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Mapping drug-target interactions and synergy in multi-
molecular therapeutics for pressure-overload cardiac
hypertrophy
Aparna Rai 1, Vikas Kumar2, Gaurav Jerath1,3, C. C. Kartha 4✉ and Vibin Ramakrishnan 1✉

Advancements in systems biology have resulted in the development of network pharmacology, leading to a paradigm shift from
“one-target, one-drug” to “target-network, multi-component therapeutics”. We employ a chimeric approach involving in-vivo
assays, gene expression analysis, cheminformatics, and network biology to deduce the regulatory actions of a multi-constituent
Ayurvedic concoction, Amalaki Rasayana (AR) in animal models for its effect in pressure-overload cardiac hypertrophy. The
proteomics analysis of in-vivo assays for Aorta Constricted and Biologically Aged rat models identify proteins expressed under each
condition. Network analysis mapping protein–protein interactions and synergistic actions of AR using multi-component networks
reveal drug targets such as ACADM, COX4I1, COX6B1, HBB, MYH14, and SLC25A4, as potential pharmacological co-targets for
cardiac hypertrophy. Further, five out of eighteen AR constituents potentially target these proteins. We propose a distinct
prospective strategy for the discovery of network pharmacological therapies and repositioning of existing drug molecules for
treating pressure-overload cardiac hypertrophy.
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INTRODUCTION
Modern medicine is primarily driven by the discovery of small-
molecule entities with pharmacological actions1. Despite the vast
scope of the chemical universe, the probability of success in
discovering a new molecule with potential therapeutic effects is
now becoming more and more challenging. In addition, the “one
drug, one target” mode of drug action cannot generally lead to
multiple effects in complex or multifactorial diseases because of
the underlying complexity of biological networks2–5. The disease is
known to be a rare consequence of an abnormality in a single
gene or gene product but reflects the perturbations of a complex
intracellular and intercellular network in organ systems. The
emerging tools of network medicine offer a platform to explore
not only the molecular complexity of a particular disease, leading
to the identification of disease modules and pathways, but also in
investigating molecular defects among apparently distinct patho-
logical phenotypes6–8. A sensible approach for the treatment of
complex diseases is to have a combinatorial drug with constitu-
ents that target multiple pathways in a disease-specific
network9,10.
The complexity of the underlying biological processes and

interactome, therefore, demands multiple synergistic therapeutics
targeting different proteins involved in the disease onset and
prognosis. Identification of such synergistic therapeutic partners is
both complex and arduous due to various drug–drug interactions.
We believe that it would be prudent to identify traditional
medicines in eastern methods, which have been practiced over
centuries, for their potential utility11. To bring such therapeutic
solutions to the platform, modern medicine can be a rewarding
exercise. As a test case, we have identified Amalaki Rasayana (AR),
a concoction used for the treatment of cardiovascular diseases,
diabetes, and rejuvenation therapies in Ayurveda, with an

objective to re-invent its efficacy through established analytical
procedures of modern medicine.
Cardiac hypertrophy due to pressure overload or pressure-

overload left ventricular cardiac hypertrophy (LVCH), is one of the
leading causes of mortality in recent times, especially in the
younger population and patients having hypertension12,13. The
physiopathological characterization of hypertrophy is multifactor-
ial and it involves a higher degree of complexity at the cellular and
molecular level, across multiple signaling pathways14. Pressure-
overload LVCH is a significant phenomenon in cardiac hyper-
trophy and accounts for 10–15% cases in the adult population and
~40% with hypertension, leading to adverse cardiovascular events
such as heart failure and sudden death15. Therapeutic interven-
tions such as the use of ACE and myosin inhibitors and various
anti-hypertensive drugs have significant clinical benefits but have
limited success due to the ceiling effect in many patients16,17.
Therefore, extensive research on the molecular basis of this
complex, multifaceted physiopathological malady at the levels of
pathways, drug dosage, and targeted therapy can be helpful in
proposing new therapeutic options18,19.
Interestingly, Ayurveda, the ancient Indian system of medicine

employs combinatorial therapy11,20. Ayurvedic medicines have
been refined and evolved continuously over centuries and is one
of the most dependent forms of alternative medicine for more
than 1.5 billion population living in the Indian sub-continent.
Ayurvedic medicines commonly have multiple components
derived from natural sources and are believed to work through
a cooperative mechanism or “synergy” to restore the balance of
life and body functions through heightened physiological
response, not achievable by individual constituents21,22. Synergis-
tic action maybe because of the involvement of a set of targeted
proteins, related mechanisms, or drug combinations. In modern
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drugs, synergistic action is due to their combinatorial effects on
multiple targets identified by their network topological features.
Synergistic action predictions are generally pathway-based, drug
similarity-based, and using omics-based models23–26. Advance-
ment in systems biology has resulted in a new concept known as
“network pharmacology”, which offers a radical shift from the
existing paradigm of “one-target, one-drug” mode to a “network-
target, multiple-component-therapeutics”27. We present a unique
approach, integrating the tools of cheminformatics, proteomics,
in-vivo experiments, and network analysis to identify biological
targets and synergy of constituents in a typical multi-molecular
medicinal formulation for complex diseases. We analyzed the
cumulative in-vivo effect of AR, a concoction used by practitioners
of Ayurveda for centuries for the treatment of pressure-overload
LVCH28. The data generated through in-vivo studies were utilized
to detail the possible drug targets for each of the constituent
metabolites of AR. We also identified those AR metabolites,
structurally similar to known drugs and potential targets in
modern medicine. Further, we also identified a set of existing drug
molecules that could be re-purposed for pressure-overload LVCH.

