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Abstract: Epichloë endophytes may not only affect the growth and resistances of host grasses, but may
also affect soil environment including soil microbes. Can Epichloë endophyte-mediated modification
of soil microbes affect the competitive ability of host grasses? In this study, we tested whether Epichloë
endophytes and soil microbes alter intraspecific competition between Epichloë endophyte-colonized
(EI) and endophyte-free (EF) Leymus chinensis and interspecific competition between L. chinensis and
Stipa krylovii. The results demonstrated that Epichloë endophyte colonization significantly enhanced
the intraspecific competitive ability of L. chinensis and that this beneficial effect was not affected by
soil microbes. Under interspecific competition, however, significant interactions between Epichloë
endophytes and soil microbes were observed. The effect of Epichloë endophytes on interspecific
competitiveness of the host changed from positive to neutral with soil microbe removal. Here higher
mycorrhizal colonization rates probably contributed to interspecific competitive advantages of EI
over EF L. chinensis. Our result suggests that Epichloë endophytes can influence the competitive ability
of the host through plant soil feedbacks from the currently competing plant species.

Keywords: Leymus chinensis; Epichloë endophyte; soil microbe; intraspecific competition; interspecific
competition; Stipa krylovii

1. Introduction

Epichloë endophytes are a group of fungi characterized by their ability to infect the aerial tissues
of several cool-season grasses without causing obvious disease [1]. Symbioses between grasses and
Epichloë endophytes occur in both natural and agricultural grassland communities and are generally
considered to be mutualistic [2–4]. The host plant provides food, shelter and a mode of reproduction
for the fungus, while the fungus can increase host growth, reproduction, and resistance and tolerance to
abiotic and biotic stress, such as drought [5–7], low nutrients [8–10], herbivory [3,11,12] and pathogen
attack [13,14].

Given the occurrence of Epichloë endophyte-improved plant fitness, Epichloë endophytes are
assumed to enhance the intra- and interspecific competition ability of host plants [15–18]. In terms
of intraspecific competition, greater shoot and/or root growth in Festuca arundinacea [19,20], Festuca
pratensis [21], and Bromus benekenii [22] have been reported in association with the presence of Epichloë
endophytes. With respect to interspecific competition, the greater competitive ability of plants
harbouring Epichloë endophytes has been documented in F. pratensis [23,24], Poa alsodes [25], Festuca
rubra [16] and Achnatherum sibiricum [18]. However, several studies have also reported conflicting
results showing neutral to negative effects of endophytes on the competitive ability of the host [26–29].
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Epichloë endophytes may not only affect the growth and resistances of host grasses, but may
also affect soil microbes, such as nitrogen-fixing bacteria, phosphorus-solubilizing rhizospheric
fungi, arbuscular mycorrhizal fungi (AMF) and other microbial communities [30–33]. Can Epichloë
endophyte-mediated modification of soil microbes affect the competitive ability of host grasses
indirectly? Limited studies focused on AMF. Omacini et al. [15] found that Epichloë endophyte
colonization reduced AMF colonization of endophyte-infected (EI) Lolium multiflorum, while increased
AMF colonization of neighbouring endophyte-free (EF) ryegrass. As AMF was neutral to both EI
and EF plants, the modified colonization did not change the completive advantage of EI over EF
plants. In a recent study, we found that Epichloë endophyte colonization significantly inhibited AMF
colonization of the host grass Achnatherum sibiricum, and the effects of AMF on host competition were
variable and depended on the identity of the AMF species [18]. As AMF diversity is high in natural
grasslands, and Epichloë endophyte colonization can affect AMF as well as other microbes [32–34],
we hypothesized that Epichloë endophyte colonization could not only affect the competitive ability of
the host directly by changing its growth and resistance, but also indirectly by changing soil microbes.

Leymus chinensis and Stipa krylovii are two dominant species of the Inner Mongolia steppe. In the
present study, we investigated the effects of Epichloë endophytes and soil microbes on the intraspecific
competitive interactions between EI and EF L. chinensis and interspecific competitive interactions
between L. chinensis and S. krylovii. Specifically, we focused on two primary questions: (1) Does Epichloë
endophyte colonization affect the growth and intra- and interspecific competitive ability of L. chinensis?
(2) Is the effect of Epichloë endophyte colonization on the growth and competitive ability of L. chinensis
influenced by soil microbes?

