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Abstract: Neurodegenerative processes of various types of dementia start years before symptoms,
but the presence of a “neural reserve”, which continuously feeds and supports neuroplastic
mechanisms, helps the aging brain to preserve most of its functions within the “normality” frame.
Mild cognitive impairment (MCI) is an intermediate stage between dementia and normal brain
aging. About 50% of MCI subjects are already in a stage that is prodromal-to-dementia and during
the following 3 to 5 years will develop clinically evident symptoms, while the other 50% remains
at MCI or returns to normal. If the risk factors favoring degenerative mechanisms are modified
during early stages (i.e., in the prodromal), the degenerative process and the loss of abilities in
daily living activities will be delayed. It is therefore extremely important to have biomarkers able
to identify—in association with neuropsychological tests—prodromal-to-dementia MCI subjects as
early as possible. MCI is a large (i.e., several million in EU) and substantially healthy population;
therefore, biomarkers should be financially affordable, largely available and non-invasive, but still
accurate in their diagnostic prediction. Neurodegeneration initially affects synaptic transmission and
brain connectivity; methods exploring them would represent a 1st line screening. Neurophysiological
techniques able to evaluate mechanisms of synaptic function and brain connectivity are attracting
general interest and are described here. Results are quite encouraging and suggest that by the
application of artificial intelligence (i.e., learning-machine), neurophysiological techniques represent
valid biomarkers for screening campaigns of the MCI population.
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1. Introduction

Dementias are of several types; however, the most frequent and diffusely known by the public
opinion is Alzheimer’s disease (AD), which is characterized by a progressive loss of memory and
deterioration of other cognitive functions that significantly interfere with daily life activities [1].
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The typical AD clinical phenotype follows a prodromal stage known as mild cognitive impairment
(MCI) that is usually, but not exclusively, characterized by memory loss (amnestic MCI = aMCI).
MCI is typically characterized by evidence of an objective impairment of memory and/or of other
cognitive domains on neuropsychological testing, but not yet encompassing the standards for dementia
diagnosis. It represents an intermediate condition in the elderly between normal cognition and
dementia and includes a consistent percentage of subjects (about 50%) in a stage that is prodromal to
different types of dementia, including AD (MCI prodromal-to-dementia or prodromal-to-AD). MCI is
considered a high-risk population since a significant percentage (from 5 to 20 times higher compared
to an age-matched non-MCI population) will develop one type of dementia during a 3- to 5-year
follow-up period; the remaining percentage will stay in the MCI condition for the rest of their life or
even revert to full normality. MCI prodromal-to-AD (or due-to-AD) cannot be distinguished from those
who will not convert on purely clinical grounds. A careful MCI definition requires a comprehensive
assessment, including cognitive complaints questionnaires, screening tests (such as Mini-Mental State
Examination (MMSE)), an in-depth neuropsychological evaluation (including tests for episodic memory,
language, visuo–spatial abilities, and behavioral scales with appropriate normative thresholds [2,3]),
functional scales and full neurological examinations. In order to plan optimal and early therapeutic,
organizational, and rehabilitative interventions, MCI diagnosis should be combined with the most
reliable prognosis on the likelihood and time of eventual progression to dementia. In other words,
those MCI subjects who are already in a prodromal-to-dementia condition should be intercepted as
early as possible. This goal can nowadays be achieved by combining biomarkers reflecting ongoing
neurodegenerative phenomena with the results of neuropsychological tests.

The identification of reliable markers able to intercept those MCI subjects (amnesic, non-amnesic,
multi-domain) who are in a prodromal-to-dementia stage represents a goal for all health systems as
it would allow early interventions on different risk factors. The risk factors include lifestyle aspects
such as obesity, sedentary lifestyle, smoke, low daily cognitive and exercise, and medical conditions
such as cardiovascular diseases, diabetes, hypercholesterolemia, and thyroid dysfunction, leading to
a significant delay in the daily living autonomies loss even in the absence of a disease-modifying
therapy [4–10]. Such a goal would be of paramount importance since—just as an example that might
be equally expanded to all countries with an aging population—the costs of dementia in the United
States (US) were estimated to be USD 818 billion in 2015, with an increase of 35% compared to 2010.
Moreover, MCI prodromal-to-AD subjects are the main targets of many clinical trials with potentially
disease-modifying drugs since these drugs have proved ineffective when full symptomatology of
AD has already developed, probably because the “neural reserve” has been progressively consumed
during the pre-symptomatic and prodromal disease stages. Therefore, early markers predicting with
high sensitivity/specificity the evolution from prodromal stages to clinically overt dementia and AD
are of pivotal importance in modern public health strategies.

Within this theoretical frame, it seems quite important to have a 1st-level type of low-cost,
non-invasive, and widely available biomarker(s) able to screen out from the MCI population
those subjects who are non-prodromal-to-dementia, leaving more expensive and highly demanding
technologies as a 2nd level approach for a significantly smaller population with a remarkably higher
risk of being in a prodromal-to-dementia condition for diagnostic characterization (i.e., AD with
amyloid plaques).

