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Chronic kidney disease (CKD) is defined by persistent urine aberrations, structural
abnormalities, or impaired excretory renal function. Diabetes is the leading cause of
CKD. Their common pathological manifestation is renal fibrosis. Approximately half
of all patients with type 2 diabetes and one-third with type 1 diabetes will develop
CKD. However, renal fibrosis mechanisms are still poorly understood, especially post-
transcriptional and epigenetic regulation. And an unmet need remains for innovative
treatment strategies for preventing, arresting, treating, and reversing diabetic kidney
disease (DKD). People believe that protein methylation, including histone and non-
histone, is an essential type of post-translational modification (PTM). However, prevalent
reviews mainly focus on the causes such as DNA methylation. This review will take
insights into the protein part. Furthermore, by emphasizing the close relationship
between protein methylation and DKD, we will summarize the clinical research status
and foresee the application prospect of protein methyltransferase (PMT) inhibitors
in DKD treatment. In a nutshell, our review will contribute to a more profound
understanding of DKD’s molecular mechanism and inspire people to dig into this field.

Keywords: chronic kidney disease, renal fibrosis, protein methylation, histone methylation, nonhistone
methylation

INTRODUCTION

Chronic kidney disease (CKD) is a fatal cause of mortality worldwide. The prevalence of CKD
has increased steadily over the past decade. Besides the increased mortality, CKD also significantly
lessens patients’ quality of life and imposes a financial burden on the economy (1–4). CKD is
diagnosed when there is a chronic reduction in kidney function and chronic damage in the
structure. Both events are the final common pathological manifestations of renal fibrosis. Renal
fibrosis represents unsuccessful wound healing of the kidney tissue. This fibrosis is characterized
by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. As fibrosis evolves, an increasing
number of nephrons lose their function (5, 6).

Approximately half of all patients with type 2 diabetes and one-third with type 1 diabetes will
develop CKD, which is clinically defined by the presence of impaired renal function or elevated
urinary albumin excretion or both (7, 8). DKD has been traditionally viewed as a microvascular
disorder, clustered along with retinopathy and neuropathy, and separate from the macrovascular
disease that contributes to coronary heart disease (CHD), peripheral vascular disease, and
cerebrovascular disease. However, each disorder can be considered tissue-specific manifestations of
the same pathogenetic process. DKD is the renal manifestation of the same glucose-driven process
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at susceptible sites elsewhere in the body. Although all cells are
chronically exposed to high plasma glucose levels in diabetic
patients, only some manifest progressive dysfunction. The
endothelial cells lining the vasculature are a prime example.
Specifically, the inability of endothelial cells to down-regulate
their glucose transport in response to high glucose leads to
an overwhelming flux of intracellular glucose, which triggers
the generation of pathogenetic mediators that contribute to the
development of diabetic complications, including DKD (9, 10).

Despite genetic risks, environmental influence may be
strongly associated with susceptibility to DKD. Epigenetic
modifications refer to gene transcription changes that manifest
in the phenotype, which can be inherited through multiple
cell divisions. As the most pervasive epigenetic modifications,
DNA methylation and histone modifications cause stable gene
expression via chromatin remodeling. These mechanisms play
a role in determining the developmental cell fate and human
physiological and pathological processes. As the most intensively
investigated PTM, protein methylation has become a prominent
research topic of interest. Protein methylation is part of
many critical biological functions that play a role in healthy
physiological development and diseases, such as obesity and type
2 diabetes (11).

In this review, to present existing knowledge on the underlying
mechanism of protein methylation, we consider the biological
function of protein methylation, followed by the relationship
between protein methylation and DKD. The evidence presented
here supports the expectation that drugs targeting protein
methylation will prove value for DKD treatment.

BIOLOGICAL FUNCTIONS OF PROTEIN
METHYLATION

Protein methylation, including histone methylation and
non-histone protein methylation, is an essential type of
PTM (12). Protein methylation mainly occurs on lysine
and arginine. The methylation is performed by protein
lysine methyltransferases (PKMTs) and protein arginine
methyltransferases (PRMTs), including members of the PRMT
family, SET gene family, and non-SET gene family (13–15).
Methylation occurs at different amino acid sites and in various
forms. For example, lysine can be monomethylated (me1),
dimethylated (me2), or trimethylated (me3), while arginine
can be monomethylated (me1), symmetrically dimethylated
(me2s), or asymmetrically dimethylated (me2a) on its guanidine
group (16). These results indicate that protein methylation is
flexible and diverse (17). Methylation affects protein activity,
protein-protein interactions, and interaction with other
PTMs (17).

