant
cells, we repeated our simulations with Cln3 equally dis-
tributed between mother and daughter cells, instead of the
75:25 split we have used so far. In Figure 12, we plot aT1 as a
function of log(Vbirth) for both wild-type and ACE2* ASH1*
cells, in the same format used by Di Talia et al in their Figures
2A and G. The agreement between model and experiments is
excellent.

Conclusion

We have presented a new model of the regulation of CDK
activity in budding yeast cells, based on multisite phosphor-
ylation of CDK target proteins. Our model displays the three
fundamental properties of cell-cycle regulation: alternating
phases of DNA synthesis and mitosis, balanced growth and
division, and functional checkpoints (in this case, a critical-
size checkpoint in G1 phase). These desirable features of the
model depend in subtle ways on the fact that most CDK targets
have multiple CDK-phosphorylation sites. Multisite phospho-
rylation appears to be crucial to the dynamics of cell-cycle
regulation. Deterministic analysis of the model (bifurcation
theory) shows how these properties arise from the regulatory
network, and stochastic simulations of the model show that
these essential features are robust to molecular fluctuations of
the magnitude expected in yeast cells.
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The major sources of noise in protein regulatory networks of
a yeast cell are related to gene transcription and the small
number of unique mRNA transcripts. As each mRNA molecule
may instruct the synthesis of dozens of protein molecules, the
coefficient of variation (CVP) of molecular fluctuations at the
protein level may be dominated by fluctuations at the mRNA
level, as expressed in the formula, derived by Swain et al
(2002) and Pedraza and Paulsson (2008):

CVP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NP
þ 1

NM
� r
1þ r

s
ð3Þ

where NM, NP denote the number of mRNA and protein
molecules, respectively, and r¼tM/tP is the ratio of half-lives
of mRNA and protein molecules. For a yeast cell, typical values
of NM and NP are 8 and 800, respectively (Ghaemmaghami
et al, 2003; Zenklusen et al, 2008). If r¼1, then CVPE25%.
Such large fluctuations in protein levels are inconsistent with
the observed variability of size and age at division in yeast
cells, as shown in the simplified cell-cycle model of Kar et al
(2009) and as we have confirmed with our more realistic
model.

Based on Equation (3), there seem to be only two ways out
of this impasse. Either NM for cell-cycle genes is larger than
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expected on the basis of the measurements of Zenklusen et al
(2008), or tM is smaller than expected from the measurements
reported in http://web.wi.mit.edu/young/expression/halflife2.
html. To get reasonable agreement between their model and
experimental observations, Kar et al (2009) used a combination
of larger NM and smaller tM values than warranted by the
literature.

However, there is a third possibility. As stressed by Pedraza
and Paulsson (2008), Equation (3) is based on a simple,
one-stage, birth–death model of mRNA turnover. If mRNA
production and destruction are more complex, with several
‘gestational’ intermediates and ‘senescent’ forms, then CVP

can be much smaller than predicted by Equation (3). In
Supplementary Appendix 1, we show that a model of
transcription–translation coupling with 10 stages each of
mRNA gestation and senescence gives reasonable fluctuations
at the protein level (CVPE5%), with an mRNA half-life of
10 min. By comparison, a one-stage model with tM¼10 min
gives CVPE25%, as expected from Equation (3). A one-stage
model with tM¼1 min gives similar fluctuations (CVPE5%)
to a 10-stage model with tM¼10 min. In Table SA1.1 of
Supplementary Appendix 1, we report trial results of our

cell-cycle model with five stages of gestation and senescence
for each type of mRNA and with a 10-min half-life for each
type, except CLN2 and CLN3 mRNAs (half-life¼5 min). The
means and CVs of cell-cycle properties of mother and daughter
cells are comparable to experimental observations and to
the results of a one-stage model of mRNA turnover with
half-life¼1 min.

From these considerations, we conclude that a yeast cell,
because it is so small and has so few mRNA transcripts per
protein-coding gene, must do a certain amount of ‘time
averaging’ over the processes of gene expression and mRNA
processing in order to keep protein-level fluctuations at
reasonable levels. In our stochastic simulations, we have
chosen to implement this time averaging by two assumptions:
(1) transcription factor binding to regulated genes (CLBS in our
example) is rapidly reversible, so that mRNA production is
not too bursty in time and (2) the ‘effective’ half-life of mRNA
molecules is short, so that large fluctuations in mRNA
numbers do not persist for lengthy intervals of time. The short
half-life that we use (B1 min) is a consequence of our
decision to model mRNA turnover by a simple birth–death
process. If we include intermediate stages of mRNA gestation
and senescence, then mRNA half-lives can be considerably
longer, but the model must keep track of many mRNA
forms that are currently unobservable. In any case, it appears
that a full understanding of the mechanisms by which yeast
cells limit the magnitude of protein fluctuations must
await further theoretical developments and experimental
measurements.

