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abstract

PURPOSEMachine Learning Package for Cancer Diagnosis (MLCD) is the result of a National Institutes of Health/
National Cancer Institute (NIH/NCI)-sponsored project for developing a unified software package from state-of-
the-art breast cancer biopsy diagnosis and machine learning algorithms that can improve the quality of both
clinical practice and ongoing research.

METHODS Whole-slide images of 240 well-characterized breast biopsy cases, initially assembled under R01
CA140560, were used for developing the algorithms and training the machine learning models. This software
package is based on the methodology developed and published under our recent NIH/NCI-sponsored research
grant (R01 CA172343) for finding regions of interest (ROIs) in whole-slide breast biopsy images, for segmenting
ROIs into histopathologic tissue types and for using this segmentation in classifiers that can suggest final
diagnoses.

RESULT The package provides an ROI detector for whole-slide images and modules for semantic segmentation
into tissue classes and diagnostic classification into 4 classes (benign, atypia, ductal carcinoma in situ, invasive
cancer) of the ROIs. It is available through the GitHub repository under the Massachusetts Institute of
Technology license and will later be distributed with the Pathology Image Informatics Platform system. A Web
page provides instructions for use.

CONCLUSION Our tools have the potential to provide help to other cancer researchers and, ultimately, to
practicing physicians and will motivate future research in this field. This article describes the methodology
behind the software development and gives sample outputs to guide those interested in using this package.
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INTRODUCTION

The long-term goal of the National Institutes of Health/
National Institute of Cancer (NIH/NIC)–sponsored
project, “A Unified Machine Learning Package for
Cancer Diagnosis” (U01CA231782), which is part of
the Information Technology for Cancer Research (ITCR)
program, was the development of a unified software
package for the diagnosis of cancer from whole-slide
biopsy images. This article describes the resulting
software, which leverages machine learning to auto-
matically identify biomarkers, including a range of
pathologic tissue types and possible cancer diagnostic
categories, and can aid in improving the quality of both
cancer research and clinical practice.

The field of pathology has been slow to move in an
increasingly digitized age. However, US Food and Drug
Administration authorization in April 2017 allowed the
marketing of the first whole-slide imaging system for
interpreting digital pathology slides from biopsy tissue

samples,1 expanding our potential for research and
opening opportunities in clinical practice for using
digitized images in diagnostic assessment. NIH/NCI-
sponsored research grants, including our own (R01
CA140560; R01 CA172343) have produced uniquely
well-characterized biopsy images and methodology for
finding regions of interest (ROIs),2 segmenting them into
histopathologic tissue types,3 and using this segmen-
tation as input to classifiers that suggest diagnoses.4

These methods are being converted into a unified Py-
thon software package, Machine Learning Package for
Cancer Diagnosis (MLCD), with the corresponding
modules available through the GitHub repository under
the Massachusetts Institute of Technology license, to be
distributed later with the Pathology Image Informatics
Platform (PIIP) system developed by Martel et al.5 A
demonstration is available on our Web page: https://
cancertech.cs.washington.edu.

This article describes a software system suitable for
a range of specialists, including cancer researchers
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studying large image data sets, practicing pathologists,
experts who want a second opinion, and pathology resi-
dents who are learning the diagnostic process. There are
many existing platforms, including those being developed
in the ITCR program, that contain useful tools, but whose
scopes differ from ours. HistomicsTK, developed by
Cooper and Gutman et al,6 produces an image man-
agement platform and a set of generic image analysis
algorithms for use in cancer biopsy image analysis. How-
ever, their breast cancer diagnostic tools lack the ROIs,
segmentation, and diagnosis features offered in our
software. Similarly, the XNAT platform, developed by
Marcus et al,7 includes operational tools for data importing,
exporting, archiving, organizing, sharing, visualizing, and
reporting. The QuIP system, developed by Saltz et al,8

provides Web applications and analysis algorithms to
load whole-slide images, detect nuclei in image tiles, and
both visualize and explore the results. Saltz et al9 also has
developed convolutional neural network (CNN) models
for detecting patches containing lymphocytes and ne-
crosis, which is related to our semantic segmentation
module. QuIP differs in emphasis from our MLCD system,
which is oriented toward fully automated whole-slide
diagnosis. Our ROI detection is based on interest by
examining pathologists, whereas theirs is based on tissue
classification.