2. EEG Biomarkers

Scalp resting state electroencephalographic (EEG) rhythms reflect the summation of oscillatory
membrane post-synaptic potentials generated from cortical pyramidal neurons, which play the role of
electromagnetic signal sources. These sources were estimated to extend for several square centimeters
of the brain cortex [11,12]. These potentials can be considered as the oscillatory output of the resting
state cortical system, while inputs include afferents coming from other cortical neural biomasses,
thalamo-cortical neurons, and neurons belonging to ascending reticular systems [11].
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Practically speaking, EEG data analysis may be divided into a two-step process: first, the signals
recorded from all sensors are “de-noised”, aiming to improve signal-to-noise ratio by excluding
portions of highly noisy data; second, the current density distribution or other parameters of interest
are estimated from the cleaned sensor recorded signals. This phase, called preprocessing, is devoted
to the extraction of the source under study from the whole population of electromagnetic sources,
including also the artefactual ones. Methods improving the signal/noise ratio “separate as much as
possible the signal from the noise using information on the specific source under study. In some cases,
it is possible to observe neural activity synchronization by supplying to the subject an external stimulus
or instructing the subject to perform a specific task. Given the high relevance of analyzing resting-state
activity, alternative procedures to enhance the signal to noise ratio were developed, including Blind
Source Separation (BSS) methods such as Independent Component Analysis—ICA [13] and semi-BSS
methods such as Functional Source Separation—FSS” (see Figure 2) [14,15].

Another important step aims to determine the current density distribution inside the brain,
especially in the region of interest. The diverse approaches to solve the so-called inverse-problem
(that is the identification of the source(s) within the brain responsible for the distribution of
scalp-recorded electromagnetic signals) range from single and multiple dipoles [16] to distributed
sources, which include the Multiple Signal Classification—MUSIC [17], the recursively applied and
projected MUSIC—RAP-MUSIC [18], the minimum norm estimates—MNE [19], the low-resolution
brain electromagnetic tomography—LORETA [20], and the beam-forming and synthetic aperture
magnetometry—SAM [21].

The scalp-recorded EEG signals oscillate with rhythms characterized by a spectral content
below 50 Hz since the extracerebral layers act as spatial and frequency filters. Two classes of EEG
biomarkers for early dementia diagnosis, such as “synchronization” and “connectivity” can be
nowadays identified [22]. The term “synchronization” refers to nonlinear oscillatory components of
the brain system that reflect a collective oscillatory behavior of cortical neural populations generating
EEG rhythms [23]. Synchronization of the cyclic firing of cortical neural populations is the main source
of scalp EEG rhythms in both resting state and task-related conditions and produce scalp EEG rhythms:
this “synchronization” mechanism must occur at a macroscopic spatial scale of some centimeters.
Spectral analysis of EEG rhythms is typically done at fixed frequency bands. Both nonlinear and linear
mathematics can estimate the neural current density of EEG cortical sources [24,25]. These procedures
model 3D tomographic patterns of EEG cortical generators into a spherical or a magnetic resonance
imaging (MRI)-based head model representing electrical properties of the cerebral cortex, skull,
and scalp, typically co-registered to Talairach brain atlas [26–30]. Source localization procedures
estimate the current intensity of all dipoles (e.g., hundreds to thousands) of the cortical mantle model
to explain scalp EEG amplitude/power density.

2.1. EEG Findings in Dementia (including AD)

It is important to clarify that EEG recordings (particularly the routine ones with 19 electrodes)
cannot reach a distinct diagnosis of the various types of dementia. In all the studies reported
below, the diagnosis of AD was reached with neuropsychological tests eventually combined with
other biomarkers dealing with brain metabolism and analysis of beta-amyloid and tau protein
metabolites (i.e., fluorodeoxyglucose positron emission tomography (PET–FDG), PET–radioligands,
and cerebrospinal fluid (CSF) analysis). Having clarified this important point, one should consider
that there is a vast literature on EEG abnormalities in pathological brain aging (for a review, see [31]).
Compared to cognitively intact elderly (Nold) subjects, demented (namely, AD) patients contain
excessive δ and a significant decrement of posterior α rhythms [32]. Similarly, MCI patients display a
significant decrease of α power compared to Nold [33]. Furthermore, a prominent decrease of EEG
spectral coherence in the α band in AD has been reported [34,35]. Indeed, the EEG power spectrum in
patients with AD compared to age-matched Nold has shown a widespread increase in δ and θ power
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density and a posterior decrease in α and β power density with lowering of α power density peak in
several studies [34–38].

Nonlinear measures of “synchronization” markers pointed to a complexity loss of cerebral
dynamics in AD within the same frequency bands [39–45], while the analysis of phase coherence
showed differences between AD and Nold [35] and was also able to predict aMCI conversion
to AD as demonstrated by neuropsychological follow-up [34]. Cross-validation of EEG source
solutions showed that clinical symptoms were positively correlated with abnormalities in β, α, and δ
source activities [46,47]. Global cognitive status, as revealed by MMSE scores, correlated negatively
with δ/θ source activity and positively with α source activity [22,47–49]. Similar features of EEG
sources with some attenuation in amplitude, as seen in AD patients, were also observed in MCI
subjects [22,49]. These findings were confirmed by an independent approach based on minimum-norm
depth-weighted estimation [50], that showed in AD patients a reduced activity in the precuneus,
posterior cingulate, and parietal regions, as well as increased activity in δ or θ sources in inferior parietal
cortex, medial temporal cortex, precuneus, and posterior cingulate, compared to aMCI subjects [50].

Occipital, temporal, and parietal α source activities correlated with hippocampal volume,
being more evident in aMCI subjects with a greater volume, intermediate in those with a smaller
volume, and minimum in AD patients [47]. Moreover, α source activity was statistically linked to
the volume of cortical gray matter in aMCI and AD subjects, while a negative correlation was found
with δ sources [51,52]. Finally, a negative correlation between EEG α dipolarity (e.g., uniformity of α
potential distribution) and p-tau or p-tau/Aβ ratio in cerebrospinal fluid in AD was described [53].