The alternation of S and M phases in the eukaryotic cell cycle
is accomplished by switching the CDK control system back and
forth between alternative stable states (Nasmyth, 1996; Tyson
and Novak, 2008): a G1 state, with low CDK activity, and an
S/G2/M state, with high CDK activity. Proper functioning of
this switch requires a degree of nonlinearity in the kinetics
that is provided by distributive multisite phosphorylation
(Kapuy et al, 2009). This type of mechanism requires that CDK
binds only transiently to its target proteins, quickly phosphor-
ylating a site, dropping off and searching for another substrate
to attack. Such a strategy is ideal for a kinase such as CDK,
which has many substrates to phosphorylate and which
cannot afford to spend too much time tied up in complexes
with any one of them. It is also suitable for creating the kind of
kinetic nonlinearities required for the reaction network to
exhibit bistability and hysteresis. From a modeling point of
view, multisite phosphorylation is convenient because the
reaction mechanism can be described by mass-action rate
laws, which are easy to simulate either deterministically or
stochastically.

Table V Contributions of size-dependent and size-independent noise to the coefficient of variation of G1 duration

Ploidy Daughter cell Mother cell

Noise in TG1 Size-dependent noise Size-independent noise Noise in TG1 Size-dependent noise Size-independent noise

Haploid 0.4834 (0.55)a 0.3184 (0.31) 0.3684 (0.45) 0.4815 (0.50) 0.3130 (0.20) 0.3681 (0.46)
Diploid 0.38 (0.42) 0.2682 (0.28) 0.2681 (0.31) 0.3711 (0.39) 0.2496 (0.13) 0.2551 (0.37)
Tetraploid 0.3157 (0.24) 0.2535 (0.15) 0.1857 (0.19) 0.2928 (0.26) 0.2333 (0.09) 0.1759 (0.24)

aExperimental values of CV given inside the parentheses are from Table I of Di Talia et al (2007).
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We have tested the adequacy of the model by carrying
out extensive stochastic simulations of recent experiments
by Di Talia et al (2007) on size control of the START transition
in single cells of budding yeast, Saccharomyces cerevisiae.
They were able to identify two subphases (T1 and T2) of
the unbudded phase (G1 phase) of the yeast cell cycle. The
statistics of T1 and T2 are quite different, and our model is
in excellent quantitative agreement with the experimental
distributions.

Although the model has all the basic features of cell-cycle
control outlined by Tyson and Novak (2008), it is still
incomplete as a realistic model of the budding yeast cell cycle.
It lacks several regulatory proteins (MBF, Clb5, Sic1, Cdc20
and Cdc5) that have important functions in the budding yeast
cell cycle. The model will be extended to these components in
a future publication.

Materials and methods
The wiring diagram in Figure 1 was translated into a set of ordinary
differential equations (Table I), representing the dynamical evolution
of the proteins and mRNAs in the model. Parameter values used for our
simulations are given in Table II.

Deterministic simulations were carried out in MATLAB using the
ode15s solver. For the purpose of bifurcation analysis, we removed the
dynamical equation for V(t) from the set of differential equations and
treated Vas a fixed parameter. Bifurcation diagrams were drawn using
XPP-Aut, available from http://www.math.pitt.edu/~bard/xpp/
xpp.html.

In deterministic simulations, we triggered cell division whenever
ClbM concentration level drops below 12.5 nM as the cell exits mitosis.
At cell division, all molecular species (proteins and mRNAs) were
partitioned equally between the two newborn cells.

Stochastic simulations were performed using Gillespie’s SSA
(Gillespie, 1976). In stochastic simulations (as in the deterministic
case), cell division occurs whenever ClbM concentration drops below
12.5 nM. To avoid multiple divisions caused by ClbM concentration
fluctuating back-and-forth across 12.5 nM, we insist that ClbM
concentration must increase above 20 nM before a subsequent division
can be triggered by falling ClbM concentration. Following experi-
mental evidence in Di Talia et al (2007), we partitioned 40% of total
volume at division to the daughter cell and 60% to the mother cell. We
partitioned all molecular species to the mother and daughter cells in
60:40 ratios, respectively, except for Cln3, which was apportioned 75%
to the mother cell and 25% to the daughter cell. This rule was intended
to account for the fact that Cln3 production is actively downregulated
in newborn daughter cells (Laabs et al, 2003; Di Talia et al, 2009).

In stochastic simulations, we followed both mother and daughter
cells to generate a complete pedigree of growing and dividing cells. For
each cell, we recorded the total duration of G1 phase (from birth until
ClbS rises above 37.5 nM) and the T1 duration (from birth until active
SBF rises up above 15 nM).

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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