Our ROI tools are designed to help pathologists with their
initial scanning of digital slides; these tools will be useful in
studying the way pathologists identify diagnostic ROIs.
Our tissue segmentation tools are designed to help cancer
researchers study tissue type classification. Our di-
agnostic tools are designed to perform computer-aided
diagnoses; researchers can use them to improve the
quality of their studies, and in the future, practitioners can
use them in their clinical work. For cancer researchers,
most of our tools are generalizable from our breast cancer
studies to other cancer types through retraining on new
data sets. Thus, our tools will have a significant impact on
both cancer research and clinical practice.

METHODS

Overview

Our package is based on algorithms from the research
articles mentioned in the Introduction and has 3 main
modules as shown in Figure 1, Region-of-Interest De-
tection, Tissue Segmentation, and Diagnosis Classifiers.
The workflow begins with digital whole-slide hematoxylin
and eosin–stained (H&E) images whose average size is
90,000 × 70,000 pixels. The Region-of-Interest Detection
module is a classifier that, based on training data from
pathologists, selects regions within whole-slide images that
are most likely to be useful in diagnosis and provides them
to the user. The user can select one and send it to the next
module, the Tissue Segmentation module, which uses
a CNN that was trained on 58 ROI images whose pixels
were manually labeled by an experienced pathologist with
their tissue classes: background, benign epithelium, ma-
lignant epithelium, normal stroma, desmoplastic stroma,
secretion, blood, and necrosis. The resultant segmentation,
in the form of a labeled image, is for use in the third module:
the Diagnosis Classifier. The Diagnosis Classifier is a set of
support vector machines (SVMs) that takes feature vectors
extracted from the labeled image and produces 1 of 4 dif-
ferent diagnoses: benign, atypia, ductal carcinoma in situ
(DCIS), and invasive cancer. These classifiers were trained
on data from our research projects. We will, in future work,
also provide untrained classifiers for each step that can be
trained by other researchers on their data.

ROI Detection

Diagnostically relevant ROIs are represented using a visual
bag-of-words model.10 This module computes a dictionary
from small image patch clusters, which are its “words.”
Then, the frequency of these words is used to describe
larger image regions. Using frequency features, a classifier
is trained to detect ROIs. The method consists of 2 major
parts: (1) an ROIFeatureExtractor module, and (2) an
ROIWindowClassifier module, both derived from algorithms
developed by Mercan et al.2

CONTEXT

Key Objective
Our goal was to create a software package that can automatically find, segment, and diagnose regions of interest in whole-slide

biopsy images.
Knowledge Generated
A software package has been developed that uses classifiers to predict regions of interest to semantically segment them using

a deep neural net and to classify them using a support vector machine into clinically relevant diagnostic categories.
Relevance
Our tools have the potential to help other cancer researchers and, with appropriate interfaces, support software-assisted

interpretation of cancer biopsy slides by clinicians.
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The ROIFeatureExtractor takes in a whole-slide image
and produces a feature vector that is used by the ROI-
WindowClassifier module. The input whole-slide image
needs to be in a supported format, including TIFF, JPEG,
BMP, or PNG.1 Other unsupported formats must first be
converted. To achieve the optimal result, resolution of ×40
is recommended. Other resolutions are valid input, but the
result might not be accurate because downsampling can
cause information loss. The feature extractor consists of
several internal submodules. First, a word constructor
separates images into square patches called “words,”
whose sizes are 120 × 120 pixels. Next, these visual words
are converted from the RGB (red-green-blue) color space
to the H&E space, using color deconvolution and stain
normalization algorithms developed by Macenko et al.11

The visual words are also converted from the RGB color
space into the L*a*b* color space using a nonlinear
transformation.12 The L*a*b color space consists of 3 axes:
R-G (red-green), Y-B (yellow-blue), and gray tone, and was
the result of perceptual studies with humans conducted by
He and Wang.13 Two histograms are then computed to
describe the visual words: (1) a color histogram in the
L*a*b* color space and (2) a texture histogram obtained
from the Local Binary Pattern operator computed from the
HE space. Next, the visual dictionary is constructed through
applying k-means clustering to the histogram representa-
tions of the visual words, using both histograms as 1 large
feature vector. Each cluster has a unique cluster number,
and each word is assigned its cluster number. Thus,
a larger image window (bag) can be represented as
a histogram of the cluster numbers of its visual words.
Finally, the SlidingWindowAnalysis14 module constructs the
visual bags that cover these larger image windows whose

sizes and overlap are 3,600- × 3,600-pixel windows, with
2,400-pixel overlap in both horizontal and vertical directions;
the bags are represented by their histogram feature vectors.

