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1  | INTRODUC TION

Artificial intelligence (AI) is anticipated to transform health care 
through advancements in clinical decision support. Rapid advance-
ments in computational power and improvements in statistical 
techniques ultimately enable AI to be leveraged to identify hidden 
interactions and patterns within large, complex, multi-level datasets. 
AI has been suggested as the next natural progression of traditional 
statistical techniques (eg, logistic regression, linear regression, etc), 
and these analytical advancements can be applied to the practice of 
medicine.1,2 An AI-based “virtual coach” using a diverse set of inputs 
and algorithms may have the potential to aid in personalized medical 
guidance for patients.3 AI medical decision support tools for clini-
cians may also improve efficiency by optimizing routine workflows 
and aid them in the process of providing care.4

In a recent bibliometric study on the global evolution of AI in 
health care and medicine, it is shown that clinical applications of AI 
are relatively common in fields like ophthalmology, oncology, and 
cardiology.5 However, the use of AI is scarcely reported in nephrol-
ogy, despite attributes of large datasets6 and one of the highest dis-
ease burdens.7 In-center hemodialysis (HD) is typically performed 
three times per week for 3-5 hours, thus amassing a large volume 
of clinical data captured in electronic medical records (EMR). These 
large treatment datasets are ideal for AI applications. With advances 
in technology, remote treatment monitoring applications allow clin-
ical data to be collected from patients dialyzing at home. Recently, 
it has also become possible to measure and store beat-to-beat 
hemodynamic and respiratory values during dialysis treatment.8 
Furthermore, the emerging field of medical grade wearables is antic-
ipated to yield even more robust data in all populations.9
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The aim of this review is to: (a) provide an overview of the AI applica-
tion process in a clinical setting; (b) provide brief descriptions of select ad-
vanced Machine Learning (ML) algorithms; (c) present the current status 
of AI in research toward kidney disease and dialysis; and (d) explore future 
pathways for AI within the discipline of nephrology. This review focusses 
on the applications of AI in progression to end-stage kidney disease 
(ESKD) and dialysis omitting the unique acute kidney injury population.

2  | T YPES OF AI

There is no universal definition of AI, but central to most defini-
tions is the ability of a learning system to mimic human behavior. 
As depicted in Figure 1, AI is an umbrella term that brings together 
concepts from several fields such as computer science, statistics, 
algorithmic, ML, information retrieval, and data science at large.10 
ML techniques are very powerful in their ability to detect hidden 
patterns in large datasets that are otherwise difficult to identify by 
traditional statistical techniques.

The types of ML techniques that currently exist for building AI 
applications broadly fall into three families (Figure 2), namely super-
vised learning (SL), unsupervised Learning (UL), and reinforcement 
learning (RL). SL and UL are briefly discussed below, although tech-
nical details are beyond the scope of this review.11 Most of the appli-
cations of RL are in the fields of board and video games and beyond 
the scope of this paper.

2.1 | Supervised learning

Supervised learning is the most frequently used type of ML. The ob-
jective of SL is to build a predictive model that takes historical input 
features to predict a specific output. For example, one may want 
to predict if a patient will miss their next dialysis treatment (binary 
output Yes/No) or predict how long it would take until a patient will 
transition to dialysis (continuous output).

Supervised learning can be divided into two categories (clas-
sification and regression) depending on the type of the output 
(Figure 2). In classification, the output belongs to a set of distinct 
classes (eg, missed treatment vs not missed treatment). In regres-
sion, the output is usually a continuous numerical quantity (eg, N 
days until transitioning to dialysis).

There are many ML algorithms for building predictive models 
ranging from traditional to more advanced methods. Prediction 
performance of these models is usually presented as area under the 
receiver operating characteristic curve (AUROC).12 The most com-
mon traditional SL methods are logistic regression (for classification) 
and ordinary least squares regression.13 These traditional methods 
are popular analysis techniques within health care and hence not 
discussed here for brevity. Over the past decade, more advanced 
techniques, such as tree-based methods and deep learning (DL) al-
gorithms, have grown in popularity.