RESULTS
in-vivo studies for AR efficacy
AR is a result of a series of systematic preparatory procedures,
prepared primarily from the fruits of Phyllanthus Emblica or
Emblica Officinalis (as major constituent) as per the guidelines of
Charaka Samhita, written in the third century BCE29. In an earlier
experiment, spanning a total period of 21 months, we considered

two groups of Wistar rats; (i) Aorta Constricted (AC) with pressure-
overload LVCH, induced by clipping ascending Aorta with titanium
clips, and (ii) Biologically Aged (BA) rats (Fig. 1a). Both these
groups individually were further sub-grouped, where these
animals were either given AR (AR treated, Test sub-group) or
ghee and honey treated (carrier sub-group) orally by guavage
regularly. Another sub-group in both the AC and BA groups acted
as control (Untreated sub-group), where no drug was adminis-
tered to the animals28. Thereafter, we evaluated the effects of
long-term administration of AR on the structure and function of
the heart. Histology, as well as gene and protein expression
analysis, were done in left ventricular heart tissues, collected after
the sacrifice of the animals. In the 21-months experiment on
Wistar rats, we found that AR intake resulted in an improved left
ventricular function and decreased left ventricular hypertrophy in
AC rats. AC groups fed AR also had increased fatigue time in the
treadmill exercise test. BA group fed AR also had improved left
ventricular function. Further, the protein expression profile of the
heart tissue of both AR and BA groups with AR intake revealed
upregulation of SERCA2, CaM, Myh11 as well as antioxidant,
autophagy, oxidative phosphorylation, and tricarboxylic acid (TCA)
cycle proteins. ADRB1/2 and pCREB expressions were also
increased, but the expressions of pAMPK and NF-kB were
decreased. The protein expression analysis indicates that AR has
a beneficial effect on myocardial energetics, muscle contractile
function, and exercise tolerance capacity in rats28. We identified
450 proteins (List L1) in cardiac tissues of AC rats, and 1166
proteins in cardiac tissues of BA rats (List L2). The Lists L1 and L2
along with their expression profiles are given in the Supplemen-
tary Dataset S1.

40 Proteins (L4)

L1           L2            L3

(L2)

a) b)

(L1) (L3)

Fig. 1 in-vivo studies and data extraction. a Illustration presenting an overall schematic representation of the in-vivo study performed on
male Wistar rats for 21 months28. The proteins from the AC and BA samples were identified by proteomic analysis and designated as L1 and
L2, respectively. b The AR composition was identified by mass spectroscopy techniques. The AR constituent metabolites, thus identified were
used to search structurally similar drugs in the DrugBank database. Further, the targets corresponding to the highest-ranked drug molecules
were identified to relate their activity against each metabolite (L3). The intersection of L1, L2, and L3 had 40 proteins (L4). These proteins
represent the set of proteins targeted by various AR metabolites, which leads to the drug action of the AR concoction. Therefore, we used list
L4 for our further analysis.
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In addition to the above experiment, AR was characterized by a
chemical composition analysis using HPLC, HPTLC, and LC-MS
which yielded 18 constituent Metabolites (Table 1). These
constituents were found to have biological importance in the
cardiovascular system. The HPTLC profiles of samples of the
finished formulation indicate the presence of gallic acid and
ellagic acid (Supplementary Fig. S1). The LC-MS analysis of
lyophilized powder of AR revealed the enrichment of components
such as putative anti-inflammatory arachidonate (eicosatetraenoic
acid), norepinephrine sulfate, and vitamin metabolites, identified
using XCMS software used for metabolomics study30 (Supple-
mentary Tables S1 and S2).

Drug–metabolite similarity search
The cheminformatics analysis in this study was firmly grounded on
the basic idea that similar structures, with chemically identical
functional groups, tend to possess similar functions31–33. Con-
sidering the list of AR metabolites identified earlier (Table 1)28, we
screened the DrugBank database with 9000 approved and
experimental drugs to identify molecules that are structurally
similar to AR metabolites34. We compared the two-dimensional
structure of drugs with those of AR metabolites using fragment-
based drug discovery. Our approach includes the identification of
maximum common substructure (MCS) between the metabolites
and known drug molecules through local and global structural
similarity search using the Tanimoto Coefficient (Tc) (Fig. 1b)35. We
used a Tc cutoff of 0.6 for quantifying the structural similarity
between two molecules. The screened drug molecules were
further verified manually by visualizing the pairwise similarity
between drug molecules and the AR metabolites using Small
Molecular Subgraph Detector (SMSD) toolkit36. The list of AR
metabolites and drugs screened are given in the Supplementary
Dataset S1. Following the basic paradigm of a similar structure can
lead to similar mechanisms of action; targets of structurally similar
drugs can also be the targets for the AR metabolites. We thus
obtained a list of AR metabolites and their associated potential
target proteins (L3). Altogether, 1004 targets were identified
(Supplementary Dataset S1). This list includes a set of targets of

known drugs, which can be potentially targeted by the AR
metabolites as well.