Nonlinearity brain electromagnetic rhythms have attracted substantial attention since the early
1980s [42,54,55], due to the approach based on the chaos theory, aiming at a deterministic characterization
of complex time series [56,57] and to the observation that multiple neural processes are governed
by nonlinear phenomena which are essential for healthy and adaptive cortical activity, but are also
involved in several brain diseases [58]. The early application of nonlinear methods based on the
chaos theory to the analysis of spontaneous EEG in AD showed lower correlation dimension (D2) [56]
and the largest Lyapunov exponent (L1) [57] compared to Nold, attributable to a reduction of the
variables needed to describe the dynamics of the EEG (D2) and to a loss of flexibility in information
processing (L1). This is because D2 is a measure of the geometry of the attractor that describes the
EEG signals, whereas L1 explains how many similarities diverge over time [54]. Despite their different
focus on static and dynamic properties of the ongoing signals, both D2 and L1 parameters paralleled
the reduction of complexity seen in the EEG activity of AD patients [45,54,59–61].

Methods of nonlinear EEG analysis can be categorized into three main groups:

- Fractal dimension metrics, including Katz and Higuchi’s definitions [62,63].
- Irregularity estimators, including sample entropy [64] and permutation entropy [65].
- Multiscale metrics [66], including multiscale sample entropy and derived approaches such as

multiscale dispersion entropy [45].

The concept of fractal dimension refers to a non-integer dimension of a geometric object;
this parameter is reduced in AD compared to Nold, especially in temporal–occipital regions [61].
Metrics such as sample entropy (SampEn) can be seen as measures of the production rate of information
within a signal (how much information previous samples of the time series provide about the following
samples) and its level of predictability [61]. Entropy metrics of spontaneous EEGs showed reduced
irregularity in AD. The third major category of nonlinear measures is related to the multiscale behavior
of signals and to the concept of complexity ranging between two extremes of fully predictable and
deterministic systems and merely random oscillations [67]. Thus, completely ordered (i.e., predictable)
or random systems are not physiologically complex [68]. A working measure of complexity (defined as
multiscale (sample) entropy (MSE [67])) is based on the measure of entropy (originally SampEn) over
multiple temporal scales obtained from “coarse-grained” versions of the signals [60,66], and it has
inspired the application of entropy metrics in a multiscale way [66]. MSE has been compared between
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AD and Nold [55,68,69]; it has been shown that spontaneous EEG activity in AD is less complex at short
temporal scales (associated with higher frequencies), but this tendency reverses at longer temporal
scales (related to lower frequencies) [68,69]. This finding is of remarkable interest when arguing about
the dependency of the complexity of brain EEG activity on the temporal scales and the frequency range
under analysis [70,71]. Arguably, one of the limitations of the nonlinear methods surveyed so far is
that they are applicable to single (univariate) signals only. Multivariate versions have become recently
available [45,72–74]; however, they should be validated more deeply as a probe for EEG analysis.
Finally, we should consider that non-linear analysis of EEG activity has been explored in resting-state
and awake conditions; methods also applicable to short time series can now be utilized before, during,
and after a task with the aim of increasing sensitivity/specificity to characterize pathological cognitive
decline [59,75,76].

Despite a number of limitations, important recent reviews ([44], Rossini et al. (2020)) have
summarized the progress in the EEG pattern of demented patients with a neuropsychological profile
of AD: generalized slowing of the spectral frequency profile, reduced complexity, and perturbation.

2.2. Brain Connectivity Methods including Graph-Theory

The human brain can be represented as an anatomic-functional matrix (consisting of billions
of neurons and their synaptic connections) of network structures at micro–meso–macro-scale levels.
Within this matrix of networks, nodes (neuronal assemblies) and links (connecting fibers) cooperate via
dynamic aggregations or transient locking/unlocking of their orchestrated firing oscillations [77–80].
Networks continuously re-shape throughout life via plastic modifications mainly governed by long term
synaptic potentiation/depression (LTP/LTD) mechanisms ruled by the continuous input bombardment
from internal and external environments, including learning/training and maturation/aging processes.
Network configuration and excitability are continuously changing even in tens of millisecond time
frames, according to the cyclic changes of the cortical state (“cortical uncertainty” of Adrian and Moruzzi,
1939 [81]). Such continuous variability modifies instant-by-instant the efficacy of the brain networks
supporting a given skill or task. On this basis, it can be explained why an operating subject can incur
cyclic errors during a task even if in apparently stable conditions. Phase synchronization (or coherence),
phase-locking, entrainment, cross-frequency (or power synchrony), and phase reset of EEG rhythms
measure the degrees of functional and effective connectivity between different brain areas [5,82,83].
As previously said, electromagnetic brain signals are generated by neuronal activities having millisecond
time constants and have, therefore, an extremely high temporal discrimination. Because of this,
by examining them, one can theoretically follow the dynamics and hierarchies of neuronal assembly
connection/disconnection in analogy to the binding/unbinding phenomena of neuronal firing phase
coherence, as seen in animal models via microelectrodic recordings. Similar conditions have been
recorded in human depth recordings where synchronization mechanisms have been observed to be
highly correlated with cognitive performance [84,85].