The foundation of tree-based methods is the decision tree, 
a ML technique for sequentially dividing the samples based on 

F I G U R E  1   Figure shows the 
relationship between artificial intelligence 
(AI), machine learning (ML), and deep 
learning (DL). ML is a subset of AI and DL 
is a subset of ML. ML is a sub-discipline 
of AI that uses training examples of how 
to perform a specific task without explicit 
instructions to identify associations for a 
given outcome measure. DL is a subfield 
of ML that mimics neural networks to 
learn [Color figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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determining if a selected feature is greater than, or less than, a 
threshold determined by the model. At every level of the decision 
tree, the ML model learns which feature to use, and which thresh-
old is the best. Unfortunately, a single decision tree can memorize 
the training data, resulting in poor performance on unseen data. As 
a result, many advanced analytical techniques (eg, random forest 
and Gradient Boosting Classifier) have been created to improve 
upon traditional single decision trees, increasing generalization to 
new data.14 In random forest methods, multiple decision trees are 
created using random subsets of samples (ie, by bootstrapping) and 
random subsets of the input features (ie, bagging). On the other 
hand, Gradient Boosting methods sequentially add decision trees 
with few levels of nodes (shallow) that leads to a progressive im-
provement in model performance. One Gradient Boosting method 
known as XGBoost is currently one of the top performing models in 
the ML field.15

An extensive bibliography of new SL techniques, their appli-
cation, and performance compared to traditional techniques is 

becoming available. Akbilgic et al compared several different ML 
modeling techniques to predict risk of death in incident dialysis pa-
tients.16 The random forests model outperformed logistic regression 
with an AUROC of 0.76 compared to an AUROC of 0.68.

Deep learning, which uses artificial neural networks (ANNs), is 
another SL technique that has grown in popularity in the last decade. 
ANN began in the 1950s with the MADALINE algorithm,17 but it was 
not until recently with advances in computational power that ANN/
DL could be computed in a reasonable time. The name ANN refers 
to its core functional unit, neuron (Figure 3). ANN's neurons usually 
receive multiple inputs that are mathematically combined through 
nonlinear (eg, sigmoidal) activation functions. A simplest neural net-
work is the standard logistic regression. On the other hand, DL con-
sists of stacking multiple layers of these units in the hidden layer 
(Figure 4). These layers connect to units of an output layer serving as 
the final output of the model.

The weights of the inputs are the parameters learned in ANN 
throughout the entire neural network. Given a set of weights, the 

F I G U R E  2   Supervised learning (SL) 
and unsupervised learning (UL) are the 
two main categories of machine learning 
(ML). Deep learning (DL) is a subset of 
ML. SL algorithms are used to learn the 
optimal parameters of the predictive 
model by investigating past examples 
with known inputs and known outputs. 
UL algorithms learn about patterns in 
the input data itself and does not have a 
known output [Color figure can be viewed 
at wileyonlinelibrary.com]

F I G U R E  3   A very simple artificial 
neural network (ANN) with an input layer 
comprised of three inputs, hidden layer 
comprised of one neuron, and the output 
layer. ANN's neuron usually combines 
input from multiple sources through 
nonlinear activation functions [Color 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
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training input features are fed forward through the neural network 
to create a set of predictions. The predictions are then compared to 
the actual output labels and this difference (ie, the error) is fed back-
ward through the hidden layers. Over several iterations, the network 
“learns from its mistakes” and optimally adjusts its unit weights to a 
point where it can accurately predict the outcome.