2. Materials and Methods

2.1. Plant and Fungal Material

L. chinensis, a rhizomatous perennial grass, was originally sampled from their natural populations
at Abaga Banner in Inner Mongolia (43.90◦ N, 115.34◦ E). It can be colonized by the leaf endophyte
Epichloë bromicola, and the infection rate was about 63% [35]. In this area, L. chinensis seldom produces
seeds, and stromata have not ever been observed, thus the endophyte is highly likely transmitted via
vegetative propagation. EI and EF plants used in this experiment were originally collected from their
natural population in summer in 2015, multiplied and selected for uniformity in 2016 and 2017. During
this period, we clipped the plants repeatedly and kept them growing vegetatively aiming to avoid
possible horizontal transmission of Epichloë endophyte, but only vertical transmission between different
tillers. The Epichloë endophyte status of each L. chinensis plant was not only checked microscopically
by examining the leaf sheaths for the presence of fungal hyphae after staining with lactophenol aniline
blue [36] (Figure 1A) but also isolated (Figure 1B) and identified before conducting experiments to
confirm endophyte status.

S. krylovii, a perennial bunchgrass, cannot be infected by Epichloë endophyte [37]. S. krylovii seeds
were sampled from their natural populations at Abaga Banner in Inner Mongolia. After nine months of
growth in the greenhouse at Nankai University, the plants that were almost the same size as L. chinensis
were selected.

Soil was collected from the natural grassland hosting the two plant species at Abaga Banner in
Inner Mongolia. We sieved the soil samples to remove roots and then pooled them for the experiment.
Sterilized soils (which were autoclaved for 90 min at 121 ◦C) served as a microbe-free (MF) treatment.
Non-sterilized soils were used as microbe-inclusive (MI) treatment.
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Figure 1. Hyphae in leaf sheath (A) (Shot under 4× microscope) and colony (B) of Epichloë bromicola 
isolated from Leymus chinensis. Picture of colony was taken after growing on PDA for 10 days (scale 
bars = 10 mm). 

2.2. Experimental Design 

The experiment had a randomized block design with three factors. One factor, Epichloë 
endophyte colonization status of L. chinensis, contained two treatments: EI and EF L. chinensis. The 
second factor, soil microbe status, contained two treatments: MI and MF. These two factors were the 
same for both intra- and interspecific competition. The difference in the test of the two competition 
types were the third factor, plant mixture type: monoculture and mixture. The test of intraspecific 
competition included three groups: monoculture of EI L. chinensis (EI), monoculture of EF L. chinensis 
(EF) and mixture of EI and EF L. chinensis. In contrast, the test for interspecific competition involved 
five groups: EI, EF, monoculture of S. krylovii (S), mixture of EI L. chinensis and S. krylovii (EIS) and 
mixture of EF L. chinensis and S. krylovii (EFS) (Table 1) 

Table 1. The experimental design schematic diagram. 

 Intraspecific Competition Interspecific Competition 
 Monoculture Mixture Monoculture Mixture 

MI EI EF EI and EF EI EF S EIS EFS 
MF EI EF EI and EF EI EF S EIS EFS 

EI, Epichloë endophyte-colonized L. chinensis; EF, endophyte-free L. chinensis; EIS, S. krylovii grown 
with EI L. chinensis; EFS, S. krylovii grown with EF L. chinensis; MI, soil microbe inclusive; MF, soil 
microbe free. 

A de Wit-type replacement series [38] with equal plant densities was used to assess the 
intraspecific competitive interaction between EI and EF L. chinensis and the interspecific competitive 
interaction between L. chinensis and S. krylovii. Six plant individuals per plant species for the 
monocultures and three + three individuals of each plant species for the mixtures were transplanted 
into each plastic pot (22-cm diameter and 17-cm depth) containing 1.5 kg sterilized or non-sterilized 
soil, resulting in 12 combinations. Each combination was replicated five times, yielding a total of 60 
pots. The experiment lasted 4 months, from 12 April 2018 to 12 August 2018, and was conducted in 
the campus experimental field at Nankai University, Tianjin, China. During the experiment, all pots 
were watered two or three times a week, and nutrients were supplied by the addition of Hoagland 
nutrient solution once per week to ensure the normal growth of plants. 

