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Objective: To compare the performance of machine learning models against

the traditionally derived Combined Assessment of Risk Encountered in

Surgery (CARES) model and the American Society of Anaesthesiologists-

Physical Status (ASA-PS) in the prediction of 30-day postsurgical mortality

and need for intensive care unit (ICU) stay >24 hours.

Background: Prediction of surgical risk preoperatively is important for

clinical shared decision-making and planning of health resources such as

ICU beds. The current growth of electronic medical records coupled with

machine learning presents an opportunity to improve the performance of

established risk models.

Methods: All patients aged 18 years and above who underwent noncardiac and

nonneurological surgery at Singapore General Hospital (SGH) between 1

January 2012 and 31 October 2016 were included. Patient demographics,

comorbidities, preoperative laboratory results, and surgery details were

obtained from their electronic medical records. Seventy percent of the obser-

vations were randomly selected for training, leaving 30% for testing. Baseline

models were CARES and ASA-PS. Candidate models were trained using

random forest, adaptive boosting, gradient boosting, and support vector

machine. Models were evaluated on area under the receiver operating charac-

teristic curve (AUROC) and area under the precision-recall curve (AUPRC).

Results: A total of 90,785 patients were included, of whom 539 (0.6%) died

within 30 days and 1264 (1.4%) required ICU admission >24 hours postop-

eratively. Baseline models achieved high AUROCs despite poor sensitivities

by predicting all negative in a predominantly negative dataset. Gradient

boosting was the best performing model with AUPRCs of 0.23 and 0.38

for mortality and ICU admission outcomes respectively.

Conclusions: Machine learning can be used to improve surgical risk prediction

compared to traditional risk calculators. AUPRC should be used to evaluate model

predictive performance instead of AUROC when the dataset is imbalanced.
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A bout 250 million surgeries are performed worldwide each year,
and this number is increasing rapidly.1 As access to surgery

improves, the number of patients with postoperative complications
will also increase.2,3 Previous studies demonstrated that a large
proportion of postoperative mortality occurs in a small, distinct
group of patients with high-risk characteristics, yet less than 15%
from this group were admitted to intensive care units (ICU) postop-
eratively.4,5 In the preoperative assessment of a surgical patient, it is
prudent to counsel the patient on the risks of postoperative mortality
and need for critical care monitoring after surgery. Therefore,
accurate preoperative prediction of surgical risks is important for
clinical shared decision-making and for guiding the allocation of
health resources such as ICU beds.

A number of risk stratification tools have been developed for
this purpose, such as the American Society of Anaesthesiologists-
Physical Status (ASA-PS), Physiological and Operative Severity
Score for the enUmeration of Mortality and Morbidity (POSSUM),
Surgical Outcome Risk Tool (SORT), and American College
of Surgeons National Surgical Quality Improvement Program
(ACS-NSQIP). However, these tools have their own limitations,
for example wide interuser variability (ASA-PS),6 need for data
which are not typically available during the preoperative period
(POSSUM),7,8 lack of validation outside the derived population’s
region (SORT, ACS-NSQIP) and complexity of the model itself
(ACS-NSQIP).

We previously described a simple 9-variable surgical risk
calculator, the Combined Assessment of Risk Encountered in Sur-
gery (CARES), to predict both 30-day postoperative mortality and
need for ICU stay >24 hours, using routinely available preoperative
clinical and laboratory variables.9 Unlike other existing tools,
CARES was developed in an Asian majority population. It was also
the first surgical risk stratification tool to incorporate the use of red-
cell distribution width (RDW), a readily available hematological
biomarker which has been shown to be associated with postoperative
mortality independent of anaemia.10–12 The model was developed by
assigning rank scores to the odds ratios obtained from stepwise
multivariate logistic regression. CARES achieved better predictive
performance for both outcomes when compared against ASA-PS and
ASA-PS with propensity scoring in terms of AUROC.9

In the development of CARES and other surgical risk calcu-
lators, constraints in analytic methods and concerns over usability
have generally confined models to a small set of variables and to
scoring systems that are easily calculated. Machine learning techni-
ques capable of harnessing the large number of variables that are
already captured in electronic health records (EHR) may offer better
predictive performance and facilitate automation and deployment
within clinical decision support systems.13