To optimize these weights, the DL algorithm uses a technique 
known as backpropagation which was invented in the 1980s.18 As 
the number of layers are added to the neural network, the number 
of weights and connections increase dramatically. Convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs), as 
shown in Figures 5 and 6, are two variants of ANN that have also 
been created to reduce the number of weights, resulting in increases 
in performance, and decreases training time. A CNN is mostly used 
for image processing and RNN is widely for natural language pro-
cessing (NLP).19

In the medical field, DL20 (specifically CNN) has been mainly ap-
plied for image processing in the fields of radiology, histology, der-
matology, and retinopathy, which has been able to demonstrate at or 
above clinical performance.21-23 For example, in cardiology, DL has 
been used to predict outcomes after cardiac arrest.24

Support vector machine (SVM) is a form of SL, where the ML al-
gorithm performs complex data transformations on the labeled data 
and defined output to draw boundaries within the input data. SVMs 

can be used to solve classification problem as well as a regression 
problem.25

2.2 | Unsupervised learning

In UL, there is no output label, but rather the objective is to learn 
about patterns in the input data itself. UL techniques usually focus 
on clustering, dimensionality reduction, or anomaly detection.26 
A commonly used clustering technique is k-means clustering.27 
k-means clustering utilizes an iterative refinement algorithm 
with assignment step and update step to partition the data into 
k clusters, and the algorithm aims to minimize the within-cluster 
variance and maximize the between-cluster variance. It is criti-
cal to determine an appropriate number of k clusters when using 
k-means clustering method. Hierarchical clustering28 is another 
commonly used clustering technique that usually creates a hier-
archy of clusters from top to bottom. For example, using hierar-
chical clustering, Liu et al identified clusters of US states based 
on unhealthy behaviors, preventive measures, and CKD-related 
outcomes in adults living in cities.29 They concluded that such 
information may be of interest to policy makers to understand 
sociodemographic factors and other risk factors could contribute 
to the prevalence of CKD.

F I G U R E  4   Deep Learning Network. Input layer with three inputs, multiple hidden layers of neurons, and two output layers. Higher the 
number of hidden layers deeper is the network [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Convolution Neural Network (CNN) is a class of deep learning neural networks that is widely used for image classification. A 
CNN includes an input layer (image data), multiple hidden layers (convolution to extract features, pooling for subsampling features, and fully 
connected layer to classify images), and an output layer [Color figure can be viewed at wileyonlinelibrary.com]
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www.wileyonlinelibrary.com


     |  9CHAUDHURI et Al.

Table 1 shows a very high level overview of the differences be-
tween the traditional statistical techniques and advanced analytical 
methods.

3  | AI APPLIC ATION PROCESS

The AI application process in a clinical setting generally consists of 
a series of stages (Figure 7). For ML, the process begins by defining 
the problem. This includes understanding the context of the clinical 
problem at hand and transforming the clinical problem into a rel-
evant ML problem.

The next stage consists of understanding the quality and quantity 
of the clinical data available and preparation for modeling. Data prepa-
ration consists of collection, integration, cleaning, and using clinical 
knowledge to build predictors (feature engineering) for the ML model. 
In HD, the enormous amount of EMR data collected at the point of 
care provide a rich platform to employ ML. ML thrives on processing a 
huge number of variables combing them in nonlinear interactive ways. 
This capability allows new kinds of data (eg, free text, images, videos, 
sound, and temporal data) to be utilized. The volume and complexity 
of such data add additional challenges in analyzing the data.

With a set of well-engineered features, the predictive models 
are trained and tuned until acceptable performance is achieved. 

F I G U R E  6   Recurrent neural network (RNN). In RNN, the output from the function is fed back in the model in order to minimize error 
[Color figure can be viewed at wileyonlinelibrary.com]

Factors Traditional statistical techniques
Advanced analytical 
techniques

Training data Works with Smaller Datasets Better with Large Datasets

Usability Exploratory and baseline analysis Iterative, complex, and ready 
to be deployed in clinical 
application

Interpretability Easily interpretable Complex techniques can be 
difficult to interpret

Hardware and training 
time

Requires simple hardware 
configuration and less training 
time

Complex models require 
powerful computing 
hardware and more training 
time

Types of input data Works well only with categorical 
and numerical data

Works with all types of data 
including audio, image, free 
text

Examples Logistic and Linear Regression, 
Generalized Additive Models, 
single decision tree

Neural Network, complex 
decision trees with several 
layers

TA B L E  1   Differences between 
traditional statistical methods vs 
advanced analytical techniques

www.wileyonlinelibrary.com
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It is anticipated that some steps of the process have bi-directional 
arrows because they can result in modifications for previous steps 
(Figure 7). If the model meets the needs of the clinical problem, the 

trained model can be deployed in production. During production, it 
is advisable to monitor the predictions and retrain the model when 
necessary.