In the ROIWindowClassifier module, the detection of di-
agnostically relevant ROIs is formulated as a binary clas-
sification problem where the samples are bags and the
features are their word frequency histograms. During
training, windows in ROIs were used as positive examples,
and windows near, but not inside, the ROIs were used as
negative samples to increase the discriminative ability of the
classifier. This module is an SVM that takes in features
computed in the ROIFeatureExtractor module to determine
which image regions will be of interest to a diagnosing
pathologist. The 2 outputs are a set of images for those
regions and a visualization that shows them with red boxes.

Tissue Segmentation

Tissue segmentation has 2 parts: (1) a CNN is trained from
expert ground truth data to classify tissues at the pixel level
into histopathologic classes, and (2) images are broken into
superpixels, which are small, compact areas of the image
that have similar color and texture; then, each superpixel is
assigned the class label of the majority of its pixels (Fig 2).
The superpixel labels, which are the 8 identifiable tissue
classes given in the Overview, will be used by the diagnostic
classifiers. Figure 2 shows these classes in our ground truth
ROI images.

The module SuperpixelSegmentation segments images
into nonoverlapping superpixels, using a standard sim-
ple linear iterative clustering algorithm, which clusters
neighboring pixels based on L, a, b values of the CIELAB
color space.3 Superpixel segmentation is a traditional

Region-of-Interest
Detection

Tissue
Segmentation

Selection
Diagnosis

Classification
Whole-slide

biopsy image
Suggested
diagnosis

Atypical

Malignant epithelium Desmoplastic stroma Blood

Background Benign epithelium Normal stroma Secretion Necrosis

FIG 1. Overview of the proposed software system. There are 3 main modules: Region-of-Interest Detection, Tissue Segmentation, and Diagnosis. The
flow begins with digital whole-slide hematoxylin and eosin (H&E)–stained images. The Region-of-Interest-Detection module is a classifier that selects
regions within whole-slide images that are most likely to be useful in diagnosis and provides them to the user. The user can select one and send it to the
next module; the Tissue Segmentation module uses a convolutional neural network to perform tissue segmentation. The resultant tissue map is used in
the third module. The Diagnosis Classifier is a set of support vector machines that takes the region of interest and its tissue labels as input and produces
the suggested diagnosis.
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unsupervised feature-based segmentation method origi-
nally developed by Ren and Malik.15

CNNs are powerful tools for supervised semantic
segmentation.16-18 To better fit the whole-slide image
problem, we developed a U-Net style encoder-decoder
architecture19 that uses modules from the ESPNet archi-
tecture developed by Mehta et al20,21 for better encoding
spatial representations and with several modifications to
conventional models: (1) an input-aware encoding block,
(2) a new dense connection pattern between encoder and
decoder, and (3) a combination of contextual features from
multiple decoding paths.3,20,21

In the PixelClassificationmodule, semantic segmentation of
biologically meaningful tissues is performed as a multiclass
classification of individual pixels using the modified ESPNet-
based encoder-decoder model. Our CNNmodel was trained
on size 384 × 384 patches from 58 ROIs fully annotated by
an experienced pathologist. Applying this trained CNN
classifier on any given ROI yields a labeled image where the
tissue types are represented by different integer labels and
can be visualized in different colors: 0, Background (white);
2, Benign Epithelium (magenta); 3, Malignant Epithelium

(blue); 4, Normal Stroma (pink); 5, Desmoplastic Stroma
(violet); 6, Secretion (green); 7, Blood (yellow); 8, Necrosis
(red). The next module, SuperpixelClassification, classifies
each superpixel with the class of the majority of its pixels.
Figure 3 shows an example of labeled superpixels sur-
rounding a duct.