In this study, we aimed to demonstrate a local, EHR data-
driven, machine learning approach for preoperative prediction of
postsurgical mortality and ICU stay. We hypothesize that a machine
learning model for surgical risk prediction would outperform tradi-

tional risk calculators, such as ASA-PS and CARES.
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METHODS

Ethics approval for the study was obtained from SingHealth’s
Centralised Institutional Review Board (CIRB, Reference Number
2014/651/D), with waiver of patient consent. We conducted a retro-
spective analysis on all patients aged 18 years and above who
underwent surgery under general or regional anesthesia at Singapore
General Hospital (SGH) between January 1, 2012 and October 31,
2016. SGH is a 1700-bedded tertiary academic hospital in Singapore.
We excluded patients who underwent cardiac surgery, neurosurgery,
transplant and burns surgery, and only included the index surgery for
patients who underwent multiple surgeries during the study period.

Data was sourced from the hospital’s EHR system (Sunrise
Clinical Manager, Allscripts, IL). Mortality data on the system was
synchronized with Singapore’s National Electronic Health Records
(NEHR), ensuring a near complete follow-up. We collected data
routinely captured during the preoperative anesthesia assessment
visit, namely patient demographics, comorbidities, preoperative
laboratory test results, and surgery details.

Patient demographics included age, sex, ethnicity, height,
weight, and body mass index (BMI). Comorbidities were recorded
as per the Revised Cardiac Risk Index (RCRI),14 which consists of
cerebrovascular accident, ischemic heart disease, congestive heart
failure, diabetes mellitus (DM) on insulin and chronic kidney disease
(CKD), as well as the ASA-PS class.15 CKD, if present, was graded
based on the estimated glomerular filtration rate (eGFR) by the
Modification of Diet in Renal Disease (MDRD) equation according
to the 2012 KDIGO guidelines.16 Preoperative laboratory tests
considered were the latest full blood count (FBC) and renal panel
(RP) taken from 90 days before the surgery, and up to the day of
surgery but before the start time of surgery. Laboratory test results
included hemoglobin, platelet, mean corpuscular volume, red blood
cell distribution width (RDW), hematocrit, activated partial throm-
boplastin time (aPTT), prothrombin time (PT), and serum creatinine.
Surgery details included its description, surgical risk, priority (emer-
gency or elective), type (inpatient or day surgery), department
(surgical specialty), and anesthesia type (general or regional anes-
thesia). Surgical risk classification (low, moderate, or high) was
based on the 2014 ESC/ESA guidelines.17 Finally, we also recorded
the number of transfusions the patient received preoperatively within
30 days if any.

Outcomes of interest were 30-day postsurgical mortality and
ICU stay >24 hours. For each outcome, we compared the predictors
between patients who met the outcome and patients who did not,
using the Mann–Whitney U test for continuous variables and chi-
square test for categorical variables.

Prior to modeling, all variables were scaled, and missing
values were imputed using median. Free-text surgical descriptions
were processed using bag-of-words analysis. We ignored stop words
(such as ‘‘the,’’ ‘‘and’’) and only considered words that make up at
least 0.5% of the corpus, which gave us 265 words. Each surgical
description was transformed into 265 binary variables that indicated
whether the description contained the particular word or not.
Seventy percent of the observations were used to train the models,
leaving 30% as a test set for subsequent model evaluation (the same
training and testing cohorts used to develop CARES). Candidate
models were trained using random forest, adaptive boosting, gradi-
ent boosting, and support vector machine algorithms. Baseline
comparators were the 9-variable final combined CARES model
and ASA-PS score.

To address the issue of class imbalance, training set patients
without outcome were split into 10 roughly equal subsets. Each
subset was then paired with all the training patients with outcome to

create an ensemble of 10 datasets which were more balanced. A
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classifier was trained on each subset, producing 10 classifiers, whose
predictions were then combined by majority vote. Additionally, class
weighting was applied where relevant. Parameter tuning was per-
formed via grid search 5-fold cross-validation with the aim of
optimizing F1 score.