F I G U R E  7   Process for application of artificial intelligence with four phases: Problem definition, data preparation, model building, and 
production [Color figure can be viewed at wileyonlinelibrary.com]

TA B L E  2   Key publications of AI applications in kidney disease

Author, year AI techniques
No of 
patients

Outcome 
predicted Performance

Clinical 
application use

Akbilgic et al16 
2019

Random Forest 27 615 Risk of death AUROC: 0.70-0.76 NA

Goldstein et al32 
2014

Random Forest 826 Sudden cardiac 
death

AUROC: 0.78-0.79 NA

Mezzatesta 
et al33 2019

Support Vector 
Machine

1216 Cardiovascular 
disease

Accuracy: 92.15%-92.25%
AUROC: 0.50-0.74
Precision: 72%-89%
Recall: 73%-94%

NA

Chauhan et al39 
2020

Random Forest 1369 CKD progression AUROC: 0.77-0.80
PPV: 62% in high-risk group
NPV: 92%-96% in low-risk group

NA

Norouzi 
et al 422016

Artificial Neural 
Networks

465 CKD progression MSE: 58.63-64.00
MAE: 4.77-5.93
NMSE: 4.77%-4.88%

NA

Barbieri 
et al 462016

Artificial Neural 
Networks

752 Anemia 
management

MAE: 0.59 g/dL Yes

Zhang et al74 
2017

Random Forest 83 Immune 
fingerprints

AUROC: 0.993
Sensitivity: 98.5%
Specificity: 92.6%

NA

Abbreviations: AI, artificial intelligence; AUROC, area under the receiver operating curve; MAE, mean absolute error; MSE, mean square error; 
NMSE, normalized MSE; NPV, negative predicted value; PPV, positive predicted value.

www.wileyonlinelibrary.com
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4  | APPLIC ATIONS IN KIDNE Y DISE A SE

There are several unmet needs in nephrology and there is a huge 
potential for use of big data and AI in patients with kidney disease. 
The applications of AI kidney disease can be broadly subdivided into 
three main topics: (a) predicting events in the future; (b) treatment 
and decision aids; and (c) identification of existing, but unrecognized, 
patterns. Table 2 shows a summary of key AI-related studies that 
have been published in the field of kidney disease. Currently, only 
one published study reports the clinical application, although the use 
of AI in kidney disease is reported more commonly in conference ab-
stracts suggesting that the scientific community has more contribu-
tions on the horizon.

4.1 | Predicting the future

4.1.1 | Predicting outcomes

Patients with ESKD have high mortality as well as hospitalization 
rates.7 Prediction models can assist with early care planning and triag-
ing resources where there is potential for the greatest clinical benefit. 
Interventions performed based on predictions would be specific to the 
outcome and may warrant ad hoc and/or extra evaluations and clinical 
screenings in addition to routine care. Early mortality and hospitaliza-
tion prediction models using traditional statistical techniques built on a 
select number of features have been reported.30 The AUROC for tra-
ditional statistical mortality and hospitalization prediction models usu-
ally fall in the range between 0.65 and 0.75.31 In nephrology, prediction 
of sudden cardiac death in older HD patients was an early example 
of employing an advanced ML method where a random forest model 
yielded a AUROC of 0.79.32 In another example, Mezzatesta et al used 
SVM, to predict the risk of ischemic heart disease in dialysis patients 
with an accuracy of approximately 92%.33

Recent studies show a large set of features and their interactions 
with other features can be employed using advanced ML methods 
to better estimate potential risk factors preceding mortality and/or 
hospitalization.34 For instance, a large dialysis organization (LDO) 
of Fresenius Medical Care (FMC), an integrated kidney disease care 
organization, has developed and deployed a predictive model that 
includes more than 200 variables to identify patients treated with 
in-center HD who have an increased risk of hospitalization in the 
next 12 months. The model is built using XGBoost classifier with an 
AUROC of 0.81.