Protein–protein interaction network analysis screen
important proteins
Network biology has been widely used in understanding the
complexity of various diseases, their interacting patterns, role, and
the importance of interaction patterns37–41. Lists L1 and L2
represent the proteins, whose expression was perturbed due to
the administration of AR. The L3 list described above-provided
information on potential drug targets that can also interact with
the AR metabolites. Therefore, the intersection of the three lists
(L1, L2, and L3) would represent the list of proteins responsible for
the disease prognosis, which when targeted through AR
metabolites lead to the therapeutic action. The intersection of
the three lists (L4) has 40 proteins (Supplementary Dataset S1).
Next, we constructed the protein–protein interaction network of
the L4 proteins and analyzed the network for various topological
properties (Fig. 2a), with an aim to identify the proteins
responsible for network/pathway integrity.
The connected component of the PPI network (N) constructed

using L4 proteins comprised of 38 nodes (proteins) and 121 edges
(interactions). The interaction data of the proteins in the form of
an adjacency list can be found in Supplementary Dataset S1. The
p-value of the PPI enrichment according to the STRING database
was 1.0e-16, which indicated that the interaction data are
statistically significant. Such an enrichment score suggested that
proteins have more interactions among themselves than what
would be expected for a random set of proteins of similar size and
are biologically significant as a group. To get a deeper insight,
the network was analyzed for various structural/topological
properties listed in Fig. 2b and Supplementary Table S3. The
fundamental property, average degree, <k> of the network was 6,
indicating interconnectedness of the nodes in the network. The
degree of fourteen nodes higher than the average degree in the
network suggests their function in promoting the network’s
robustness through their connectedness against random external
perturbations42,43. This was further confirmed by pathway analysis

Table 1. AR constituent metabolites.

Serial no. Metabolite Associated pathways/functions

1. Gallic acid Mucous protection, astringent effects

2. Ellagic acid Antioxidant and anti-proliferative effects

3. Biocytin Vitamin H (biotin) metabolism

4. Methylcobalamin Vitamin B12 (cyanocobalamin) metabolism

5. L-methionine Amino acid metabolism

6. Pyridoxamine phosphate Vitamin B6 (pyridoxine) metabolism

7. Prostaglandin B1 Prostaglandin formation from arachidonate

8. 4-Hydroxy-all-trans-retinyl_acetate Vitamin A (retinol) metabolism

9. 13’-carboxy-alpha-tocotrienol Vitamin E metabolism

10. Cholic acid Bile acid metabolism

11. 1alpha,24 R,25-trihydroxyvitamin D3 (calcitetrol) Vitamin D3 (cholecalciferol) metabolism

12. Guanylic acid Purine metabolism

13. Carbamoyl phosphate Pyrimidine metabolism

14. 5-formiminotetrahydrofolate Vitamin B9 (folate) metabolism, Histidine metabolism

15. Nicotinate D-ribonucleoside Vitamin B3 (nicotinate and nicotinamide) metabolism

16. Sulfate derivative of norepinephrine (noradrenaline sulfate) Tyrosine metabolism

17. 12-oxo-20-dihydroxy-leukotriene_B4 Leukotriene metabolism

18. 5S,6S-epoxy-15S-hydroxy-7E,9E,11Z,13E-eicosatetraenoic acid Arachidonic acid metabolism or putative anti-inflammatory metabolite

The list of AR constituent metabolites identified from HPLC, HPTLC, and LC-MS analysis.
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using the STRING database, where the cutoff for false discovery
rate (FDR) was <0.05 (95% significant). These results were further
verified from KEGG Mapper, Gorilla, and DAVID databases44–47.
The ontology from the STRING database indicated that 28 out of
38 proteins are involved in metabolic pathways and 10 of them
were found in carbohydrates metabolism. The detailed ontology
of the proteins has been enlisted in the Supplementary Table S4.
Next, the average clustering coefficient (<CC>) of the network N

was 0.5, signifying intermediate connectivity among the neigh-
bors of the nodes and the presence of complete subgraphs or
clique structures48,49. There were three nodes with clustering
coefficient (CC) as one i.e., all neighbors connected to each other,
forming cliques. Cliques are essential as they are building blocks
and the backbone of the network50. Clique structures in the
network make the network robust51 and stable52 as they are also

involved in the evolutionary process of the network from one
stage to the other53,54. The three proteins having CC= 1 were
COX6B1, MYH14, and SLC25A4 (Table 2). The proteins were further
studied for their biological function through available literature,
revealed their involvement in cardiac muscle contraction, neuro-
pathy, myopathy, and oxidative phosphorylation. The protein
COX6B1 is involved in cardiac muscle contraction55. This protein
encodes an integral, nuclear-encoded COX subunit55. Mutation in
the gene corresponding to COX6B1 protein, where histidine is
replaced by cysteine at R20 residue, leads to reduced expression
of COX6B1 protein in muscle and fibroblasts causing hypertrophic
cardiomyopathy or cardiac muscle dysfunction55. An autosomal
dominant mutation in the protein MYH14 leads to neuropathy,
myopathy, hoarseness, and hearing loss56,57. SLC25A4 is active in
cardiac hypertrophy and myopathy after mutation58. It is also

Clique

HN

HN

Network Nodes Edges <k> <CC> NCC=1 HN

N 38 121 6 0.5 3 3

a)

b)

c) d)

Fig. 2 PPI network. Using STRING database, PPI network for 40 common proteins was constructed. a The network has 38 nodes and 121
edges. Nodes namely PRKAR1A and NNT (Green Boxes) do not interact with any of the other nodes. For statistical analysis, the largest
connected component was considered and the unconnected nodes were ignored. The yellow boxes are the set of targets obtained from
network analysis which were further studied for their therapeutic potential against cardiovascular diseases. b The table illustrates various
structural properties of the network corresponding to 40 common proteins, where N refers to the name of the network followed by the
number of nodes and edges in the network. <k> represents the average degree of the network along with the average clustering coefficient
(<CC>). NCC=1 is the number of nodes having CC=1, whereas HN represents the nonhub bottlenecks that have a very low degree but high
betweenness centrality. c The betweenness centrality Vs degree curve enlisting nonhub bottlenecks (HN) as red dots in the graph. d Schematic
representation of clique structures (red dotted rectangle) and HN (green dotted square) property in a network. Cliques are closed subgraphs in
a network that are vital to the network stability and robustness. HN represents the nodes that act as bridges between consecutive network
components like hub nodes and subgraphs. Targeting such nodes helps to maintain network integrity and, therefore, is hypothesized to be
ideal pharmacological drug targets in the network.
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reported that SLC25A4 controls oxidative phosphorylation,
specifically to regulate energy phosphate levels associated with
low ATP demand. This is directly associated with cardiac
hypertrophy58. These proteins are having a vital position in the
network, vital in disease prognosis, can therefore be suggested as
a probable drug targets.
Further, the betweenness centrality (βc) of the nodes in the