Diagnosis

Starting with a labeled ROI image, our diagnostic classifiers
use the extracted tissue or structure features to produce 1
of 4 diagnoses from benign, atypia, DCIS, and invasive
cancer. The modules included in the diagnosis package
are as follows: (1) the SuperpixelFrequency module that
constructs a superpixel label frequency histogram, (2)
the SuperpixelCo-occurrence module that constructs
a superpixel label co-occurrence histogram, (3) a Mid-
LevelFeatureClassifier model trained from the combined
histograms of superpixel frequency and co-occurrence that
assigns diagnostic classes to new ROIs, (4) a Structur-
eFeature module that constructs feature vectors that de-
scribe structures important for diagnosis, and (5)
a StructureFeatureClassifier model trained from structure
feature histograms that assign diagnostic classes to new

Background Desmoplastic stroma

Normal stroma Secretion

Malignant epithelium Blood

Benign epithelium Necrosis

Deep
learning

model (CNN)

Superpixel
segmentation

Pixel-wise
segmentation

Superpixel overlay
on pixel-wise
segmentation

Majority
voting

A

B

FIG 2. (A) Tissue labels agreed on by pathologists to use in semantic segmentation. Three example patients from the data set are shown; to the right of each
patient is a label image with the pixels annotated by a pathologist. (B) Flow diagram. Tissue segmentation has 2 parts: (1) a convolutional neural network
(CNN) is trained from expert ground truth data to classify tissues at the pixel level into histopathologic classes, and (2) images are broken into superpixels,
which are small, compact areas of the image that have similar color and texture within their boundaries; then, the pixel classification is transferred to the
superpixels by assigning each superpixel the class label of the majority of its pixels.
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ROIs. These modules come from the algorithms developed
by Mercan et al.4

The SuperpixelFrequency module takes in a labeled ROI as
shown in Figure 3 and produces an 8-bin histogram of the
frequencies of each of the 8 histopathologic tissue labels in
the ROI. The SuperpixelCo-occurrence module produces
an 8- × 8-bin histogram, in which the (i, j)th bin contains the
frequency of label i appearing adjacent to label j in the ROI.
Superpixel co-occurrence can show the frequency of
contact between superpixels of different tissue types.
Figure 4 shows an example of a segmented tissue map and
its superpixel label frequency histogram and superpixel
label co-occurrence histogram.

TheMidLevelFeatureClassifiermodule is a 4-class classifier
trained from the feature vectors computed by the Super-
pixelFrequency and SuperPixelCo-occurrence modules on
428 ROIs in the full data set. Given the frequency and co-
occurrence histograms of segmented ROIs, the classifier
assigns 1 of the 4 diagnosis labels: benign, atypia, DCIS,
and invasive.

The StructureFeature module was developed with the
advice of expert pathologists to describe the structures
they pay close attention to during diagnosis, in particular,
structural changes surrounding a duct. Using the se-
mantic segmentation result, objects of interests or central
structures (ducts) are identified, and the feature extraction
process is applied: 1 superpixel–wide layers of superpixels
toward the inside of the object and toward the outside. For
each layer, a frequency histogram of tissue labels of
superpixels within each such layer is constructed. Figures
3 and 5 show examples of structure feature extraction
from different ROIs.

The StructureFeatureClassifier module is a 4-class classi-
fier trained on the structure features obtained from applying
the StructureFeature module to 428 ROIs in the full data

set. Given the structure feature histograms as shown in
Figures 3 and 5 of labeled ROIs, the classifier assigns 1 of
the 4 diagnoses labels: benign, atypia, DCIS, and invasive
breast cancer.

RESULTS

This software package comes from research work whose
code was written in multiple languages and packages,
including C++, MATLAB, and Torch. All of the software is
being converted to Python modules to produce a uniform
machine-learning-based package. The modules described
in this article are complete, with the exception of the on-
going work on the StructureFeature extractor and classifier;
they can be downloaded from https://github.com/cancertech/
cancer_diagnosis. Instructions for using the package are
given on our Web page (https://cancertech.cs.washington.
edu/), which has tabs for downloading the whole package
as a zip file, installation of required software including An-
aconda/Python, and a tutorial that takes the user through the
process of running the package on an image through the
whole pipeline. Figure 6 shows sample results, which are
more comprehensive than the simple example in the tutorial.
At the top are 3 examples of ROI detection in which the left 2
approximately agree with ROIs labeled by pathologists and
the right one has an extra ROI that was not in the ground
truth; we attribute this to the denseness of cells and duct-like
structures. The accuracy of the algorithm was reported in
Mercan et al2 as 0.72. Below are results of the Super-
pixelClassification and MidLevelFeatureClassifier diagnosis
modules in which the leftmost 2 examples show segmen-
tations similar to the ground truth, whereas the example on
the right shows a hard case with poor segmentation and
incorrect diagnosis.