As part of a pilot study reported in a congress abstract, the LDO 
has suggested use of the predictive model to assist clinicians with 
targeting additional interdisciplinary assessments and interventions 
resulted in a decrease of the average yearly hospital admission rate 
and average yearly hospital days rate compared to controls in the 
neighboring region that did not participate in the pilot and receive 
predictive model reports.35 Such prediction model appears to have 
the potential to provide an intelligent method of triaging additional 
resources in dialysis clinics.

Advanced AI applications are powerful in analyzing vast 
amounts of clinical data to look for subtle changes in a patient's 
condition or worsening status for short-term outcomes. Dial dis-
orders/disease exacerbations sometimes exhibit clear symptoms 
in the days prior to an event; however, the occurrence of minor 
signals of a worsening condition that do not clearly warrant any 
immediate intervention or appear unrelated to the cause of the 
event that takes place soon after can be a clinical challenge. 
Recent efforts by the LDO reported in a congress abstract led to 
the development and implementation of a model to predict immi-
nent hospitalizations in ESKD patients who are at risk of getting 
hospitalized within the next 7 days.36 The model uses over 1500 
variables from a range of data sources (eg, treatment vitals, lab-
oratory measurements, comprehensive assessments, and nursing 
clinical notes). The unstructured clinical notes are converted into 
numerical data using NLP techniques, specifically word2vec and 
CNN. The output of the CNN is then combined with other struc-
tured numerical data to train an XGBoost tree classifier. The final 
model has an AUROC of 0.78. As reported in another congress 
abstract, this model is currently used by a team of nurses and has 
improved their workflow significantly.37 Although the effective-
ness of this imminent hospitalization model and subsequent in-
terventions is unknown and being evaluated, its potential to assist 
clinicians with near real-time insights of risk levels and predictors 
driving the risk determination is promising and could help them 
with targeting interventions and transitional care planning before 
and after hospitalization episodes.

4.1.2 | Predicting chronic kidney disease 
progression

Chronic kidney disease (CKD) is a growing health crisis across the 
world.7 Detecting it early and managing the progression of the 
disease are critical for positive patient outcomes and controlling 
health-care costs. Due to challenges in understanding the trajectory 
of this disease, providing care planning before initiation of dialysis 
and helping patients make appropriate vascular access and modality 
choices may be difficult.

Traditional and AI techniques are being developed to predict 
CKD progression. Tangri et al have developed a traditional regres-
sion model for prediction of kidney failure from CKD stages using 
demographic, clinical, and the most recent clinical data from two 
independent cohorts of CKD patients stages 3-5.38 In two other 
recent studies, random forest models have been developed to 
generate a prognostic risk score by combining data from EMR and 
circulating biomarkers, such as plasma tumor necrosis factors and 
kidney injury molecule-1, to predict CKD progression.39,40 The 
AUROC in one of the studies by Chauhan et al was 0.77-0.80. 
Xiao et al compared several ML methods to predict the risk of 
proteinuria >1 g/d in CKD patients using demographic data and 
blood biochemical features.41 In this case, the traditional logistic 
regression model outperformed other ML models with AUROC 
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0.87. They conclude that advanced ML models are best when the 
amount of data is large, whereas linear models perform better in 
relatively smaller datasets. On the other hand, Jamshid Norouzzi 
et al developed an ANN to predict renal failure progression in pa-
tients with CKD. The model could accurately (>95%) predict the 
estimated glomerular filtration rate (eGFR) in 6, 12, and 18 months 
interval.42

As reported in a congress abstract, the Renal Research Institute 
used data from 28,608 patients with CKD from 2000 to 2011 to con-
struct two linear and spline models that utilize up to 6 months of his-
toric eGFRs, or logarithm of eGFRs (log-eGFRs), for prediction of CKD 
progression to ESKD.43 The results of the model were integrated in 
the CKD Forecaster Tool used at the point of care for nephrologists in 
clinical decision support system. This helped in-patient education and 
care planning for the transition from CKD to ESKD. As reported in a 
congress abstract, nephrologists who used the CKD Forecaster Tool 
had less patients transitioning to HD with a central venous catheter.44