network signifies the participation of nodes in multiple pathways,
indicating a positive correlation between the βc of a node with its
degree59,60. A node with a low degree and high betweenness
centrality is termed as nonhub bottlenecks (HN). This parameter is
crucial as it detects the nodes with occurrence in the maximum
number of pathways. The targeting of high degree nodes may
collapse the whole system as they are maximally connected.
Therefore, such nonhub bottlenecks (HN) are important for the
network as they help to identify a weak breaking point of the
network without compromising the whole system61. Three
proteins ACADM, COX4I1, and HBB were identified in the nonhub
bottleneck regime (Table 2), which are functionally involved in
fatty acid metabolism, cardiac muscle contraction, and regulation
of blood pressure. ACADM protein is associated with fatty acid
metabolism62. Fatty acids and associated lipids are important
determinants of both structure and function of cardiomyocytes.
There is considerable evidence that in the postnatal and adult
mammalian heart, fatty acid β oxidation is the preferred pathway
for the energy that is required for efficient cardiac pumping62,63. A
major switch in the myocardial bio-energetic substrate used, from
fatty acid to glucose leads to downregulation of fatty acid β
enzyme, leading to cardiac failure55. COX4I1 protein such as
COX6B1 has a significant role in cardiac muscle contraction and its
defect can result in heart failure, whereas HBB is responsible for
the regulation of blood pressure55. The COX4I1 protein, in case of
myocardial insufficiency (heart failure) and dilated cardiomyo-
pathy, is found to have decreased expression of COX4I1, which
results in an impaired cytochrome c oxidase (CytOx) activity that
has an important role in myocardial respiration, ultimately
affecting the mitochondrial respiratory chain64,65. Higher enzy-
matic activity but equal oxygen consumption contribute to the
pathophysiology of myocardial insufficiency, which is an indicator
of oxidative stress. The HBB protein has a vital role in the iron
(Fe2+) binding and oxygen-binding during the transport of blood
in the circulatory system, which regulates blood pressure and
blood vessel diameter in the body66. Thus, these proteins can have
therapeutic potential in treating cardiovascular diseases.

Combinatorial effects of the AR metabolites
The proteins described in the PPI network discussed above were
associated with nine of the 18 AR constituent metabolites
(Supplementary Table S5). The interconnectedness of the PPI
network indicates that these metabolites have a synergistic action,

which we analyzed through the guilt-by-association approach4.
Multi-component or multilayered networks have been previously
used for determining the synergistic drug action4. The basic
principle involved in determining a synergistic action or synergis-
tic partners is that two nodes of a type (metabolite/protein/
pathway) should be connected through either a common or
neighboring set of nodes of another kind. Therefore, to determine
the synergy among AR metabolites, their target proteins, and the
associated pathways; we constructed a multi-component network
comprising AR metabolites, their potential protein targets, and
associated pathways aka metabolite-target-pathway (MTP) net-
work (Fig. 3a). This MTP network was used to construct two bi-
layer networks, Metabolite-Target (MT) network and Target-
Pathway (TP) network (Fig. 3b, c).
The synergy at the metabolite level was determined by

constructing a subnetwork from the constructed MTP network
using metabolites and target proteins only (MT network, Fig. 3b).
For any pair of metabolites to be synergistic partners, they should
target the same or directly connected targets in order to affect a
single or set of related pathways. Therefore, using a path length
cutoff of ≤3 between two metabolites in the MT network for a
direct connection, we created a metabolite–metabolite (MM)
network, wherein directly connected nodes are synergistic couples
(Fig. 3d). The analysis revealed that guanylic acid was directly
connected to all the remaining metabolites (eight neighbors),
indicating that guanylic acid is the most active synergistic
ingredient of AR followed by cholic acid (seven neighbors). The
other metabolites had 2–4 direct neighbors, and the MM network
was a closed graph. This suggests that all the AR metabolites are
directly or indirectly synergistic partners, and present themselves
as a collective network of medicine.
To analyze the synergistic effect of the related pathways in the

pharmacological action of AR metabolites, we used the target-
pathway (TP) part (Fig. 3c) of the MTP network. A network
medicine essentially affects multiple pathways simultaneously (co-
regulation of pathways), in contrast to the traditional one
molecule-one target-one pathway mode of drug action6,7. There-
fore, to study the co-regulation of different pathways by AR
metabolites, we reduced the TP network to a pathway–pathway
(PP) network, by using a path length cutoff of ≤3 in the TP
network among pathway node sets to construct a direct
connection between nodes in the PP network. The resulting PP
network (Fig. 3e) is representative of different pathways co-
regulated by the synergistic action of AR metabolites. PP network
was observed to be a closed network comprising of 26 nodes
(pathways) and 218 edges. The network being closed suggests
high density which is evident from the average degree <k> of this
network that comes out to be 17. Another topological feature
namely diameter (D) for this network, was 2, indicating faster
signaling40. Further, a very high average clustering coefficient
(<CC>) of 0.9 signifies the presence of complete subgraphs, or in
other words, it indicates that the pathways are interconnected.
These network characteristics suggest that the co-regulation of all
the discussed pathways in the PP network is critical to disease
treatment and therefore, the removal of even one of the nine
metabolites from the AR concoction could result in the disruption
of pharmacological action, thereby, reaffirming that the AR
metabolites have a synergistic response.
To understand the synergy of drug action at the target level, we

investigated the protein–protein interaction network. The syner-
gistic effect of metabolites in this PPI network was studied
through the interconnectedness among the target proteins of
different metabolites. The PPI network created is part of a larger
disease-specific PPI network, which is targeted by the metabolites.
Therefore, the network (Fig. 4) is vital for disease treatment and
the collapse of this network would lead to a disruption of drug
action. The knockout or deletion of individual metabolite-
associated target proteins in the network will disrupt the whole

Table 2. Potential network targets.