2.3. Biomass and Relative Yield (RY) 

At harvest, the shoots of each species were cut at the soil level, dried at 80 °C for 24 h, and then 
weighed. Roots were collected by gentle washing, separated according to species and divided into 
two groups. One group was dried at 80 °C for 24 h and then weighed; the other group was kept at 

Figure 1. Hyphae in leaf sheath (A) (Shot under 4×microscope) and colony (B) of Epichloë bromicola
isolated from Leymus chinensis. Picture of colony was taken after growing on PDA for 10 days (scale
bars = 10 mm).

2.2. Experimental Design

The experiment had a randomized block design with three factors. One factor, Epichloë endophyte
colonization status of L. chinensis, contained two treatments: EI and EF L. chinensis. The second factor,
soil microbe status, contained two treatments: MI and MF. These two factors were the same for both
intra- and interspecific competition. The difference in the test of the two competition types were
the third factor, plant mixture type: monoculture and mixture. The test of intraspecific competition
included three groups: monoculture of EI L. chinensis (EI), monoculture of EF L. chinensis (EF) and
mixture of EI and EF L. chinensis. In contrast, the test for interspecific competition involved five groups:
EI, EF, monoculture of S. krylovii (S), mixture of EI L. chinensis and S. krylovii (EIS) and mixture of EF L.
chinensis and S. krylovii (EFS) (Table 1)

Table 1. The experimental design schematic diagram.

Intraspecific Competition Interspecific Competition

Monoculture Mixture Monoculture Mixture

MI EI EF EI and EF EI EF S EIS EFS
MF EI EF EI and EF EI EF S EIS EFS

EI, Epichloë endophyte-colonized L. chinensis; EF, endophyte-free L. chinensis; EIS, S. krylovii grown with EI L. chinensis;
EFS, S. krylovii grown with EF L. chinensis; MI, soil microbe inclusive; MF, soil microbe free.

A de Wit-type replacement series [38] with equal plant densities was used to assess the intraspecific
competitive interaction between EI and EF L. chinensis and the interspecific competitive interaction
between L. chinensis and S. krylovii. Six plant individuals per plant species for the monocultures and
three + three individuals of each plant species for the mixtures were transplanted into each plastic pot
(22-cm diameter and 17-cm depth) containing 1.5 kg sterilized or non-sterilized soil, resulting in 12
combinations. Each combination was replicated five times, yielding a total of 60 pots. The experiment
lasted 4 months, from 12 April 2018 to 12 August 2018, and was conducted in the campus experimental
field at Nankai University, Tianjin, China. During the experiment, all pots were watered two or three
times a week, and nutrients were supplied by the addition of Hoagland nutrient solution once per
week to ensure the normal growth of plants.

2.3. Biomass and Relative Yield (RY)

At harvest, the shoots of each species were cut at the soil level, dried at 80 ◦C for 24 h, and then
weighed. Roots were collected by gentle washing, separated according to species and divided into two
groups. One group was dried at 80 ◦C for 24 h and then weighed; the other group was kept at −20 ◦C
for the determination of the AMF colonization rate. Relative yield (RY) was calculated as the ratio of
the weight of the species in the mixture to the weight of the species in monoculture.
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2.4. AMF Colonization Rate

Colonization of the roots by AMF was microscopically assessed. A subsample (ca. 2 g) of roots
was cleared with 10% (w/v) KOH before being stained using 0.05% trypan blue in lactic acid (v/v) using
a modified version of the procedure described in Phillips and Hayman [39]. Mycorrhizal colonization
was determined by examining 15–25 1-cm root segments at 200×magnification. The AMF colonization
rate was recorded using the cross-hair eyepiece method [40], with a minimum of 200 intersections
per replicate.