We used each model to predict on the test set and calculated its
specificity, sensitivity (recall), positive predictive value (PPV) (pre-
cision), as well as F1 score, which is the weighted mean of precision
and recall. (The formula for deriving F1 is 2 � precision � recall /
[precision þ recall].) For each model, we also generated a receiver
operating characteristic curve (ROC) and precision-recall curve
(PRC), and calculated the areas under both curves (AUROC and
AUPRC respectively). We used F1 score and AUPRC as our main
performance metrics for model comparison as they were more
informative for evaluating binary classifiers on imbalanced data-
sets.18

To better understand how the GB model worked, we also
visualized feature importance in terms of the total decrease in node
impurity (indicated by Gini index) due to branching over a given
predictor, averaged over all trees and aggregated across all classifiers
in the ensemble.

Univariate statistical analysis was carried out in Stata version
13 (StataCorp 2013, College Station, TX). Machine learning models
were developed in Python 3.6 (Python Software Foundation, Wil-
mington, DE) using the scikit-learn library.19

RESULTS

Supplemental Figure S1, http://links.lww.com/SLA/B609
shows the cohort selection process. A total of 90,785 patients were
included in the study, of whom 539 (0.6%) died within 30 days and
1264 (1.4%) required ICU stay >24 hours postoperatively. 42,077
(46.3%) of them were male, with median age of 54 years (inter-
quartile range [IQR] 39–65 yrs). Table 1 compares the patient
demographics, comorbidities, laboratory test results, and surgery
details of those who did and did not meet the outcome for each of the
2 outcomes. In addition, the last column indicates the percentage of
missing data for each of the variables collected, which was between
0% and 43%.

All predictors were significantly different between patients
who died and patients who did not, except for anesthesia type.
Similarly, all predictors were significantly different between patients
who were admitted to ICU and patients who were not, except for
ethnicity, height, and mean corpuscular volume. In general, patients
who met either of the adverse outcomes were older, more likely to be
male, and had lower weight and BMI compared with patients who did
not meet the corresponding outcome. They were also more likely to
have the RCRI comorbidities, higher grade of CKD, and ASA-PS
class. In terms of laboratory tests, they had lower hemoglobin,
hematocrit, platelet count and eGFR, as well as higher RDW, aPTT,
PT, and creatinine. Finally, they were more likely to undergo
emergency surgeries and surgeries categorised as higher risk.

Figures 1 and 2 show the ROCs and PRCs respectively of the
baseline and candidate models for the 30-day mortality outcome.
Table 2 summarizes their specificities, sensitivities, PPVs, F1 scores,
AUROCs, and AUPRCs. All models were able to achieve high
AUROCs of between 0.89 and 0.96, including the baseline CARES
model despite its poor sensitivity of 0.00. It achieved this by
predicting all negative in a predominantly negative dataset, as
evidenced by its specificity of 1.00 and PPV of 0.00. Gradient
boosting (GB) was the best performing model with a F1 score of
0.28 and AUPRC of 0.23. Compared to the baseline CARES model
(AUPRC 0.15), this translated to an improvement of 50% in sensi-

tivity with only 2% loss in specificity.

� 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 1. Summary of Predictor Variables by Presence of Outcome

30-d Mortality ICU Stay >24 h

Variable No (n ¼ 90,246) Yes (n ¼ 539) P Value No (n ¼ 89,521) Yes (n ¼ 1264) P Value % Missing

Patient demographics
Age (yrs) 54 (38–65) 71 (60–79) <0.001 54 (38–65) 65 (54–74) <0.001 0%
Male sex 41,767 (46%) 310 (58%) <0.001 41,292 (46%) 785 (62%) <0.001 0%
Ethnicity 0.02 0.95 0%

Chinese 64,465 (71%) 396 (73%) 63,949 (71%) 912 (72%)
Malay 8914 (10%) 65 (12%) 8858 (10%) 121 (10%)
Indian 7969 (9%) 43 (8%) 7904 (9%) 108 (9%)
Others 8892 (10%) 35 (6%) 8804 (10%) 123 (10%)

Height (cm) 161 (155–168) 160 (152–166) <0.001 161 (155–168) 161 (155–167) 0.47 18%
Weight (kg) 64 (55–74) 58 (48–69) <0.001 64 (55–74) 62 (53–72) <0.001 15%
BMI (kg/m2) 25 (22–28) 23 (20–27) <0.001 25 (22–28) 24 (21–27) <0.001 18%