The stationarity of the resting-state cerebral system (as opposed to non-stationarity) means
that the statistical features of scalp electromagnetic brain rhythms are constant during recordings.
Stationary conditions can be observed for relatively short periods, usually not longer than tens of
seconds [86], during which electromagnetic rhythms can be examined by classical linear frequency
analysis [87,88]. Linearity and non-linearity describe the behavior of a neural circuit, in which the
output signal strength varies in direct or non-direct proportion to the input signal strength, respectively.

Several tools for EEG analysis exploit graph theory [89], which returns indicators of the balance
between the local connectedness and the global integration of a network matrix. Time series of cortical
electric neuronal activity can be used for estimating cortical connectivity, based on the following
concept: “Two places are functionally connected if their activity time series are similar” in which the
‘two places’ could be replaced by ‘two neuronal assemblies’ or ‘the neuronal assemblies under two
recording electrodes’ [90]. However, from a formal point of view, there are many different ways to
define the similarity between signals, including those from EEG. Such methods are mainly based on
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the exact low-resolution electromagnetic tomography (eLORETA) [91], an algorithm representing a
linear inverse solution for EEG signals that have no localization error to point sources under ideal
(noise-free) conditions [28]. In order to obtain connectivity values, a lagged linear coherence algorithm
is applied as a measure of functional connectivity [29,30]. Moving from the scalp-recorded EEG
potentials distribution, the cortical 3D mapping of current density (source localization) is carried out via
eLORETA, as detailed in previous studies, also providing the proof of its exact zero-error localization
property (see [30,91]). Several recent publications from independent groups [91–99] have supported
the idea of a correct source localization using eLORETA; such an idea maintains true not only with
high-density EEG recordings but also with the standard 20-channel EEG montage (10–20 system).

Human activity from movement to cognitive functions is sustained by time-orchestrated
coordination of neuronal aggregates simultaneously firing at multiple brain sites within distributed
neuronal networks [85,100–104]. EEG/magnetoencephalographic (MEG) recordings allow for
non-invasive measurement of the cyclic firing of neuronal assemblies with high temporal resolution
(milliseconds), but with a relatively low spatial resolution (centimeters) and mainly reflect the activity
of cortical neurons with little or no contribution from deep brain sources (either in the depth of
sulci or in the fronto–orbital and temporo–mesial areas, including the hippocampal formation and
insula). Excellent spatial resolution is peculiar of functional MRI (fMRI), reflecting fluctuations of
local blood flow and metabolism through the detection of blood-oxygenation-level-dependent (BOLD)
changes in the depth of the brain structure. Meanwhile, fMRI has a poor temporal resolution due to
the physical properties of hemoglobin relaxation, which is reflected in a remarkable delay between
the synchronized and relatively sharp neuronal firing producing the BOLD signal with a smoothing
effect on the firing sharpness during the rise/decay phases of the neurovascular coupling. It is also
worth mentioning that the BOLD signal is due to transient modifications of energy consumption
of neuronal firing, and, therefore, it does not reflect those interneuronal connectivity mechanisms
like synchronization/coherence and phase locking-unlocking, which do not require changes of firing
frequency/intensity and do not imply energetic fluctuations. Coherence (Coh) [102], partial coherence
(pCoh), phase-locking value (PLV) [105], mutual information (MI) [106], and directed transfer function
(DTF) [104,107] include mathematical approaches to interneuronal connectivity as probed via EEG/MEG
recordings. An adjunctive method is dynamic causal modeling (DCM, [108]), where the modulation of
interactions in preselected networks is analyzed [109]. Inverse methods such as BEANFORM in MEG
and LORETA in EEG data claim to detect deep sources, but there is the possibility that information
from deep structures in the higher frequency rhythms is lost; with such methods, a good source
reconstruction can be reached within the framework of their theoretical limitations (Figure 1).

In order to describe properties of large (e.g., whole-brain) networks, the original empirical data
can be represented in the form of a graph. Graph theory has been widely applied to MRI tractography
(for a review, see [110]), but here is mainly described for applications in EEG/MEG signal analysis.
Graphs can be weighted or unweighted, and can be directed or undirected. The first step is to decide
what can be considered as a node, and what can be defined as a link [42,89]. Core measures of graph
theory can be computed with http://www.brain-connectivity-toolbox.net and adapted by Matlab
scripts [97,111,112]. In such scripts, segregation refers to the degree to which network elements form
separate clusters and correspond to clustering coefficient (C) [113]:

C =
1
n

∑
i⊂N

Ci =
1
n

∑
i⊂N

2ti

ki(ki − 1)

While integration refers to the capacity of the network to become interconnected and exchange
information [114], it is defined by the characteristic path length (L) coefficient [113]:

L =
1
n

∑
i⊂N

Li =
1
n

∑
i⊂N

∑
j⊂N, j,i di j

n− 1

http://www.brain-connectivity-toolbox.net
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signal recording sites, EEG sources, whereas edges can represent values of functional coupling 
between nodes (E). 
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Figure 1. Functional connectivity data analysis: from EEG recordings (A), signals are preprocessed
with ICA for the artifacts’ rejection (B), and the eLORETA algorithm is applied to extract EEG sources’
localization (C). Then, the graph analysis is applied with the construction of an adjacency matrix,
square arrays of numbers where rows and columns correspond to nodes, and individual entries
correspond to all possible connections (D). Nodes can correspond to specific regions, superficial signal
recording sites, EEG sources, whereas edges can represent values of functional coupling between
nodes (E).