Histones are widely studied owing to their abundance and
relatively easy detection. Protein methylation is often associated
with histones and their roles in gene regulation (18). Histone
methylation is associated with gene repression or activation,
depending on which residue is modified (19). Methylation
of histone H3 at lysines 4 or 36 positively correlates with
the transcription rate of RNA polymerase (pol) II. Histone

methyltransferases (HMTs) for these methyl groups interact with
elongated RNA pol II to form histone methylations in transcribed
regions. In contrast, transcription repression factors recruit
repressive HMTs for H3K9 or H3K27 methylation (20–24).
Lysine and arginine methylation have been found in hundreds of
non-histone proteins, and the terms, PKMT and PRMT, are now
more frequently used than the original term, HMT. In addition
to histone-centric roles, the crucial role of non-histone proteins
should not be ignored. The latter have significant implications
for human health and the treatment of human diseases (25,
26) (Figure 1).

PROTEIN METHYLATION IN DIABETIC
KIDNEY DISEASE

The associations between the dysregulation of PMT and the
progression of many human diseases have been described
(16, 27–29). SET9-mediated methylation of inhibitory Smad7,
a crucial regulator of transforming growth factor-beta (TGF-
β)/bone morphogenetic protein signaling by negative feedback
loops, might lead to its degradation, thereby affecting TGF-
β-dependent activation of extracellular matrix (ECM) genes.
Critical components of mitogen-activated protein kinase, such as
redundant acronym syndrome and retinoblastoma protein, are
subject to lysine and arginine methylation, often in a complex
manner (30, 31). Numerous studies have already revealed that
protein methylation is associated with DKD and that the final
common pathway in the transition from CKD to ESRD is
fibrosis (6, 32). It is still in its infancy to understand protein
methylation in DKD, including its occurence, progression, and
treatment. However, research on the connection between histone
methylation and non-histone methylation has flourished recently
(33). Below, we summarize studies on the relationship between
DKD and protein methylation, including histone methylation
and non-histone methylation.

HISTONE METHYLATION IN DIABETIC
KIDNEY DISEASE

Methylation is the most widely studied modification of
histone proteins. Methylation of histone proteins changes the
transcription machinery, creating an active or repressive
chromatin structure and transcriptional marks (34). In
fact, histone methylation is usually considered a prevalent
modification among core histone tails and is one of the
most stable PTMs. Histone methylation mainly includes the
methylation of lysine and arginine residues. Among these, lysine
is the most well-studied. Histone methylation is dynamic and
reversible. Histone methylation has a mixed gene expression
effect, unlike histone acetylation linked to an “open” chromatin
state and gene expression activation. Therefore, they can be
marks of the active and repressive states of chromatin, thereby
producing different developmental effects. Researchers have
found that histone methylation plays an essential role in DKD
progression (35, 36).
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FIGURE 1 | (A–C) Diverse protein methylation.

Histone Lysine Methylation in Diabetic
Kidney Disease
Different modified-residue of histone lysine corresponds to
gene repression or activation. Methylation at H3K4, H3K36,
and H3K79 correlates with gene transcriptional activation,
whereas methylation at H3K9, H3K27, and H4K20 is related to
transcriptional repression (37). The burgeoning research in this
field has included investigations of the biological and pathological
functions of histone methylation in some common diseases,
including diabetic nephropathy (DN), one of the most common
CKDs. Below, we focus on the role of histone lysine methylation
in the development and progression of DN based on active and
repressive chromatin marks (38).

Active Marks of Histone Lysine Methylation in
Diabetic Kidney Disease
H3K4me1/2/3, H3K36me2/3, and H3K79me2 are associated
with transcriptionally active regions. In addition, increasing
evidence suggests that histone methylation regulates ECM and
inflammatory genes in almost all renal cell types related to the
pathogenesis of DKD (29, 39).