Comorbidities
CVA 1501 (2%) 42 (13%) <0.001 1488 (2%) 55 (7%) <0.001 31%
IHD 4119 (7%) 126 (39%) <0.001 4054 (7%) 191 (24%) <0.001 31%
CHF 752 (1%) 35 (10%) <0.001 727 (1%) 60 (7%) <0.001 29%
DM on insulin 1964 (3%) 39 (12%) <0.001 1945 (3%) 58 (7%) <0.001 30%
CKD <0.001 <0.001 12%

Grade 1 47,805 (60%) 143 (27%) 47,497 (60%) 451 (38%)
Grade 2 23,532 (30%) 103 (20%) 23,342 (30%) 293 (25%)
Grade 3 5007 (6%) 107 (20%) 4884 (6%) 230 (20%)
Grade 4 1116 (1%) 83 (16%) 1083 (1%) 116 (10%)
Grade 5 1968 (2%) 91 (17%) 1970 (3%) 89 (8%)

ASA-PS class <0.001 <0.001 5%
I 22,047 (26%) 0 (0%) 22,009 (26%) 38 (3%)
II 49,362 (58%) 73 (16%) 49,105 (58%) 330 (29%)
III 13,171 (15%) 234 (51%) 12,890 (15%) 515 (45%)
IV–VI 926 (1%) 153 (33%) 818 (1%) 261 (23%)

Laboratory tests
Full blood count
Hemoglobin (g/dL) 13 (12–15) 11 (9–12) <0.001 13 (12–15) 12 (10–14) <0.001 5%
MCV (fL) 89 (85–92) 90 (85–94) 0.002 89 (85–92) 89 (85–92) 0.72 8%
RDW (%) 13 (13–14) 15 (14–17) <0.001 13 (13–14) 14 (13–16) <0.001 8%
Hematocrit (%) 40 (37–43) 32 (28–37) <0.001 40 (37–43) 36 (31–41) <0.001 8%
Platelet (x109/L) 261 (219–313) 229 (158–321) <0.001 261 (219–313) 244 (184–321) <0.001 8%
aPTT (s) 28 (26–30) 31 (28–36) <0.001 28 (26–30) 29 (27–32) <0.001 43%
PT (s) 10 (10–11) 12 (11–13) <0.001 10 (10–11) 11 (10–12) <0.001 43%
Renal panel
Creatinine (umol/L) 70 (57–86) 109 (67–233) <0.001 70 (57–86) 86 (63–133) <0.001 13%
eGFR (mL/min/1.73 m2) 96 (79–114) 54 (21–95) <0.001 96 (79–114) 77 (45–108) <0.001 12%

Surgery details
Surgical risk <0.001 0%

Low 47,901 (53%) 148 (27%) 47,847 (53%) 202 (16%)
Moderate 38,712 (43%) 302 (56%) 38,369 (43%) 645 (51%)
High 3633 (4%) 89 (17%) 3305 (4%) 417 (33%)

Priority of surgery <0.001 <0.001 0%
Elective 72,148 (80%) 183 (34%) 71,655 (80%) 676 (53%)
Emergency 18,098 (20%) 356 (66%) 17,866 (20%) 588 (47%)

Anesthesia type 0.30 <0.001 0%
GA 75,997 (84%) 445 (83%) 75,234 (84%) 14,287 (96%)
RA 14,249 (16%) 94 (17%) 1208 (1%) 56 (4%)

No. of preoperative blood transfusions within 30 d 0 (0–0) 0 (0–0) <0.001 0 (0–0) 0 (0–1) <0.001 0%

For continuous variables, data is presented in medians and interquartile ranges. Mann–Whitney U test was used to test for differences.
For categorical variables, data is presented in frequencies and percentages. Chi square test was used to test for association.
aPTT indicates activated partial thromboplastin time; CHF, congestive heart failure; CVA, cerebrovascular accident; DM, diabetes mellitus; eGFR, estimated glomerular filtration

rate; GA, general anesthesia; IHD, ischemic heart disease; MCV, mean corpuscular volume; PT, prothrombin time; RA, regional anesthesia.
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Figures 3 and 4 show the ROCs and PRCs respectively of the
baseline and candidate models for the ICU admission outcome.
Table 3 summarizes their evaluation metrics. Similar to the results
for mortality, the baseline CARES model obtained relatively high
AUROC of 0.84 despite poor sensitivity of 0.00. Candidate models
achieved higher F1 scores and AUPRCs across the board than for the

mortality outcome. The best performing model was again GB with

� 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
F1 score of 0.36 and AUPRC of 0.38. Compared to the baseline
CARES model (AUPRC 0.18), this translated to an improvement of
58% in sensitivity with only 3% loss in specificity.