The mean clustering coefficient is computed for all nodes of the graph and then averaged. It is a
measure for the tendency of network elements to form local clusters [115]. Starting with the definition
of L, the weighted characteristic path length Lw represents the shortest weighted path length between
two nodes [113,116]. The small-worldness (SW) parameter is defined as the ratio between normalized
C and L − Cw and Lw − with respect to the frequency bands. For example, to obtain individual
normalized measures, one can divide the characteristic path length and the clustering coefficient by
the mean from average values of each parameter in all EEG frequency bands. In this case, it should be
stressed that a normalization of the data, with respect to surrogate networks, cannot be done due to
the weighted values of the considered networks. The SW coefficient describes the balance between
local connectedness and global integration of a network. SW organization is intermediate between
that of random networks, in which the short overall path length is associated with a low level of local
clustering, and that of regular networks or lattices, with a high level of clustering characterized by
a long path length [96]. In this scenario, nodes are linked through relatively few intermediate steps,
and most nodes maintain few direct connections. Surrogate analysis plays a pivotal role in testing the
significance of functional connections in both bivariate and multi-variate estimators; it also represents
a useful approach when applying a data-driven topological filter on statistically significant functional
connections [117].

Generally speaking, most of the studies on brain connectivity with various techniques do not report
on inter- and/or intra-subject test–retest variability; this is a significant gap for an extensive clinical
application. In order to evaluate the within-subject test–retest variability [98], statistical analysis was
performed on the normalized characteristic path length of EEG cortical sources for a 10-subject group
with two recording sessions at a 2-week interval, introducing the factor Time (First and Second recording
sessions). The statistical analyses showed no significant interaction, including time, highlighting the
stability of the “Small World” analysis of EEG signals. More recently, findings from 3 recording sessions
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have been compared from 34 healthy subjects (mean age of 45 years) at a one-week inter-session
interval [118] A between-factors analysis of variance (ANOVA) was carried out: Frequency Band (delta,
theta, alpha 1, alpha 2, beta 1, beta 2, and gamma) and Time (first, second and third recording) for the
Small World parameter. The statistical analysis showed that the interaction, including Time, was not
significant (F(12, 396) = 0.48995, p = 0.92057), highlighting the stability of the proposed parameters at
least when carried out in clinically stable subjects. Recently, the importance of reliability studies based
on repeat-scan sessions protocol of connectomics in any modality has been recognized with publication
of a number of freely available papers and datasets [119–121].

Transitivity (Tw) is another graph parameter: it is measured as the fraction of the node’s neighbors
that are also neighbors of each other [122] and reflects, on average, the prevalence of clustered
connectivity around individual nodes, a measure of segregation based on the number of triangles
in the network. Tw represents a variant of the clustering coefficient not affected by individual node
normalization [123]. More sophisticated methods describing segregation besides the presence of
densely interconnected groups of regions also reflect their composition named the network’s modular
structure (community structure). It reflects the decomposition of networks into groups of nodes,
with the maximal content of within-group links (within network connections are dense), and the
minimal level of between-group links (between network connections are sparse). The degree to which
the network may be subdivided into such clearly delineated and non-overlapping groups is quantified
by a single statistic, the modularity (Qw) (Figure 2). Unlike most other network measures, the optimal
modular structure for a given network is typically estimated with optimization algorithms. Finally,
local efficiency (E_locˆw) is an index of the information transfer efficiency limited to neighboring
nodes (i.e., nodes with direct edges to the node of interest) and indicates how mutually interlinked
neighboring nodes are [124].J. Pers. Med. 2020, 10, x FOR PEER REVIEW 9 of 28 
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Studies on network hierarchical architecture, as obtained by the analysis of simultaneous EEG
oscillations of different frequencies and cross-frequency couplings during a given task performance,
have opened new research avenues into cognitive mechanisms [85]. In fact, time modulation of
the connectivity pattern of the nodes in a task-related network explains most of the performance
variability—i.e., from “excellent” to “poor”—in apparently stable conditions [96,112,125]. In other
words, the task–performance level and the task-related choice/behavior contents are largely
written in the immediate architecture of the EEG networks’ connectivity, preceding the task (by a
few seconds, usually).
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Each EEG rhythm reflects different mechanisms and a complete view—in time, space,
and frequency domains—is needed to obtain a comprehensive analysis of its functional dynamics.
It is worth mentioning that, depending upon the frequency content of the examined rhythm, the time
discrimination of the activation within the network frame can be as short as few milliseconds (down to
10 msec in the high γ band). Because of this, EEG connectivity analysis facilitates an evaluation of the
time hierarchy governing the serial/parallel activation of the nodes and their time/space relationship
within a given task-related network (i.e., whether A is active before, after, or in parallel to B).

Aging processes significantly modulate the network configuration of brain connectivity and also
affect the time-varying synchronization of rhythmic oscillations in a network organization. Along this
line of research, 170 healthy elderly volunteers were submitted to EEG recordings in order to define
age-related normative limits [126]. Graph theory functions were applied to eLORETA on cortical sources
in order to evaluate the Small World parameter as a representative model of network architecture.
The analyses were carried out in the whole brain—as well as for the left and the right hemisphere
separately—and in three specific resting=state sub-networks defined as follows: attentional network
(AN); frontal network (FN); default mode network (DMN). To evaluate the stability of the investigated
graph parameters, a subgroup of 32 subjects underwent three separate EEG recording sessions in
identical environmental conditions after a few days interval. Results showed that the whole right/left
hemispheric evaluation did not present side differences, but when individual sub-networks were
considered, AN and DMN presented in general higher SW in low (delta and/or theta) and high (gamma)
frequency bands in the left hemisphere, while for FN the alpha 1 band was lower in the left, with respect
to the right hemisphere. It was also evident the test–retest reliability and reproducibility of the present
methodology when carried out in clinically stable subjects.