Transforming growth factor-beta 1-induced expression of
ECM genes plays an important part in the development
of chronic renal diseases, such as DN. Although many key
transcription factors are studied clearly, it remains unclear how

the modulation of nuclear chromatin influences the expression of
ECM gene. Epigenetic chromatin marks, such as H3Kme, might
play a role in TGF-β1-induced gene expression in rat mesangial
cells (RMC) under normal and high-glucose (HG) conditions.
When treated with HG and TGF-β1, the levels of H3K4me marks
(H3K4me1/2/3) at their respective promoters are increased (40,
41). The gene expression levels of collagen 1alpha1 (Col1α1),
plasminogen activator inhibitor 1 (PAI-1), and connective tissue
growth factor (CTGF) in RMC are also upregulated. Metabolic
memory existing in vascular dysfunction has been associated
with H3K4me modification (42). One critical study reported the
significance of alterations in histone methylation (specifically in
the lysine residues) in acute kidney injury (AKI). H3K4me3 at
pro-inflammatory genes (monocyte chemotactic protein 1 [MCP-
1] and tumor necrosis factor-alpha [TNF-α]) and profibrotic
genes (TGF-β1 and collagen III) were increased in renal ischemia
reperfusion injury (IRI) animal models (43, 44). The TNF-α and
MCP-1 genes characteristically showed H3K4m3 methylation
in mouse models of AKI induced by IRI, endotoxin, unilateral
ureteral obstruction, and maleate (43, 45, 46). In another study
on patients with AKI, the levels of H3K4m3 at exon 1 of
the hydroxy methylglutaryl-CoA (HMG-CoA) reductase genes
were also upregulated (47). The upregulation of histone H3K4
me3 may be involved in podocyte dysfunction, which is the
most common cause of primary nephrotic syndrome in the
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middle-aged and elderly. Collectively, the results indicate that
H3K4 methylation is essential in the progression of DKD in
diverse aspects, including both inflammatory and oxidant stress,
all of which will result in renal fibrosis.

H3K36me3 is a chromatin marker associated with
transcriptional elongation (24, 48). The levels of H3K36me3 were
found to be higher at the monocyte chemoattractant protein
1 (MCP-1) and RAGE loci, and in the plasminogen activator
inhibitor-1 (PAI-1) gene in db/db mice treated with water. After
treatment with losartan for 10 weeks, the H3K36me3 levels
decreased at the RAGE and PAI-1 loci (49). These changes imply
the role of H3K36me in DN progression. Unlike most methylated
sites located in the histone H3 tail, the H3K79 methylated site is
situated in the histone globular domain. Methylation of H3K79
catalyzed by a disruptor of telomeric silencing-1H3K79me plays
an essential role in cell cycle regulation, embryonic development,
DNA damage response, hematopoiesis, cardiac function, and
development of leukemia (37). One report described the
involvement of the dynamic regulation of H3K79me in fluid
reabsorption, which is essential for blood pressure control
and electrolyte homeostasis in kidney collecting ducts. The
downregulation of H3K79me at the epithelial sodium channel
promoter can lead to increased gene expression in response to
aldosterone signaling (50–52), and decreased H3K79me2 may
contribute to the changes in DN patients and mouse cortical
collecting duct M1 cell models (53). These results suggest
that H3K36me and H3K79me may play a crucial part in fluid
reabsorption and chronic changes of kidney structure, which
might severely affect the normal function of the kidney.

Repressive Marks of Histone Methylation in Diabetic
Kidney Disease
H3K9me2/3, H3K27me3, and H4K20me3 are generally
associated with gene silencing or repression. Histone methylation
may be responsible for the “metabolic memory” phenomenon
that leads to long-term changes in diabetic complications,
including DN, and plays essential role in the progression of KD
in fibrotic, inflammatory, and oxidative stress pathways.

Based on multiple evidence, H3K9me plays a crucial role in
the development of DN. HG can stimulate decreased H3K9me3
levels at the promoters of critical inflammatory genes, such
as interleukin (IL)-6, macrophage colony-stimulating factor,
and MCP-1. These events increase the expression of these
inflammatory genes in normal human vascular smooth muscle
cells (VSMCs). Similar chromatin lysine methylation changes
were demonstrated in the VSMCs of db/db mice compared to
non-diabetic control db/ + mice (54). TNF-α induction can also
lead to sustained decreases in H3K9me3 at promoters following
increased inflammatory gene expression in the VSMC of db/db
mice (51, 55). Of note, a similar change was noted in RMC models
following treatment with TGF-β and HG. The reduced levels
of the repressive marks, H3K9me2 (di-methylation at the 9th
lysine residue of the histone H3 protein) and H3K9me3, at their
respective promoters (40, 49) can induce the upregulation of the
Col1α1, PAI-1, and CTGF genes.

H3K27me is associated with gene repression (56, 57).
H3K27me3 levels at PAI-1 promoters were reportedly decreased
in an animal model of type 2 diabetes. In another study,

cyclo-oxygenase-2 (COX2) and MCP-1 were upregulated in the
kidneys of OVE26 mice. The OVE26 mouse is characterized
by transgenic overexpression of calmodulin in pancreatic β

cells, deficient insulin production, and type I diabetes. This
phenomenon has been associated with decreased H3K27me3
levels and H3K27me3 demethylase KDM6A/UTX) (58).
Altogether, these findings regarding H3K27me3 further imply
the role of histone methylation in DKD (Figure 2).