2.5. Competitiveness

The intraspecific competitive ability of EI against EF L. chinensis or interspecific competitive ability
of L. chinensis against S. krylovii in the mixture pots was assessed using the aggressivity index (AGR)
and the relative interaction intensity index (RII), both of which were calculated using the total biomass
of the plant species. The AGR of species x relative to species y was measured according to McGilchrist
and Trenbath [41]:

AGRxy = RYx − RYy = (DMxy/DMxx) (D −Myx/DMyy) (1)

where RY is the relative yield of species x or y, defined as the dry matter yield of a species grown in
mixture (DMxy or DMyx) relative to the dry matter in the respective monoculture (DMxx or DMyy).
If the AGRxy value is zero, then x and y have the same competitive ability. Species x had a higher
competitive ability than species y if the AGRxy value was greater than zero. A negative AGRxy value
indicated the opposite.

The RII allows for simple comparisons of interaction strength across species and treatments [42].
The RII equation is as follows:

RII = (DMxy − DMxx)/(DMxy + DMxx) (2)

The RII is a measure of the strength of interactions between species and is centred on zero,
with negative interactions (competition) indicated by values between 0 and −1 and positive interactions
(facilitation) indicated by values between 0 and +1.

2.6. Statistical Analyses

We performed all statistical analyses in the SPSS software (version 20.0, SPSS, Chicago, IL, USA).
A two-way ANOVA was conducted to determine the effects of Epichloë endophyte colonization (E)
and soil microbes (M) on the relative yield, AGR of L. chinensis and RII of both L. chinensis and S.
krylovii and to analyse the effects of E and plant mixture type (C) on the mycorrhizal colonization rate
of L. chinensis and to examine the effects of M and C on the relative yield of S. krylovii. We compared
the competitiveness of EI relative to EF L. chinensis in intraspecific competition and mycorrhizal
colonization rate among S, EIS and EFS in interspecific competition, so we only used one-way ANOVA
examining the effect of M on the AGR of L. chinensis and determining the effect of C on the mycorrhizal
colonization rate of S. krylovii.

3. Results

3.1. Plant Growth Performance

Growth of L. chinensis, in terms of RY was significantly increased by Epichloë endophyte colonization
under both intra- and interspecific competition, but the extent of this effect was higher for intraspecific
competition (26% versus 18%, respectively) (Table 2, Figure 2A,C). Microbe removal significantly
reduced the RY of L. chinensis under inter- but not intraspecific competition (Table 2, Figure 2B,D).
There was no significant interaction between Epichloë endophytes and soil microbes on the RY of L.
chinensis under either intra- or interspecific competition (Table 2).
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Table 2. Analyses of variance (ANOVA) for plant relative yield, mycorrhizal colonization rate, relative interaction intensity index (RII) and aggressivity index (AGR)
of Leymus chinensis and Stipa krylovii.

Relative Yield Mycorrhizal Colonization Rate RII AGR
Intra Inter Intra Inter Intra Inter Intra Inter

F P F P F P F P F P F P F P F P

Leymus chinensis
Epichloë

endophyte (E) 16.573 0.004 6.287 0.037 12.945 0.007 33.228 <0.001 18.441 0.003 5.672 0.044 12.097 0.008

Mycorrhiza (M) 1.362 0.277 9.583 0.015 1.971 0.198 9.557 0.015 1.417 0.300 12.847 0.007
Competition (C) 0.226 0.647 0.941 0.360

E×M 1.769 0.220 2.915 0.126 2.242 0.173 2.416 0.159 10.713 0.011
E×C 0.115 0.743 9.150 0.016
M×C

E×M×C
Stipa krylovii

Epichloë
endophyte (E) 7.873 0.023

Mycorrhiza (M) 2.243 0.173 3.102 0.116
Competition (C) 6.605 0.033 11.634 0.009

E×M 16.626 0.004
M×C 15.096 0.005

Significant p-values (p < 0.05). Intra, intraspecific competition; Inter, interspecific competition.
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chinensis on the RY of S. krylovii in the MF treatment, but Epichloë endophyte presence significantly 
suppressed the RY of S. krylovii in the MI treatment (Figure 2E). Thus, S. krylovii showed a higher RY 
when grown with EF than EI L. chinensis in the MI treatment (Figure 2E). 