Serial no. Protein Metabolite Similar drugs

1. ACADM Guanylic acid DB03147

2. COX4I1 Cholic acid, L-methionine DB02659, DB04464

3. COX6B1 Cholic acid, L-methionine DB02659, DB04464

4. HBB Gallic acid, cholic acid DB08262, DB07645

5. MYH14 Guanylic acid DB03126

6. SLC25A4 Guanylic acid DB00171

The proteins identified as potential targets from the network analysis are
listed. The corresponding AR metabolites targeting these proteins with
chemically and structurally similar drugs (DrugBank accession IDs) are
listed.
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network. Thus, we categorized the proteins in accordance with
their corresponding metabolites (Fig. 4). We observed that various
proteins associated with different metabolites are vital for
maintaining network integration. This was evident from the
proteins associated with guanylic acid, as they are maximally

present in the underlined network, further suggesting that this
metabolite has significant involvement in response to disease
treatment. The other metabolites such as cholic acid, gallic acid,
ellagic acid, etc. associated proteins provide a bridge of
connections for the connectivity of guanylic acid-associated

Metabolite-Target Network Target-Pathway Network

Metabolite-Metabolite Network Pathway-Pathway Network

Metabolite-Target-Pathway Network

a)

d)

b)

e)

c)

AR Metabolite

Target Protein

Pathway
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proteins among each other and in other pathways. This
observation signifies the utility of multiple bridging metabolites
for the therapeutic action of guanylic acid. This behavior was
analyzed by studying the ontology of these proteins that revealed
the interrelation of the proteins in the regulation of multiple
pathways, such as metabolic pathways, glycolysis/gluconeogen-
esis, insulin signaling pathway, fatty acid metabolism, cardiac
muscle contraction, etc. (Supplementary Table S4).
The three levels of synergistic action investigated, thus, reveal

that the action of AR constituents is combinatorial and reflective
of the modern concept of network medicine.

Drug repositioning for pressure-overload LVCH
The six proteins ACADM, COX4I1, HBB, COX6B1, MYH14, and
SLC25A4 correspond to four metabolites namely guanylic acid,
cholic acid, L-methionine, and gallic acid. These metabolites may
have therapeutic effects in the treatment of pressure-overload
LVCH. Therefore, we studied the biological functions of these
candidate metabolites for therapeutic implications and verified
their binding affinity with the target proteins. Guanylic acid is an
experimental drug and mechanisms in which this metabolite
involved are unknown. This metabolite belongs to a class of
organic compound ribonucleoside 3’-phosphates that contain a
phosphate group attached to the C-3 carbon of the ribose or
deoxyribose unit. It is known to be involved in uracil phosphor-
ibosyltransferase activity67. Cholic acid is an approved drug that
has a major role in primary bile acid production in the liver. It
facilitates fat absorption and cholesterol excretion. This metabolite
is primarily used in the treatment of children and adults
with bile acid synthesis disorders and for peroxisomal disorders
(such as Zellweger syndrome—bile enzyme malfunction)68,69. L-
methionine is an approved drug and nutraceutical that helps to
lower cholesterol levels by increasing the production of lecithin in
the liver34. It reduces liver fat, protects the kidneys, and prevents
disorders relating to hair, skin, and nails. The metabolite is a sulfur-
based essential amino acid that acts as a natural chelating agent
for heavy metals and also regulates the production of ammonia in
urine70. Gallic acid is an approved drug that possesses protective
effects on the gastric mucosa and has strong astringent effects. It
is used as a deodorizing agent in medicines. The metabolite plays
a major role in forming a protective coat on the intestinal mucosa
and treating ulcers e.g., ulcers from H. pylori71. It has antimicrobial
effects against various gastrointestinal tract pathogens. It has
reported similarities with ellagic acid, which helps in blood
clotting and subsequently reduce bleeding71. Further, all these
metabolites are reported to be directly absorbed in plasma while
administered orally (Supplementary Table S6). After examining the
functional significance of the metabolites corresponding to
proteins obtained from network analysis, we characterized their
biophores to propose repositioning of these metabolites against
available drugs.

To determine the set of existing drugs for repositioning in the
treatment of pressure-overload LVCH, we performed molecular
docking of a set of proteins obtained from network analysis for
drug-target protein and metabolite-target protein pairs. The
similarity of the biophores for the two pairs of complexes would
suggest the interchangeability among available drugs and AR
metabolites for therapeutic applications72,73. We observed similar
biophores for the selected set of 6 target proteins viz. ACADM,
COX4I1, HBB, COX6B1, MYH14, and SLC25A4 (Table 2, Supple-
mentary Figs. S2–S7, and Supplementary Table S7). The COX4I1
and COX6B1 corresponded to identical drug and metabolite
complexes and individually were found to form similar biophores.
However, the protein HBB had two metabolites and correspond-
ing similar drugs. Out of the two, one of the biophores obtained
for HBB, namely HBB-cholic acid and HBB-sebacic acid (DrugBank
Id: DB07645) complexes were unidentical and hence ignored for
further study (Supplementary Fig. S8).
The similar biophores suggest similar biological effects of AR