4.2 | Treatment aid

4.2.1 | Treatment and drug prescription

Prescription of drugs, such as erythropoietin, in patients with ESKD 
by clinicians is both time-consuming and error prone. Automation 
of part of the prescription process could increase efficiency and im-
prove patient care. Several approaches have been published in the 
literature to reduce erythropoietin dose and increase the percent-
age of patients within target.45 One example is adoption of ANN for 
anemia management, which was able to increase the percentage of 
patients in target while reducing hemoglobin variability and eryth-
ropoietin dose.46

Understanding which drugs are most appropriate for certain 
patient categories is another area where historic data can guide a 
decision-making process for the clinicians. For example, informed by 
results of virtual clinical trials utilizing advanced physiology-based 
mathematical models of parathyroid gland biology, an LDO of 
FMC, an integrated kidney disease care organization, has afforded 
nephrologists working in its clinics the opportunity to prescribe 
off-label 3× weekly directly observed in-center administration of 
cinacalcet as an alternative to daily dosing.47,48 Subsequent obser-
vations in currently over 11 000 patients indicate that 3× weekly 
in-center administration of cinacalcet is noninferior to prescribed 
daily cinacalcet in controlling parathyroid hormone levels, corrob-
orating the virtual clinical trial results.49 Although speculative, ef-
forts like this may potentially further optimize and personalize the 
treatment of secondary hyperparathyroidism, as well as expand the 
understanding of the debated influence of mineral bone disorder 
medications on hard outcomes.50,51 In oncology, several studies 
show successful predictions of which patients would respond to im-
munotherapy using AI algorithms.52,53 Further, ML algorithms have 
been used to predict which medications would work for which pa-
tients with mood disorders.54

4.2.2 | Identifying medical errors

Although there are not many references in literature on the use of AI 
in identifying medical errors in a nephrology setting, it is important 
to highlight how it can be used. Medical errors are a third leading 
cause of death in the United States; in 2016, they contributed to 
more than 251K deaths in the United States alone and accrued $17.8 
billion dollars in unnecessary spend.55,56 Different causes of medi-
cal errors exist, such as (a) complexity of the health-care system; (b) 
system and process design issues; (c) competency, education, and 
training; and (d) human factors and ergonomics.

Traditional approach to correct medical errors is to create new 
rules and procedures that need to be utilized in a health-care set-
ting.57 However, data-driven, AI approaches can also be applied 
particularly when historic evidence already exists. Most common 
application of AI in minimizing medical errors is to guide what ther-
apeutic approaches may or may not be ideal for a given patient. 
Paredes et al56 explored this in the context of US intensive care units 
and concluded that ML could aid physicians by providing better pre-
dictions about the effect of certain treatments and the likely evolu-
tion of sepsis patients.

Further, ML algorithms can assist in guiding decisions where 
complex, time-dependent, or uncommon medication interactions 
are at play (such as drug-drug or drug-allergy interactions, therapeu-
tic duplication, etc). Traditional rule-based decision support systems 
may be insufficient to resolve such issues. AI and technology solu-
tions are likely to be best fitted in these applications.58 Specific ex-
amples of these applications have been successfully demonstrated 
by prediction algorithms developed at Stanford University.59 Many 
technology companies have services that support physicians as they 
interact with their patients' data that may assist in minimizing med-
ical errors.