 

Figure 2. Effects of Epichloë endophyte colonization and soil microbes on the relative yield of Leymus 
chinensis both in intraspecific (A) and (B) and interspecific (C) and (D) competition and effect of the 
interaction between soil microbes and plant mixture type on the relative yield of Stipa krylovii (E). 
Values are means ± SE (n = 5). The different letters above bars denote means that are significantly 
different among treatments (p < 0.05). EI, Epichloë endophyte-colonized L. chinensis; EF, endophyte-
free L. chinensis; EIS, S. krylovii grown with EI L. chinensis; EFS, S. krylovii grown with EF L.chinensis; 
MI, soil microbe inclusive; MF, soil microbe free. Symbol ‘×’, horizontal line in the box, top and bottom 
of box edges and bars indicate the average value, median, 25% and 75% quartiles, and 5% and 95% 
quantiles, respectively. 

Figure 2. Effects of Epichloë endophyte colonization and soil microbes on the relative yield of Leymus
chinensis both in intraspecific (A) and (B) and interspecific (C) and (D) competition and effect of the
interaction between soil microbes and plant mixture type on the relative yield of Stipa krylovii (E).
Values are means ± SE (n = 5). The different letters above bars denote means that are significantly
different among treatments (p < 0.05). EI, Epichloë endophyte-colonized L. chinensis; EF, endophyte-free
L. chinensis; EIS, S. krylovii grown with EI L. chinensis; EFS, S. krylovii grown with EF L.chinensis; MI,
soil microbe inclusive; MF, soil microbe free. Symbol ‘×’, horizontal line in the box, top and bottom
of box edges and bars indicate the average value, median, 25% and 75% quartiles, and 5% and 95%
quantiles, respectively.

The RY of S. krylovii was significantly affected by the interaction between soil microbes and plant
mixture types (Table 2). In addition, there was no significant effect of Epichloë endophytes in L. chinensis
on the RY of S. krylovii in the MF treatment, but Epichloë endophyte presence significantly suppressed
the RY of S. krylovii in the MI treatment (Figure 2E). Thus, S. krylovii showed a higher RY when grown
with EF than EI L. chinensis in the MI treatment (Figure 2E).

3.2. AMF Colonization Rate

Epichloë endophyte colonization significantly increased the mycorrhizal colonization rate of L.
chinensis under both intra- and interspecific competition, and this increase was more pronounced
under interspecific competition (Table 2, Figure 3A). The mycorrhizal colonization rate of S. krylovii
was similar in mixtures with EF L. chinensis to those in monocultures, which suggests that L. chinensis
did not affect the mycorrhizal colonization rate of its neighbouring plants. However, the mycorrhizal
colonization rate of S. krylovii was higher when grown with EF L. chinensis plants than when grown
with EI plants, which suggests that Epichloë endophyte colonization could inhibit the mycorrhizal
colonization rate of neighbouring plants (Table 2, Figure 3B).
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Figure 3. Effect of Epichloë endophyte colonization on the mycorrhizal colonization rate of Leymus
chinensis (A) and Stipa krylovii (B). The different letters above bars denote means that are significantly
different among treatments (p < 0.05). Mono, monoculture; Intra, intraspecific competition; Inter,
interspecific competition; S, the monoculture of S. krylovii; EIS, S. krylovii grown with EI L. chinensis;
EFS, S. krylovii grown with EF L. chinensis. Symbol ‘×’, horizontal line in the box, top and bottom
of box edges and bars indicate the average value, median, 25% and 75% quartiles, and 5% and 95%
quantiles, respectively.