On clinical grounds, it is of interest to the study of conditions that are considered to be prodromal
to dementia as in MCI. As previously said, dementias—particularly in their early stages—mainly
affect synaptic transmission and therefore represent “disconnection syndromes” [31,44,48,97,127].
A statistically significant difference in the SW organization of those MCI subjects who will progress
to AD (Converted MCI, particularly those who can be defined as rapid—i.e., 1–2 years—converters)
was recently found [128], the Converted MCI subjects having SW characteristics very similar to
those encountered in Alzheimer’s patients 1 to 2 years before their conversion (Time 0 of the study).
An abnormal increase in graph parameters in Converted, with respect to Stable MCI, for the α rhythm
has been observed, along with a decrease for the δ and γ rhythms. Such findings might be interpreted
in light of the background physiology of α rhythm, which is usually defined as the “idling rhythms” of
the adult brain [129]. Along this vein, it is worth mentioning that, in a population of 145 MCI subjects
followed up for 2 years, the receiver operating characteristic (ROC) curve derived from graph-theory
EEG analysis showed SW characteristics with a >60% sensitivity (area under the ROC curve (AUC)
0.64, indicating moderate classification accuracy) for classifying the MCI state as a prodromal of AD.
These findings are in line with previous studies [97,112,115] in which SW characteristics were decreased
in low-frequency bands in patients with AD compared to MCI [128]. That is, the MCI connectivity
pattern was less random than that of the AD group. Moreover, significant differences between healthy
elderly, MCI subjects and AD patients have been demonstrated by showing that physiological brain
aging presents greater specialization (though lower values) of SW characteristics that are higher than
normal in low EEG frequencies and lower in α bands. Finally, converted aMCI presented a graph
theory pattern practically identical to the AD one. The ROC curves gathered by a combined phenotype
and genotype characteristics analysis (obtained at a low cost with widely available apolipoprotein E
(ApoE) technology), produced an increase of accuracy up to 91.78% (AUC 0.97, indicating a nearly
optimal classification accuracy) for identifying the MCI prodromal-to-AD state [128]. This result is in
line with the fact that the ε4 allele of the APOE gene is the major risk genetic factor for the pathogenesis
of late-onset AD [32,130].

This bulk of findings suggests that EEG connectivity analysis, combined with neuropsychological
and genetic (i.e., ApoE alleles) evaluation, could be of great help in early MCI prodromal-to-AD
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identification as a first-line screening method and in intercepting those subjects with a high risk for
rapid progression to AD [83,131]. How does the “graph-theoretical” model compete with other types
of EEG analysis methods, and how does it contribute to AD diagnosis? Vecchio et al. [128] made a
comparative analysis by applying to the same EEG epochs utilized for graph valuation methods of EEG
analysis currently used for AD studies, namely, spectral coherence and power spectrum; such methods
performed less than graph and showed 51.79% sensitivity, 100% specificity, and 68.86% accuracy.

Several studies converge on the idea that α rhythm is a deterministic chaotic signal involved in
several functions, besides others [42], ranging from memory formation to sensorimotor processing and
integration [132]. Indeed, there is evidence in the healthy, showing a positive correlation between α
frequency and the speed of information processing, as well as cognitive performance [87]. In the adult
EEG during resting, awake conditions α rhythms are widely recordable and dominate in the posterior
brain areas, while δ rhythms are poorly represented, thus reflecting a condition of likely α-δ “reciprocal
inhibition” [31]. Furthermore, it is well known that the anatomical or functional disconnection of
lesioned cortical areas generates spontaneous slow oscillations in the δ range in virtually all recorded
neurons. In particular, the SW decrease in the δ band represents an increase of functional inhibition.
The opposite holds true for the α band.

Gamma rhythms are involved in a variety of cognitive functions, including visual object processing,
attention, and memory [133], and are strictly reflecting behavioral performance (accuracy and
reaction time) in several memory tasks, including episodic memory, encoding, and retrieval [134].
Gamma oscillations are pivotal in synchronization of the action potentials spike phase, a mechanism that
is at the base of EEG connectivity [135]. An SW decrease in theγband in the MCI-prodromal-to-dementia
is in line with previous evidence [98], showing a decrease of SW γ band in AD with respect to MCI and
control subjects. The γ band (>30 Hz) mediates information transfer between cortical and hippocampal
structures for memory formation [136], particularly through feed-forward mechanisms [137] and
coherent phase-coupling between oscillations recorded simultaneously from different neuronal
structures [138].

We also explored [131] the EEG functional connectivity in amnesic multidomain-MCI subjects in
order to characterize the DMN in converted MCI (cMCI)—those in a prodromal-to-dementia condition
who converted to AD during the follow-up—compared to stable MCI (sMCI) subjects. A total of 59 MCI
subjects were recruited and divided, after appropriate follow-up, into cMCI or sMCI. They were further
divided into MCI with linguistic domain (LD) impairment and in MCI with executive domain (ED)
impairment. The Small World (SW) index was computed, restricting to nodes of DMN regions for all
frequency bands, and evaluated how they differ between MCI subgroups as assessed through clinical
and neuropsychological 4-year follow-ups. Results showed that the SW index significantly decreased
in γ band in cMCI compared to sMCI. In cMCI with LD impairment, the SW index significantly
decreased in the delta band, while in cMCI with ED impairment, the SW index decreased in delta
and γ bands and increased in the alpha1 band. It is argued that the DMN functional alterations in
cognitive impairment could reflect an abnormal flow of brain information processing during resting
state possibly associated with a status of pre-dementia.