Histone Arginine Methylation in Diabetic
Kidney Disease
The methylation of arginine residues by PRMTs is involved
in regulating basic cellular processes, including DNA damage
response, RNA transcription and processing, signal transduction
cascades, and liquid-liquid phase separation. Recent evidence
has considerably advanced the identification of clinically relevant
PRMT inhibitors (59) based on the defined physiological roles
of PRMTs. The inhibitors have been linked to cancer, metabolic
diseases, neurodegenerative disorders, and some kidney diseases
(15, 60), thereby enabling the development of experimental tools.

Asymmetric dimethylarginine (ADMA) is a naturally
occurring dimethylated analog of the amino acid. ADMA
inhibits nitric oxide synthase and is an established cardiovascular
risk factor in many diseases, including CKD (61–63).
Atherosclerotic cardiovascular disease is the leading cause
of death in patients with CKD. However, the underlying vascular
disease mechanisms are not fully elucidated. Altered arginine
methylation is associated with the degree of atherosclerosis
in a CKD mouse model, suggesting the therapeutic potential
of interrupting this pathway in CKD-related atherosclerosis
(64). Indeed, elevated plasma levels of ADMA have been
observed in patients with hypertension and CKD (61, 65–67).
Furthermore, Andrade et al. observed that patients who received
a renal transplant displayed only moderately decreased renal
function but presented disturbances in the methylation cycle
and arginine-creatine pathway that lead to increased plasma
values of homocysteine (Hcys), S-adenosylhomocysteine, and
ADMA. Defective methylation also contributes to endothelial
dysfunction due to the impaired production of NO, which has
been observed in patients that received a renal transplants (68).
Further investigation of the possible benefits of appropriate
therapeutic measures is warranted (69).

NON-HISTONE PROTEIN METHYLATION
IN DIABETIC KIDNEY DISEASE

Although some methylating enzymes are histone-specific, many
have now been found to modify both histone and non-histone
substrates (70–72). Non-histone protein methylation has recently
emerged as a PTM with wide-ranging cellular functions (73–
76). The methylation of non-histones plays a significant part
in the pathogenesis of DKD. SMYD2 is a SET and MYND
domain-containing HMT that methylates histone and non-
histone proteins. For example, the tumor suppressors RB, p53,
and the molecular chaperone heat shock protein 90 have
been identified in the pathogenesis of autosomal dominant
polycystic kidney disease (ADPKD) (77–81). The transcriptional
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FIGURE 2 | Histone lysine methylation in DKD.

regulators, STAT3 and p65, are SMYD2 non-histone substrates.
Upregulation of SMYD2 leads to methylation of STAT3 at lysine
685, methylation of p65 at lysine 310, and partial methylation at
lysine 221, followed by their phosphorylation and activation to
regulate proliferation and apoptosis of renal epithelial cells (82).
SMYD2 is overexpressed in cystic renal epithelial cells, it might
serve as a promising target for novel ADPKD therapies (83).
The enormous potential of drugs that target protein methylation
will likely only be realized if their effects on non-histone protein
methylation are better understood.

PROTEIN METHYLATION AS NEW
DIRECTIONS FOR THE DIAGNOSIS AND
TREATMENT OF DIABETIC KIDNEY
DISEASE

All PMTs share a common catalytic mechanism. The SAM donor
and peptide methyl-acceptor bind to different but connected
surfaces within the active site to form a functional ternary
complex. Following the assembly of the complex, direct transfer
of the methyl group from SAM to the substrate proceeds via
a classical bimolecular nucleophilic substitution (SN2) reaction.
Chemical inhibition targets either cofactor or substrate-binding
sites, as well as by allosteric means (Figure 3).