Supplemental Figures S2, http://links.lww.com/SLA/B609
and S3, http://links.lww.com/SLA/B609 show the most predictive
features in the GB ensemble and their relative importance for the 30-

day mortality and ICU admission outcomes respectively. Top
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FIGURE 1. Receiver operating curves of baseline and candidate models for mortality.

FIGURE 2. Precision-recall curves of baseline and candidate models for mortality.
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observation that patients who were discharged from ICU within the

TABLE 2. Results of Model Evaluation for Mortality

Model Specificity Sensitivity/Recall PPV/Precision F1 Score AUROC AUPRC

Baseline models
CARES 1.00 0.00 0.00 0.00 0.94 0.15
ASA-PS – – – – 0.89 0.09

Candidate models
Random forest (RF) 0.99 0.21 0.21 0.21 0.96 0.17
Adaptive boosting (ADA) 0.98 0.50 0.18 0.27 0.95 0.19
Gradient boosting (GB) 0.98 0.50 0.20 0.28 0.96 0.23
Support vector machine (SVM) 0.94 0.70 0.07 0.13 0.94 0.14

Annals of Surgery � Volume 272, Number 6, December 2020 Utilizing Machine Learning Methods
predictors for mortality were age, creatinine, platelet, eGFR and PT.
Top predictors for postoperative ICU admission >24 hours were
eGFR, aPTT, PT, weight and platelet count.

DISCUSSION

In this study, we applied machine learning methods to improve
the predictive performance of CARES, a Singapore-derived surgical
risk calculator predicting both 30-day mortality and need for ICU
admission> 24 hours. An ensemble of gradient boosting models had
significantly better sensitivity (recall) and PPV (precision) than the
original CARES, as well as the ASA-PS, one of the traditionally used
risk stratification methods.

The CARES surgical risk calculator uses only variables
available from routine preoperative evaluation, and the machine
learning version allows for the calculation of individualised predicted
probabilities of outcomes, as opposed to categorizing patients into
risk bands as in the original CARES.9 Many hospitals and clinics

already employ EHR systems, on which predictive analytics could be

FIGURE 3. Receiver operating curves of baseline and candidate m

� 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
deployed, making them even more convenient to use than traditional
manual scoring tools.

Postsurgical 30-day all-cause mortality is a widely accepted
and relevant outcome measure of surgical care.20 It is of interest to
both surgeons and patients and its accurate prediction aids in shared
decision-making.21 For this study, postoperative mortality data was
obtained from the National Registry of Death, ensuring integrity and
completeness of the data. The prediction of ICU admission risk
postoperatively is novel and not available in most current risk
stratification tools. The ability to predict need for ICU stay after
surgery could aid clinicians in determining a patient’s postoperative
disposition plan before surgery. This could improve patient outcomes
by reducing failure to rescue events22 and efficiency in allocation of
valuable ICU resources. While ICU admission by itself would not be
a useful measure of morbidity, length of stay in ICU may be seen as
an indirect measure of morbidity-related outcomes.23 We defined
ICU admission for >24 hours as a significant clinical outcome upon
odels for ICU admission.

www.annalsofsurgery.com | 1137



FIGURE 4. Precision-recall curves of baseline and candidate models for ICU admission.
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first 24 hours may have been safely monitored postoperatively in a
lower intensity unit.

Our study had several strengths. We demonstrated a big data-
driven, machine learning approach to predictive analytics in periop-
erative care, which has several notable advantages over traditional
risk calculators. Our approach uses local real-world data to make
predictions about the local population, with improved accuracy over
traditionally derived models that tend to have poorer performance
when applied to populations and settings outside of the derivation
study centres.24 As big data analytic methods are introduced into
clinical practice, future efforts should seek to move from generaliz-
able rules to generalizable methods that utilize the richness of local
data.13 The machine learning algorithm also allows for evaluation of
far more clinical variables than would be present in traditional
modeling approaches, contributing to its superior performance. In
addition, the model can be updated either in real-time or periodically
as new data is acquired, reflecting a key component of the push

25
toward a self-learning healthcare system.