3.3. Competitiveness

The AGR was used to measure the competitive ability of EI L. chinensis relative to EF L. chinensis.
Under intraspecific competition, the AGR of L. chinensis was positive in the MI treatment, indicating a
greater competitive ability of EI L. chinensis relative to that of EF L. chinensis (Figure 4A), but no significant
main effect of soil microbes was observed (Table 2). Under interspecific competition, the AGR was
significantly affected by Epichloë endophyte colonization, soil microbes and their interaction (Table 2).
L. chinensis had a greater competitive ability than S. krylovii (AGR > 0). In addition, there was no
significant effect of Epichloë endophytes on the interspecific competitive ability of L. chinensis in the MF
treatment, but a higher competitive ability of EI L. chinensis compared to EF L. chinensis was observed
in the MI treatment (Figure 4B).Microorganisms 2020, 8, 219 8 of 13 
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value, median, 25% and 75% quartiles, and 5% and 95% quantiles, respectively. 
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Under intraspecific competition, the RII values of both EI and EF L. chinensis were negative in both 
the MI and MF treatments, and only the RII of EI L. chinensis was less negative compared to that of 
EF L. chinensis (Table 2, Figure 5A,B). The results indicate that EI and EF L. chinensis suppressed each 
other, but the magnitude of the negative effect of EI on EF L. chinensis was larger. The presence of soil 
microbes did not have a significant effect on the RII of L. chinensis (Table 2, Figure 5B). In terms of the 
response of L. chinensis to competition with S. krylovii, the presence of S. krylovii facilitated the growth 
of EI L. chinensis (RII > 0) but had no influence on EF L. chinensis, and a significant main effect of 
Epichloë endophytes was observed (Table 2, Figure 5C). In addition, the presence of soil microbes 
significantly enhanced the promoting effect of S. krylovii on L. chinensis under interspecific 
competition (Table 2, Figure 5D). However, no significant interactive effect between Epichloë 
endophytes and soil microbes was observed (Table 2). The RII of S. krylovii was significantly affected 
by Epichloë endophyte colonization, soil microbes and their interaction (Table 2). Furthermore, L. 
chinensis had a negative effect on S. krylovii (RII < 0). Epichloë endophyte colonization had no 
significant effect on the RII in the MF treatment, but a stronger negative effect of EI L. chinensis on S. 
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Figure 4. Effect of soil microbes on the aggressivity index (AGR) of Leymus chinensis in intraspecific
competition (A) and effect of the interaction between Epichloë endophyte colonization and soil microbes
on the AGR of L. chinensis in interspecific competition (B). The different letters above bars denote
means that are significantly different among treatments (p < 0.05). EI, Epichloë endophyte-colonized L.
chinensis; EF, endophyte-free L. chinensis; MI, soil microbe inclusive; MF, soil microbe free. Symbol ‘×’,
horizontal line in the box, top and bottom of box edges and bars indicate the average value, median,
25% and 75% quartiles, and 5% and 95% quantiles, respectively.
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The RII provides a simple comparison of interaction strength across species and treatments. Under
intraspecific competition, the RII values of both EI and EF L. chinensis were negative in both the MI
and MF treatments, and only the RII of EI L. chinensis was less negative compared to that of EF L.
chinensis (Table 2, Figure 5A,B). The results indicate that EI and EF L. chinensis suppressed each other,
but the magnitude of the negative effect of EI on EF L. chinensis was larger. The presence of soil
microbes did not have a significant effect on the RII of L. chinensis (Table 2, Figure 5B). In terms of
the response of L. chinensis to competition with S. krylovii, the presence of S. krylovii facilitated the
growth of EI L. chinensis (RII > 0) but had no influence on EF L. chinensis, and a significant main effect
of Epichloë endophytes was observed (Table 2, Figure 5C). In addition, the presence of soil microbes
significantly enhanced the promoting effect of S. krylovii on L. chinensis under interspecific competition
(Table 2, Figure 5D). However, no significant interactive effect between Epichloë endophytes and soil
microbes was observed (Table 2). The RII of S. krylovii was significantly affected by Epichloë endophyte
colonization, soil microbes and their interaction (Table 2). Furthermore, L. chinensis had a negative
effect on S. krylovii (RII < 0). Epichloë endophyte colonization had no significant effect on the RII in the
MF treatment, but a stronger negative effect of EI L. chinensis on S. krylovii was observed in the MI
treatment (Figure 5E).Microorganisms 2020, 8, 219 9 of 13 
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4. Discussion