Outlier management and outlier detection can also assist with 
minimizing medication errors. This can be completed through AI-
driven algorithms or through Clinical Decision Support models. A 
team at the Brigham and Women's Hospital evaluated a medication 
error detection system that uses a probabilistic ML model to identify 
prescriptions that are outliers based on populations of patients in 
their EMR system with similar characteristics.60

4.3 | Identifying patterns

4.3.1 | Identifying phenotypical patterns

In patients with ESKD, several patterns, such as the malnutrition-
inflammation-atherosclerosis syndrome, have been discovered by 
traditional statistical methods. It has thus increased our patho-
physiological understanding and were shown to be strong prog-
nostic indicators. Recently, studies have shown that fluid overload 
also can be part of a pathophysiologic spectrum including malnu-
trition and inflammation.61,62 The concomitant presence of these 
three risk factors yielded a near six-fold increase in mortality risk. 
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However, unlike other chronic diseases, pattern detection based 
on UL techniques has not yet been published in nephrology. In 
patients with heart failure with preserved ejection fraction, three 
different phenotypical patterns were identified based on clinical, 
laboratory, and echocardiographic parameters by agglomerative 
hierarchical clustering. These clusters differed greatly in mortal-
ity risk. In cardiology, the use of UL techniques to detect pheno-
typical patterns was termed “phenomapping” by the authors.63 
Another example, infection medicine is based on k-means cluster-
ing on a cohort of patients with sepsis. Four different phenotypes 
were observed with a distinct difference in outcome, of which 
one was characterized by older patients with more chronic illness 
and renal dysfunction (β phenotype). The highest 28-day mor-
tality (40%) was observed in the δ phenotype, characterized by 
patients with septic shock and liver dysfunction, as compared to 
13% in the β phenotype and 5% in the α phenotype with the low-
est risk.64 Another study identified different metabolic clusters 
based on k-means clustering including a set of clinical parameters 
and biomarkers in older adults without diabetes. In the clusters 
characterized by lower eGFR and albuminuria and the cluster with 
the highest inflammation, the risk of cardiovascular endpoints was 
comparable to the diabetic cluster.65 Whether phenomapping in 
different diseases has relevance for personalized treatment pre-
scription needs to be addressed in future trials.

4.3.2 | Identifying unknown comorbidities

In addition to making predictions about the future, the power of AI 
can be utilized to comb through vast amounts of information to un-
cover hidden patterns in high dimensional data otherwise too com-
plex to identify manually. While an incredible resource of clinical 
data, EMR consist of both structured and unstructured data, with 
contributions often added by multiple care providers with different 
documentation styles and levels of thoroughness. Variations and in-
consistencies in a patient's record likely increase with the complexity 
of their health.

One area of concern involves patient comorbidities. ESKD pa-
tients with multiple medical comorbidities face decreased survival 
likelihoods.66,67 Prognostic comorbidity indexes indicating patient 
mortality risk have been used and adapted for renal replacement 
populations,68-70 which highlight the critical role that comorbidities 
play in the complexity of a patient's health picture. In addition to 
prognostics, comorbidity information is a necessary component 
involved in medical billing. Medicare's bundled fee-for-service cov-
erage for beneficiaries with ESKD includes payment multipliers for 
patients with complex health pictures based on specific comorbid-
ities. In order to receive appropriate payment for the extra level of 
support and services tied to these populations, comorbidities must 
be properly documented in medical records. In nephrology, one LDO 
within its integrated kidney disease care organization addressed this 
clinical need by using ML to find patterns in physician notes common 
across diseases to identify potential undocumented comorbidities or 

to remove comorbidities that are unlikely to exist.71 Using lab test 
results, NLP of physician notes, and demographic information, the 
LDO was able to improve coding over the previous method of ran-
domly chosen manual medical record reviews.

4.3.3 | Image classification for arteriovenous fistula 
aneurysm and biomarker fingerprints

The Renal Research Institute developed a CNN to automatically 
classify arteriovenous fistula aneurysm (AVFA) stages. They col-
lected 15-20 seconds panning videos from 30 patients to train a 
CNN model. CNN was able to automatically classify AVFA stages 
with >90% classification accuracy. As reported in a congress ab-
stract, using this model in a clinical application will reduce work-
load for physicians, provide timely AVFA diagnosis, and improve 
patient care.72