The combination of all the above-mentioned feature extraction techniques results in a wide-ranging
collection of features. For this reason, a feature selection process should be preferably carried out in an
automated or at least in a semi-automated way. A large number of machine learning algorithms can be
used to accomplish this task. A widely used procedure for both feature selection and classification in
diagnosing AD applications is the support vector machine (SVM), which achieved up to 98% accuracy
in early AD detection [139–141]. One of the major advantages of SVM is that when combined to
L1-norm as penalization, it leads to sparse weight vectors and allows feature selection and classification
to be accomplished in the same step [142]. An interesting variation of SVM is the Relevance Vector
Machine (RVM), which replaces the binary SVM classifier with a soft-decision method based on a
probabilistic Bayesian learning framework and outperformed SVM when tested in a fully-automated
AD diagnostic system [139].
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Recently, we investigated [143] the possibility to automatically classify physiological vs.
pathological aging from cortical sources’ connectivity based on a support vector machine (SVM)
applied to EEG Small World. A total of 295 subjects were recruited: 120 healthy volunteers and
175 AD. Graph theory functions were applied to the undirected and weighted networks obtained by the
lagged linear coherence evaluated by eLORETA. A machine-learning classifier (SVM) was then applied.
The ROC curve showed an AUC of 0.9 (indicating very high classification accuracy). The resulting
classifier showed 83% sensitivity, 100% specificity, and 96% accuracy for the classification of the AD
respect to control subjects. Graph theory analysis of brain connectivity from EEG signals provides
useful information in distinguishing physiological and pathological age-related brain processes.

In conclusion, EEG connectivity analysis via a combination of source/connectivity biomarkers could
represent a promising tool in the identification of AD patient and MCI prodromal-to-dementia subjects.
This approach represents a low-cost and non-invasive method reaching high sensitivity/specificity
and optimal classification accuracy, which might be combined with other biomarkers with the same
characteristics (i.e., ApoE genotyping) for screening large population samples in order to obtain a risk
evaluation on an individual basis.

2.3. TMS-EEG Co-Registration for Testing Brain Connectivity

Transcranial magnetic stimulation (TMS) is a non-invasive and painless technique introduced in
1985 by Anthony Barker, that is able to study the excitability, connectivity, and plasticity of the human
cerebral cortex. If the coil for the stimulation is precisely localized on the scalp region overlaying the
motor cortex, a muscle twitch in the contralateral body segment can be elicited with supra-threshold
stimuli. Such responses are called motor-evoked potentials (MEPs); they can be recorded from a target
muscle (i.e., the hand) by surface electromyography (EMG) and reflects the activation of corticospinal
cells in the primary motor cortex (M1) by single-pulse transcranial magnetic stimulation (spTMS) [144].

The combination of TMS with EEG is considered an important tool to reveal the effective
connectivity of brain networks, defined as the influence one neuronal assembly exerts over separate
(eventually remote) one(s) through causal or non-causal effects. In fact, the co-registration of the EEG
activity—which has a temporal resolution of a few milliseconds and can be simultaneously sampled
from a large number of scalp sites—during TMS provides the opportunity of tracking temporal
dynamics and inner hierarchies of brain networks that is properly their effective connectivity (for a
review see Rossini et al. (2019) [83]).

TMS–EEG has several advantages: (1) Its high temporal resolution conveys precise information
about the temporal order of activations of connected cortical areas (either adjacent or remote), defining at
the same time the causal interactions (excitatory or inhibitory) between two areas within functional
brain networks. (2) Its high temporal resolution allows the identification of critical periods during
which the stimulated area and its connections to other brain regions make a critical contribution to
the experimental task, thereby enabling to differentiate the connectivity pattern of different cognitive
processes related to specific tasks or different brain states and whether or how they are modified
by learning and training. Taking into account these points, TMS–EEG co-registration allows the
evaluation of the spatio–temporal pattern of neural activity that determines the connections across
brain areas, hence providing measures of effective connectivity able to test the predictions of graph
theory models [145].

From the first attempt to measure TMS-evoked brain responses made in 1989 by Cracco et al. [146],
several efforts have been made to overtake the severe technical limitations related to the coupling of
a stimulation artifact (thousands of times higher than the signal of interest) to the recording system.
Using a sample-and-hold circuit able to block the acquisition of EEG signal for several milliseconds
immediately adjacent to the TMS pulse, TMS-evoked brain EEG responses were successfully measured
in 1997, succeeding in tracking TMS-evoked brain activity with a temporal window of a few milliseconds
after the stimulus [147,148]. Subsequent studies have begun to describe the scalp topography and to
study the possible generator sources of the TMS-evoked EEG potentials (TEPs). Probably, most of
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the EEG signals record a linear projection of the postsynaptic currents indirectly induced by TMS;
then, EEG signals can be used to locate and quantify these synaptic current distributions and evaluate
local excitability and functional connectivity in the nervous system. Within the so-called “inductive
approach”, applying a single TMS pulse on the brain cortex, a network of neuronal connections is
triggered and the TMS-induced activation—a summation of post-synaptic potentials—spreads from
the stimulation site to other interconnected parts of the brain, producing deflections in scalp EEG
signals, starting a few milliseconds after the stimulus and lasting about 300 msec, first in the form of
rapid oscillations and then as lower-frequency waves. Increased EEG activity following the magnetic
stimulus can be observed in a number of neighboring electrodes, suggesting the spread of TMS-evoked
activity to anatomically interconnected cortical areas. Particularly, TMS-evoked activity spreads from
the stimulation site ipsilaterally via association fibers, contralaterally via transcallosal fibers, and to
subcortical structures and spinal cord via projection fibers.