metabolites and their structurally similar drugs (Supplementary
Section I and Supplementary Table S8), which will further be
investigated for their re-purposing to treat pressure-overload LV
cardiac hypertrophy in future studies. Further, we briefly reviewed
the biological activity of protein–drug complexes having similar
biophores to the protein–AR metabolite complexes, because the
information could be useful for the use of the AR metabolites to
be potential alternatives to the currently used drugs. The
detailed information on the mechanism of these pathways is
summarized here.
The first protein–drug complex ACADM-flavin adenine dinu-

cleotide (DrugBank Id: DB03147) complex has a significant role in
the Lovastatin pathway and Cerivastatin pathway that are
involved in the lowering and inhibition of cholesterol synthesis
respectively74. The proteins COX4I1 and COX6B1 are part of
identical drug and metabolite complexes namely (COX4I1-cholic
acid (DrugBank Id: DB02659))—(COX4I1-N-formyl methionine
(DrugBank Id: DB04464)), and (COX6B1-cholic acid)—(COX6B1-N-
formyl methionine), respectively. The complexes play an impor-
tant role in cytochrome c oxidase activity and regulate bile acid
synthesis as well as in the initiation of protein synthesis75. The
protein–drug complex HBB-dicarboxy naphthalene (DrugBank Id:
DB08262) regulates oxygen transporter activity thereby decreas-
ing blood pressure in the body76. Next, MYH14-Mant-ADP
(DrugBank Id: DB03126) complex helps in Microfilament motor
activity that has a major role in myopathy and cytokinesis77. The
last complex SLC25A4-Adenosine Tri Phosphate (DrugBank Id:
DB00171) has a crucial role in metabolism and is also a
neurotransmitter. It is involved in adenine transmembrane
transporter activity which catalyzes the exchange of cytoplasmic
ADP with mitochondrial ATP, across the mitochondrial inner
membrane78. All these complexes were found to be inhibitors,
indicating their role in suppressing one or the other pathways.
Considering the fundamental principles of similar structure

similar function31,32, we propose that the metabolites namely

Fig. 3 Synergistic action of AR metabolites. a Metabolite-Target-Pathway (MTP) network was constructed by connecting metabolites with
their corresponding target proteins in the protein–protein interaction (PPI) network. The target proteins were further connected with their
associated pathways to produce the final MTP network. The metabolites are shown as pink triangles, target proteins are represented as green
circles, and pathways as blue rectangles. b The metabolite-target protein interaction network (MT network) is the subgraph of the MTP
network and consists of the interaction of metabolites with their corresponding target proteins and interactions among the target proteins.
c The target protein–pathway interaction network (TP network) consists of the protein–protein interactions and protein-pathway relations.
The proteins are shown in green, while the pathways are shown in blue. d MT network was further reduced to a metabolite–metabolite
interaction network (MM network) using a distance cutoff of ≤3 in the MT network for each metabolite pairs to identify a direct connection in
the MM network. The direct association between two metabolites signifies their co-action in the regulation of single or multiple pathways.
e TP network was reduced to a pathway–pathway interaction network (PP network). The PP network was constructed using the same principle
used in the construction of the MM network. The adjacency (direct connection) of two nodes signifies the co-regulation of two pathways due
to the action of Amalaki Rasayana metabolites.
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guanylic acid, cholic acid, L-methionine, and gallic acid corre-
sponding to the protein targets ACADM, COX4I1, COX6B1, HBB,
MYH14, and SLC25A4 can be better alternatives to the known
drugs as they are extracted from a natural source and have
minimal side effects.

DISCUSSION
The findings of our study indicate the scope for revitalizing
Ayurvedic concoctions to be used as therapeutic agents. Using the
integrated approach of cheminformatics and network systems
biology, we investigated AR, an Ayurvedic rejuvenate for the
treatment of cardiovascular diseases (pressure-overload LVCH).
The authentic text for the preparation and functional significance
of AR is Charaka Chikitsa Sthana, written in the third century BCE.
Most of the multi-component formulations in Ayurveda were
believed to be acting on multiple targets and therefore, demands
a “systems approach”. Such a systematic study could not have
been possible without contributory support from in-vivo studies,
proteomics analysis, informatics tools, and techniques of network
pharmacology. Through this work, we made a conscious attempt
to present a complete analytical platform to investigate the
efficacy and synergy of ayurvedic medicines systematically.
The in-vivo study on artificially Aorta Constricted and aged

Wistar rats provided vital information about changes in protein
expression profile, yielding 450 (List L1) and 1166 (List L2)
proteins, respectively, that are modulated by AR. The chemical and
structural similarity analysis identified structurally similar drugs to
AR metabolites, with a turnout of 1004 proteins (List L3). The
intersection of protein expression data and structural analysis data
(List L4) was used together to construct the PPI network using
annotations from existing databases. The network of common
proteins was further analyzed for its topological properties such as
degree, clustering coefficient, betweenness centrality, etc. The
clustering coefficient reveals COX6B1, MYH14, and SLC25A4
proteins that form clique structures or complete subgraphs in
the network. The cliques are essential as they form the backbone
of a network50 and are preserved structures that are responsible
for the evolution of any system. They are known as responsible for
the robustness51 and stability52 of the underlying system. Further,
the proteins corresponding to nonhub bottlenecks (HN) i.e., nodes
having a low degree and high betweenness centrality regime are