Advances in biochemical analytics, such as liquid chromatog-
raphy-mass spectrometry, provide an unparalleled amount of data 
from biological samples, giving rise to the rapidly evolving field of 
metabolomics. A major area of research is to explore if specific com-
pound patterns are correlated with clinical outcomes of interest or 
if patterns differ between clinical phenotypes. Given the enormous 
number of metabolites, this question lends itself to the use of AI. 
Very recently, several groups have successfully applied ML to me-
tabolomics data.73 Another example of a potential clinical applica-
tion for AI in peritoneal dialysis was presented by Zhang et al, who 
used a combination of supervised ML methods to detect specific 
immune fingerprints allowing rapid detection of causative organisms 
in peritonitis, potentially facilitating earlier prescription of specific 
antibiotic treatment.74 This study demonstrated the power of using 
advanced analytical model for mining complex biomedical dataset 
where traditional statistical methods fail to yield satisfactory results.

5  | REFLEC TION

Rapid advances in computing, mathematics, and statistics have 
resulted in the evolution of AI and ML methods. Cloud computing 
resources might be a more cost-effective way of analyzing large vol-
umes of data and building ML models. Ideally, ML algorithms should 
be available for use in the community.

Traditional statistical modeling techniques are most appropriate 
in building simple predictive models, where one has a well-defined 
problem, good observation set, and established knowledge expertise 
about the strengths and limitations of the outcomes. Furthermore, 
traditional techniques learn from data which are static in time, and 
thus tend to “overfit” to their training, and fare reasonably poorly 
when they encounter anomalous instances.

However, in an ever-evolving renal care landscape where the 
problems posed are complex, AI provides several techniques to de-
rive meaningful results. It is very powerful in identifying unknown 
patterns and anomalies.
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Therefore, traditional statistical and advanced AI techniques are 
both complementary. It is a widely accepted practice to initially build 
a model using traditional statistical techniques and use that model 
as a baseline against which AI models are compared against for per-
formance. In a systematic review in the general population, no major 
differences were found between various advanced AI techniques 
and traditional statistical modeling techniques in clinical predic-
tion.75 A prudent approach is to choose a model appropriate for the 
problem at hand and not necessarily bias oneself to one methodol-
ogy. Beyond methodologies, it is important to translate modeling re-
sults into actionable decision points for patients and care providers. 
At present, the use of prediction models in dialysis treatment is still 
in its infancy and further evidence is needed to identify its relative 
value.

AI techniques can allow for large datasets to be leveraged with 
minimal efforts. Such techniques have the power to process large 
volumes of data to identify patterns and features which may im-
pact the outcome. However, outcome selection and follow-up time-
frames need to be carefully determined to optimize the performance 
and potential clinical value. AI model that can predict short-term 
outcomes may not allow time for interventions to change the course 
of an event.

AI solutions must follow ethical guidelines and consider at the 
time of conception whether software programs are medical devices 
that require formal regulatory pathways and trials.76,77 Furthermore, 
before implementation of AI solutions at the point of care, policies 
and regulations need to be established for delivery of the outputs to 
clinicians and patients. Models are never 100% accurate, and thus 
there will be instances where models will predict incorrectly. In such 
situations, a precedent of accountability needs to be established. 
AI solutions should be transparent and traceable. It is important 
that the predictive models use data collected routinely in standard 
of care or it will likely produce models that are bias by indication. 
Teams developing and using AI solutions should be aware of this 
limitation. Thorough evaluation of the input data variables should 
be conducted as a key step in the selection of outcomes and the 
process of building predictive models.

While a lot of emphasis is placed in developing powerful and ac-
curate models, more emphasis should be directed toward building an 
end-to-end team of practitioners in data analytics, data engineering, 
trainers, care providers, and patients to create effective solutions 
which would be beneficial for all stakeholders. The effectiveness of 
the prediction models depends heavily on the ability to use insights 
to make clinical interventions. On the other hand, interventions 
need to be thoroughly thought through depending on unique fac-
tors driving the clinical outcome and personalized for every patient.

Lastly, AI solutions when implemented at the point of care for 
nephrologists should be viewed as a clinical decision support tool to 
extend providers’ insights about the patients. AI is not anticipated to 
replace providers’ medical decision-making, but instead assist them 
in providing optimal personalized care for their patients.
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