With respect to the effects of Epichloë endophyte colonization on plant competitiveness, published
studies on the intraspecific or interspecific competitive ability of hosts have focused on different
grass-endophyte symbionts. Epichloë endophytes can enhance the competitive ability of host plants
either by promoting self-growth or by inhibiting the growth of companion plants. For example,
Brem and Leuchtman [22] conducted an intraspecific competition experiment and found that Epichloë
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endophytes enhanced the competitive ability of Br. benekenii by increasing its aboveground dry matter
yield. In relation to the interspecific competition experiment, Craig et al. [25] showed that Epichloë
endophytes increased the biomass of host P. alsodes. Saikkonen et al. [24] also demonstrated that Epichloë
endophytes conferred a competitive advantage to the host, F. pratensis, thereby reducing weed invasions.
However, Vázquez-de-Aldana et al. [16] evaluated the effect of Epichloë endophyte colonization on the
competitive ability of F. rubra against five other grassland species in binary mixtures and found that
EI plants had better competitive ability than EF plants, as indicated by the lower RY of companion
plants when growing in mixture with EI plants. Certainly, neutral [28,29] and negative [26,27] effects
of symbiosis when infected plants grow in competition with other species have also been reported.
Are the effects of Epichloë endophyte colonization on intraspecific and interspecific competition similar
for a single grass-endophyte symbiont? The only study that has addressed this question was conducted
by Marks et al. [20], who found that Epichloë endophyte colonization enhanced both the intra- and
interspecific competitive ability of tall fescue but decreased the intra- and interspecific competitive
ability of perennial ryegrass. In our study, we found that Epichloë endophyte colonization enhanced
both the intra- and interspecific competitive ability of L. chinensis, only the beneficial effects of Epichloë
endophyte colonization on the interspecific competitiveness of the host were affected by soil microbes.

In natural systems, plants often experience direct competition with neighbouring plants and
simultaneous complex interactions with soil biota [43]. Epichloë endophyte colonization can shape
communities of soil biota [44–48] and influence subsequent plant growth and survival [49–52].
Can simultaneous occurrence of foliar Epichloë endophytes and soil microbes affect the competitivity of
the host grasses? Up to now, only the effects of simultaneous occurrence of foliar Epichloë endophytes
and AMF were reported and the results were varied. Omacini et al. [15], in binary mixtures of EI
and EF Lolium multiflorum, found that the competitive ability of plants was increased by the presence
of Epichloë endophytes, while AMF did not affect host performance in the presence or absence of
Epichloë endophytes. Vignale et al. [53], in binary mixtures of EI and EF Bromus auleticus, showed
that neither Epichloë endophytes nor AMF affected the intraspecific competitive ability of the plants.
In our previor study [18], we found that Epichloë endophyte colonization significantly enhanced the
interspecific competitive ability of A. sibiricum, but there was no interaction between AMF and Epichloë
endophytes. In the present study, we found that the effect of Epichloë endophyte colonization on the
intra- and interspecific competitive ability of L. chinensis was differentially mediated by soil microbes.
Soil microbe presence did not affect the intraspecific competitive ability of EI relative to EF L. chinensis.
However, with respect to interspecific competition, we did find significant interactions between Epichloë
endophytes and soil microbes on the competitiveness of L. chinensis. The effect of Epichloë endophytes
on interspecific competitiveness of the host changed from positive to neutral with soil microbe removal.

Why did soil microbes not affect the intraspecific competitive ability but change the interspecific
competitive ability of EI over EF L. chinensis? In the present study, we investigated AMF colonization
rates of L. chinensis and S. krylovii, and found that AMF colonization rates of EF L. chinensis was
significantly lower in interspecific competitive studies than those in monoculture and intraspecific
competitive studies, while the AMF colonization rates of EI L. chinensis did not change significantly.
The advantage of EI over EF L. chinensis in the mycorrhizal colonization was more evident in
interspecific than intraspecific studies. Higher mycorrhizal colonization rates probably contributed to
higher interspecific competitive advantages of EI over EF L. chinensis.

Plants can shape communities of soil biota and alter soil structure and chemistry in ways that
influence subsequent plant growth and survival. The effects of Epichloë endophyte colonization on
these plant–soil feedbacks (PSFs) have been found both in host grasses as well as in neighbouring
plants in the community. Matthew and Clay [50] found that EI Festuca had reduced growth in soil that
previously supported EI Festuca, but was unaffected by soil that once supported EF Festuca. Rudgers
and Orr [48] reported that soil conditioning by EI tall fescue reduced the biomass of three native tree
species via altered soil microbes. In the present study, we found that the effect of Epichloë endophytes
on interspecific competitiveness changed from positive to neutral with microbe removal. The result
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suggests that the soil feedback effect of the EI plants can build up quickly during competition. Thus,
Epichloë endophytes can influence the competitive ability of the host through plant–soil feedbacks from
the currently competing plant species.
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