ACADM, COX4I1, and HBB. The proteins with HN identify the weak
breaking points in the network as they are involved in many
pathways. The biological functions of these proteins signify either
a regulatory or pathogenic role in the cardiovascular system, such
as blood pressure regulation, fatty acid synthesis, cholesterol
synthesis, cardiac hypertrophy, cardiomyopathy, and systemic
hypertension.
We also constructed and analyzed the metabolite–

target–pathway network to determine the synergistic action of
AR. The synergy was evaluated qualitatively using the guilt-by-
association method4 at the metabolite, pathway, and target levels
individually to ascertain the combinatorial effect of AR metabo-
lites. Next, the six proteins from network analysis were back-traced
to their corresponding AR metabolites and similar drugs. We
identified that these existing drug molecules can be repositioned
to develop a combinatorial therapy for the treatment of pressure-
overload LV cardiac hypertrophy and other cardiovascular
diseases.
Though this study details the synergistic action of AR

constituents and provides information on the constitution of a
repositioned multidrug formulation for the treatment of pressure-
overload LVCH, it is limited by the quantitative composition of the
repositioned drugs. A possible limitation of this study is the
bioavailability of AR metabolites in plasma upon oral administra-
tion. However, the plasma absorbance of cholic acid, gallic acid,
and L-methionine has been previously reported (Supplementary
Table S6). The clinical applications including drug–dose relation-
ship, efficacy considerations, and toxic effects of such drugs need
to be rigorously confirmed. A quantitative ratio of the repositioned
drugs or even AR constituent metabolites would be required for
the further development of combinatorial network medicine. This
is the point of exploration for our future studies for developing a
therapy for the treatment of pressure-overload LV cardiac
hypertrophy, using existing drug molecules and AR constituent
metabolites. The analytical approach presented here can be
extended further to various other diseases as well. This framework
of employing tools of cheminformatics and network biology may
provide a direction for developing new drugs, therapeutic targets,
biomarkers, and repositioning existing drugs for complex diseases
in a time-efficient and cost-effective manner.

Fig. 4 Synergistic action of AR metabolites on target proteins. The color codes on the proteins/targets in the interaction network indicate
their corresponding metabolites identified after screening using SMSD and Tc. Blue circles represent the proteins corresponding to guanylic
acid (the maximum in number), followed by yellow color for cholic acid. ellagic acid is represented by cyan color, whereas calciterol by red
circles. Gray color circles correspond to carbamoyl phosphate and purple to pyridoxamine phosphate. Noradrenaline sulfate metabolite
corresponds to light blue circled proteins. Few proteins correspond to more than one metabolite and are represented as orange circled
proteins for the combination of cholic acid and L-methionine, and green circles for cholic acid and gallic acid. The pink circles are proteins
corresponding to pyridoxamine phosphate and guanylic acid. All these proteins are interconnected and have a significant role in the
disruption or regulation of pathways as seen when knocked out from the network. This observation suggests the co-dependency
of AR metabolites for the maintenance of the protein–protein interaction network, which is vital to drug action, thereby affirming their
synergistic action.
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METHODS
LC-MS of AR concoction resulted in the identification of 18 metabolites, as
significant constituents of AR. The in-vivo experiments provided informa-
tion containing details of proteins extracted from the proteome analysis
(LC-MS) of rat models. The proteome data were recorded for the test (AR
treated), placebo or carrier (Ghee-Honey treated), and the control
(Untreated) samples in Aorta Constricted and Biologically Aged rats. The
18 metabolites were screened for similar drugs by comparing the structure
of AR metabolites with that of drug molecules available in the DrugBank
database, employing SMSD and Tc as screening methods. The drugs which
are similar to AR metabolites and their associated drug targets were
named in List L3. The common proteins among targets from in-vivo study
and similarity search (intersection of L1, L2, and L3) resulted in List L4. The
PPI network analyses for these common proteins were examined for their
network and pathway integrity. Further, we determined the synergy
among AR metabolites, their target proteins, and the associated pathways
by constructing a multi-component network employing the guilt-by-
association method4. This network comprised of AR metabolites, their
potential protein targets, and associated pathways (MTP network)4. The
proteins obtained from network analysis were also scrutinized for re-
purposing by characterizing their respective biophores, using molecular
docking. Detailed procedures employed in this study are the following.

in-vivo study: data source and acquisition
The in-vivo study of AR on pressure-overload LV cardiac hypertrophy28

comprised of the proteomic information of two sets of male Wistar rats (i)
AC with pressure-overload LVCH, induced by clipping ascending aorta with
titanium clips, and (ii) BA for age-associated cardiac dysfunction. The
technique for proteome expression analysis LC-MS was based on the
principle that a protein is only detected when it is present above a
threshold. The absence of proteins in the control conditions represents
the downregulation of those proteins in the disease model. Conversely, the
presence of the same proteins in the test condition indicates the
upregulation of the proteins due to AR treatment. The objective of our
study was to identify proteins, which are directly targeted by the
metabolites present in Amalaki Rasayana (AR). Therefore, for our study,
we considered all the proteins that are detected from the LC-MS analysis
for both the AC and BA rats, resulting in List L1 and L2, respectively. The
proteomics analysis had raw files containing details of proteins expressed
in all the three sample replicates (AR Treated, Placebo, and Untreated) as
RefSeq accessions along with their description, expression scores, etc. For
our analysis, we considered only the RefSeq IDs and the expression scores
for each sample replicates. Thereafter, we averaged over their expression
scores as a representative value for all the replicates (Supplementary
Dataset S1). Further, we extracted and converted these RefSeq accessions
to protein UNIPROT IDs to deduce the number of proteins for each BA and
AC groups as L1 and L2 protein lists (Supplementary Dataset S1).
The in-vivo study was performed at Rajiv Gandhi Center for

Biotechnology with the approval of the Institutional animal ethics
committee (IAEC) in Rajiv Gandhi Center for Biotechnology (RGCB) under
protocol no. IAEC/150/CCK/2012, strictly following the rules and regula-
tions of the Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA), Government of India. The results of this
experiment, however, have already been published28. In this manuscript,
we have only used the proteomics data of the earlier study, and therefore
in-vivo studies are not in principle, part of this paper.