Knowledge of the pharmacological modulation of proteins
that write, read, and erase methyl marks is needed (84, 85). We
have witnessed advances in PMT inhibitors from tool compounds
to precision medicines. Indeed, several histone methyltransferase
inhibitors have already reached clinical application (86),
demonstrating the availability of PMTs as a target class. In
addition to histone-centric roles, PMTs are also vital for
regulating non-histone proteins, with significant implications
for human health and disease treatment (25, 26). Well-defined

sets and selective chemical probes have provided valuable
tools for investigating biological mechanisms. Panels of well-
validated protein methyltransferase probes with demonstrated
utility in interrogating complex biological systems have also been
described (87). Selective, potent, and cell-active inhibitors of both
lysine and arginine methyltransferases have been developed by
exploiting the cofactor-binding site, substrate peptide-binding
site, and, less commonly, distal allosteric pockets. In 2007, the
first selective small-molecule inhibitor of PKMT, BIX-01294,
was reported (88). Since its discovery, this inhibitor has been
used to probe G9a involvement in cellular reprogramming (89,
90). Unfortunately, the poor separation between cytotoxic and
functional effects has limited the broader utility and adoption of
this compound. The discovery of UNC0638 primarily overcame
this issue. UNC0638 can reduce the abundance of H3K9me2
and can reactivate G9a-silenced genes and a retroviral reporter
in mouse embryonic stem cells, demonstrating its usefulness
in studying the biology of G9a/glucagon-like peptides (91).
Although numerous studies have linked G9a to disease (92,
93), no G9a inhibitors are currently used in the clinic. The
five SMYD lysine methyltransferase members methylate both
histone and non-histone proteins (94). Although limited SMYD2
inhibitors have been reported, we believe that its application
prospects are vast.

Renal fibrosis is the common pathological hallmark of
chronic kidney disease, and the SET domain-containing
lysine methyltransferase 7 (SETD7) promotes renal fibrosis
considerably. Ice treated with PFI-2, an inhibitor of SETD7,
presented less bone marrow-derived myofibroblasts, fewer
CD206 + /α-smooth muscle actin + cells, and developed less
renal fibrosis. Furthermore, SETD7 inhibition reduced the
infiltration of inflammatory cells and decreased the production
of pro-inflammatory cytokines and chemokines in the kidneys
after folic acid treatment (95). Some in vivo and in vitro
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FIGURE 3 | Functional mechanism of protein methyltransferase inhibitors.

studies demonstrate that emodin reduced extracellular collagen
deposition and inhibited Smad3 and CTGF pro-fibrotic signaling
pathways, which were correlated with the down-regulation of
EZH2 and reduced trimethylation of histone H3 on lysine
27 (H3k27me3) in NRK-49F fibrotic cells and UUO kidneys
(96). Disruptor of telomeric silencing-1 like (DOT1L) protein
specifically catalyzes the methylation of histone H3 on Lys79
(H3K79) and is implicated in tumors. DOT1L inhibition
increased expression of phosphatase and tensin homolog, a
protein associated with dephosphorylation of tyrosine kinase
receptors, and prevented the decline in levels of Klotho and
Smad7, two renoprotective factors. Targeting DOT1L attenuates
renal fibrosis by inhibiting renal fibroblasts and EMT by
suppressing the activation of multiple profibrotic signaling
pathways while retaining the expression of renoprotective
factors (97).

From a therapeutic point of view, reader antagonism may
provide alternative routes to modulate methyl signaling pathways
in DKD, which may be far-reaching when resistance has
developed to existing clinical candidates (98, 99). Recent
advances in the development of methyl-lysine reader antagonists
present opportunities to selectively intervene in the downstream
signaling of the methyl mark or as alternative sites to target
PMTs themselves (100). In addition, individual proteins often
contain several distinct reader modules with different binding
capabilities (101). Potent, selective, and cell-active antagonists
of reader function are, therefore, valuable tools to decipher the
individual contributions of distinct reader domains in addition
to uncovering potential therapeutic value. For example, a-366
was recently shown to antagonize recognition of H3K4me3
by the Tudor domain of Spindin1, a methyl-lysine reader

(IC50 = 182.6 ± 9.1 nM). Although significant progress has been
made, much remains to be learned about the pharmacology and
biology of most PMTs (99, 102). Furthermore, such knowledge is
expected to considerably advance CKD treatment.

CONCLUSION AND FUTURE
PERSPECTIVES

Both histone methylation and non-histone methylation are
associated with various renal diseases. Moreover, they participate
in regulating ECM and inflammatory genes in almost all renal
cell types (19, 103). The search for the link between protein
methylation and DKD mainly focuses on histones, especially
histone lysine methylations (104, 105). Notably, histones can
be marks of the active, “poised,” and repressive chromatin
states. An increasing number of PMTs could serve as new
epigenetic therapy agents for multiple diseases, including DKD,
in the future (106, 107). In addition to studying protein
methylation, the cross-interaction among DNA methylation,
protein methylation, and protein acetylation is an essential area of
study regarding the pathogenesis, development, and progression
of DKD. Further efforts are urgently needed and should not be
limited to a single layer.
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