This segmentation software comes from the work of Mehta
et al3 that performs both semantic segmentation and
diagnosis and was evaluated on 428 ROIs with diagnostic
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labels and 58 with hand-marked tissue labels. In this
work, the segmentor obtained a 0.44 mIOU (mean in-
tersection over union of the pixel regions) score, which
was enough to obtain a 0.63 diagnostic accuracy for the

4-class problem compared with 44 pathologists in the
study who obtained 0.70 accuracy. The 4-class problem is
quite difficult, and the later work of Mercan et al4 obtained
higher accuracies by breaking the problem into binary
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problems in a tree structure and using additional features.
The algorithms we have implemented are part of the
Mercan et al4 work. Our midlevel feature classifier obtains
approximately the same accuracies reported in that work
(0.94 in invasive v others; 0.70 for benign v DCIS and
atypia; 0.83 for DCIS v atypia). The 0.83 accuracy for DCIS
versus atypia was higher than the 0.80 accuracy of pa-
thologists in our study.

DISCUSSION

Our scientific methodology was produced by a multidisci-
plinary team consisting of world experts in epidemiology,
breast pathology, and computer vision/machine learning.
The current classifiers are all trained on a specific and well-
developed breast biopsy data set. Although they are meant
to be used on breast cancer whole-slide images, we plan to
make the untrained versions of the classifiers available for
researchers to use on their own data sets, with an extension
to other cancers in the near future. The methodology has
been shown to be transferable to our current work on
a melanoma biopsy set. Pathologists’ annotations and
tracking data can be used to train a (new) ROI classifier. An
expert pathologist can mark the borders of different tissues
on ROIs (ongoing), and then the Tissue Segmentation
module can work in the same way. The labels, of course,
are different for different tissue types. Once the semantic
segmentation is completed, the diagnostic classification
through label frequency and co-occurrence can run as

described. However, the structure feature was meant for
ducts or other small areas, such as glands, that would not
apply to all cancers.

The package was initially intended for cancer researchers
but shows functionality for practitioners. In both cases,
a suitable interface to improve the user experience will be
necessary. In its current state, the software must be
downloaded from GitHub, and the modules are run by the
user because some of them extract features from large
images. The long-term plan is to make the software
available through the PIIP package.5 PIIP is an NCI/NIH-
sponsored project intended for managing, annotating,
sharing, and quantitatively analyzing digital pathology im-
aging data that expands on an existing, freely available
pathology image viewer, Sedeen. We chose the PIIP/
Sedeen platform because it is readily available, is easy to
use, and provides excellent annotation tools for training
deep-learning classifiers, Sedeen will read in a whole-slide
image and pass it to the tools of our package, which will
reside in PIIP. Because Sedeen is Windows based, our first
software is also Windows based, but we will provide Linux
and MacOS as well in the near future. SVS format will be
supported on Linux and MacOS after installation of open-
slide (see https://openslide.org/download/ for installation
details).

Software development for computer-aided cancer diagnosis
is one of the most difficult problems in cancer informatics
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FIG 6. Example results. For region of interest (ROI) detection (top), the results on the left are examples of where the predicted ROIs are similar to
the ground truth regions; the result on the right is an example of where they are incorrect or incomplete. ROIs are detected by the ROIDetection
module. For ROI segmentation and diagnosis (bottom), the results on the left are examples of where the segmented ROIs are similar to the ground
truth segmentations; the example on the right shows a poor segmentation and incorrect diagnosis result. DCIS, ductal carcinoma in situ.
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research and requires a dynamic and strategic research team
for our NIH/NCI-sponsored project, U01 CA231782. The
resulting design for AI-assisted diagnosis includes ROI
finding, tissue segmentation into histopathologic classes
using a state-of-the-art deep-learning scheme and classifi-
cation into multiple diagnosis categories using hand-crafted

features and SVMss. Our new tools show applicability and
adaptability to a range of cancer researchers beyond our
initial research into breast cancer data sets and eventually to
practicing pathologists, from residents who are learning
diagnostic skills to experts who want a quick second opinion
on patients for which additional advice is desired.
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