TABLE 3. Results of Model Evaluation for ICU Admission

Model Specificity Sensitivity/Recall

Baseline models
CARES 1.00 0.00
ASA-PS – –
Candidate models
Random forest (RF) 0.98 0.45
Adaptive boosting (ADA) 0.97 0.57
Gradient boosting (GB) 0.97 0.58
Support vector machine (SVM) 0.91 0.78

1138 | www.annalsofsurgery.com
We chose a methodology that was appropriate for the severely
imbalanced dataset, in which the number of negatives (nonevents)
outweighs the number of positives (events) significantly. Such
imbalanced datasets are common in perioperative studies with
relatively rare outcomes such as postoperative mortality. In general,
it was difficult to train the models due to the strongly imbalanced
nature of the dataset. We addressed this by creating an ensemble of
more balanced subsets, and training a classifier on each subset,
producing an ensemble of classifiers, whose predictions are com-
bined by majority vote. It was easier to predict ICU admission than
mortality as the former outcome is slightly less rare (1.4% compared
to 0.6%). We also used F1 score and AUPRC as our main evaluation
metrics as they do not give credit for predicting true negatives and are
thus robust to imbalanced datasets.18 While ROC plots and AUROCs
are popularly used in the literature to evaluate the performance of
binary classifiers, they can be misleading and deceptive with respect
to conclusions about classifier performance in the context of imbal-

anced datasets, as evidenced by our results. F1 scores, PRC plots, and

PPV/Precision F1 Score AUROC AUPRC

0.00 0.00 0.84 0.18
– – 0.80 0.17

0.32 0.37 0.95 0.31
0.23 0.33 0.94 0.35
0.27 0.36 0.95 0.38
0.10 0.18 0.94 0.27

� 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
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AUPRCs, on the other hand, express the susceptibility of classifiers
to imbalanced datasets and allow for more accurate interpretation of
practical classifier performance. These metrics are based on preci-
sion (equivalent to PPV) which measures the fraction of correct
predictions among the positive predictions, intuitively revealing
differences in performance that go unnoticed when just using accu-
racy to evaluate classifiers on imbalanced datasets. Our findings have
potential implications for similar studies involving predictive ana-
lytics on imbalanced datasets, which are very common in medicine.

Our study had several limitations. First, our model was
developed and internally validated using data from a single institu-
tion in Singapore, and thus might not be generalizable to other
settings. Nonetheless, we believe the importance of our work lies in
demonstrating a generalizable method which could be replicated in
other EHR systems, rather than in a predictive model to be applied
globally. Second, the choice of 10 classifiers for each ensemble was
somewhat arbitrary. We searched across a range of candidate values
and observed that as the number of models in the ensemble increases,
the recall improves but precision decreases (ie, less false negatives
are obtained at the expense of more false positives). In our case, an
ensemble of 10 classifiers optimized the F1 score, but any decision
on this value is likely to be data-driven and dependent on which
metric is deemed most important in the given context. Third, we
chose to handle missing values by simply imputing them with the
observed median for that variable, in order to reduce the computa-
tional complexity of our model, which is a consideration for eventual
clinical translation on the ground. Other more sophisticated imputa-
tion approaches could have improved predictive performance. Lastly,
we acknowledge that a machine learning approach carries issues of
interpretability and logistical challenges for implementation.26 We
attempted to understand how our GB ensemble worked by visualiz-
ing variable importance plots and we believe hospitals are increas-
ingly developing the infrastructure necessary to integrate predictive
analytics into their EHR systems. Further studies are needed to
compare our approach with provider judgment, to determine whether
it influences physician behavior, and to assess how patient outcomes
may be impacted.

In conclusion, machine learning can be used to improve
surgical risk prediction compared to traditional risk calculators.
Our study serves as an example that could be automated, applied
to other clinical outcomes of interest, and integrated in EHRs to
enable locally relevant clinical predictions. However, methods for
model building and evaluation must be carefully considered. In
particular, AUPRC should be used to evaluate model predictive
performance instead of AUROC when the dataset is imbalanced.
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