Drug–metabolite similarity search and ontology
The protein targets associated with these drugs (similar to AR metabolites)
were considered the representative set of proteins that the AR metabolites
can interact with. This is based on the universal philosophy of drug
discovery, like structure leads to like functions. To identify potential drug
targets for the AR metabolites, we compared the structure of AR
metabolites with the structures of well-known modern drug molecules
available in the DrugBank database34. The similarity index, namely the Tc
between drug molecules and metabolites (from AR) were generated using
Open Babel79. Tc is defined as the ratio of the intersecting set of a
molecule to the union set calculated as the measure of similarity35.
Mathematically, Tc can be represented as Tc (a, b)= Nc/(Na+ Nb− Nc),
where N is the number of attributes in each molecule (a, b) and C is the
intersection set.

The pairwise similarity visualization of drug molecules and the AR
metabolites was done using SMSD toolkit36. Protein ontologies were
obtained from KEGG Mapper, Gorilla, and DAVID databases44–47.

Construction and analysis of protein–protein interaction
networks
This representative set of proteins play a significant role in therapeutics as
they were altered by the treatment with AR as well as targeted
corresponding to AR metabolites. Networks can be represented as a
collection of nodes connected to their edges. Protein–protein interactions
(PPI) from the STRING database were used for the construction of
interaction map/network80. The P value of the interactions was retrieved
from the STRING database, which uses a hypergeometric test for statistical
significance of the data80. Further, the interactions were reconstituted into
binary adjacency matrix (A) where two proteins, if interacting, were
denoted as 1 and 0 if otherwise. Thereafter, topological features, which
include structural properties of the network such as degree, clustering
coefficient, betweenness centrality, diameter, etc. were calculated. These
may reveal the minimal set of drug targets for cardiovascular diseases.
The fundamental topological parameter in a network is the degree of a

node (ki), which is defined as the number of first neighbors the node has
ðki ¼

P

j
AijÞ 59. Another critical parameter is the clustering coefficient (CC)

of the network. The clustering coefficient of a node i (CCi) is defined as the
ratio of the number of connections a particular node has and the possible
number of connections the particular node can have49, as described
by Eq. (1).

CCi ¼
2
Pki

j2¼1

Pki
j1¼1ðAij1Aj1 j2Aj2i Þ

kiðki � 1Þ (1)

where i is the node of interest and j1 and j2 are any two neighbors of the
node i and ki are the degrees of the node i. The average clustering
coefficient (<CC>) of a network is described by Eq. (2)

CC ¼ 1
n

Xn

i¼1

CCi (2)

These are also known as cliques. They are complete subgraphs in the
network which are known to be the conserved part of the network50. The
average clustering coefficient of the network characterizes the overall
tendency of nodes to form clusters or groups. Further, the diameter of the
network measures the longest of the shortest path between all the pairs of
nodes40. It gives information on how fast a signal can transmit to the whole
network.
Next, the betweenness centrality (βc) of a node i is defined as the

fraction of the shortest paths between node pairs that pass through the
said node of interest59, as described by Eq. (3)

βci ¼
X

st

nist
gst

(3)

where, nist is the number of paths from s to t that passes through i and gst
is the total number of paths from s to t in the network.

Synergistic effects of AR constituents
The use of drug combinations against multiple linked targets in a disease-
specific network is a more sensible approach for the treatment of complex
diseases. Ayurveda is the science of combinatorial therapy and its medicines
often have multiple constituents, which are considered to operate through a
cooperative mechanism termed synergy. Most of the research on combina-
torial medicines has been based on the hypothesis that the synergistic action
of drugs is due to their combinatorial effects on targets identified by their
network topological features. Thus, we categorized the proteins in accordance
with their corresponding metabolites and observed the presence of proteins
and their corresponding metabolites and pathways in the maintenance of
network integration. We use the guilt-by-association approach4 where the
distance of ≤3 among the connected entities was taken into consideration for
each dataset.

Identification of binding sites: molecular docking for re-
purposing
The proteins obtained from network analysis were back-traced to their
metabolites and drug targets for identification of the binding sites among
the protein–metabolite and protein–drugs through molecular docking
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using AutoDock Vina81. To perform this exercise, the structures of the
proteins were identified from Protein Data Bank (PDB)82. Thereafter, the
selected proteins retrieved from PDB were using Chimera separated from
the ligands and chains that are not relevant to the present study. The
water molecules were also removed by using AutoDockTools (ADT)81. This
was followed by the addition of Gasteiger charges and adjusting the
charges on each residue to bring integral charges across the macro-
molecule. Hydrogen atoms were added, the non-polar ones were merged,
and the macromolecule thus obtained was saved as a PDBQT file. Next, the
ligand structures were retrieved from DrugBank and PubChem data-
bases34. They were energy minimized using Avogadro’s 1.2.0 steepest
descent algorithm to reduce any bad conformations that may be
introduced and give artefacts of potential energy. It is likely that these
conformations were not preserved when docking was finally carried out
since the ligand is treated as a flexible entity in AutoDock Vina. It was read
into ADT, torsion tree root detected, and processed as another PDBQT file.
This modified structure (preparatory files) was then further docked blindly.
The strategy behind using blind docks relied on the fact that we can

scale the exhaustiveness with grid box and allow the docking to be
completed faster, along with generally better results utilizing the system’s
multithreaded architecture81. The docking was run and examined using
LigPlot and PyMol for screening the biophores of the docked protein and
ligand (drug/metabolite)83. Further, we generated a biophore fingerprint
table to identify similar (recurring) residues in the binding pocket of
protein–metabolite and protein–drug complexes.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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