Therefore, TMS–EEG gives the possibility to study cortico–cortical interactions and how the
activity in one area affects the ongoing activity in other areas. It has been suggested that the
first part of the TMS-evoked EEG signals reflects the excitability (i.e., the functional state) of the
stimulated cortex, whereas the following spatiotemporal distribution over the scalp corresponds to
the spread of activation to other cortical areas, i.e., the effective connectivity of the stimulated area
(for a review, see Ferreri and Rossini (2013) [148]). The amplitude, latency, and scalp topography of
single-pulse TMS-evoked EEG responses have been clearly described [125,149,150]. TMS-evoked EEG
averaged responses are generally highly reproducible, provided that the delivery and targeting of TMS
(i.e., via neuronavigated stimulation) is well controlled and stable from pulse to pulse and between
experiments. Several components of the EEG response to single-pulse TMS applied on the motor
cortex have been identified and—benefiting from the knowledge of the anatomical connectivity of the
brain as seen by diffusion tensor imaging studies—their spatiotemporal spread has been followed:
particularly, single-pulse TMS is able to evoke EEG activity composed at the vertex by a sequence of
deflections of negative polarity peaking at approximately 7, 18, 44, 100, and 280 msec, alternating with
positive polarity peaks at approximately 13, 30, 60, and 190 msec post-TMS (Figure 3) [150].
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However, the previously described pattern of TEPs is not invariable because, in addition to
inter-individual differences, it depends on the stimulation intensity, the exact coil location and
orientation [149], the local and general state of the cortex [151], the level of vigilance [152], as well as
the age of the stimulated brain [153]. Given these unique features, TMS–EEG appears very suitable
to test and evaluate the functional brain architecture suggested by graph theory models, both at
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rest and during cognitive processes. Several TMS–EEG studies on the motor system at rest have
demonstrated that the TMS-induced activity spreads from the stimulated node to other nodes of
the same motor network: the TMS of the primary motor cortex causes the successive activation of
ipsilateral supplementary/premotor areas and contralateral motor region with a short conduction
time. The nature of these connections seems to be inhibitory rather than excitatory and depends on
the level of cortical activation immediately before and during the stimulation [125,153]. As therefore
observed, the restriction of the TMS-activity to the specialized motor network suggests a modular
node organization of functional brain architecture at rest. Other studies on the motor cortex at rest
have revealed that the stimulation of M1 also generates the late activation of areas outside the “motor”
network, including the cingulate gyrus and the temporo–parietal junction. The spread of the later
components of TEPs to other areas over the motor network suggests the involvement of further nodes
and brain hubs implicated in the transmission of information across the brain. Additional evidence
about this bottom-up signal propagation from lower-degree nodes to brain hubs has been provided by
studies on the visual system. On the contrary, the existence of mechanisms of top-down modulation has
been shown in several studies stimulating multimodal associative areas responsible for high cognitive
processes during task performance: it has been demonstrated that the diffusion of TMS-induced
activity from these areas across the brain could be divergent depending on the task context, preferring
the engagement of one network rather than another. This kind of TMS–EEG approach defines the
“interactive approach” and seems to confirm that the targeting of associative areas could correspond to
the brain hubs, a subset of high-degree brain sites able to mediate communication between multiple
modules or networks according to the cognitive context. These findings, taken together, highlight the
potential role of TMS–EEG to test the dynamic changes of cortico–cortical connectivity according
to graph theory predictions, identifying both a specialized modular/network segregation during
the resting state and a modular/network integration during high cognitive demands with dense
connectivity through brain hubs activation.

In addition to standard TEPs, single-pulse TMS or frequency-tuned train of pulses can also
trigger or enhance brain oscillatory activity or perturb ongoing rhythms of the targeted cortical
area, eliciting event-related phenomena, such as EEG rhythm synchronization or desynchronization.
Brain oscillations represent a mechanism through which the communication of neuronal assemblies—by
synchronization in specific frequency bands—is rendered more effective, precise, and selectively tuned
on the transmission of the relevant information. It has already been demonstrated that different cortical
areas, when stimulated, respond at a characteristic frequency, i.e., their natural frequency, and that
functionally segregated networks could oscillate at different frequencies at rest [154]. Given these
assumptions, some authors speculated that TMS could interact with such oscillatory patterns in the
directly stimulated cortical area and in distant areas belonging to the same neural network thus
inducing a resonant frequency activity in all “synchronized” areas of the same network by mechanisms
of longer-range synchronization (interregional coherence). This frequency-specific “resonant effect”
should ensure better information transfer across brain structures and could even determine changes
in the behavioral performance [155]. Therefore, the “rhythmic TMS–EEG approach” appears as a
promising tool in mapping the natural frequency of different cortical areas and identifying the role of a
specific frequency oscillatory activity in distinct brain functions.

With all these premises, despite some technical limitations, it is easy to realize how TMS–EEG
can be used to examine normal and altered effective brain connectivity under both physiological and
pathological specific conditions, indicating the strengthening or weakening of existing cortico–cortical
connections or the recruitment of compensatory networks. Indeed, besides assessment of the general
state of the brain, TMS–EEG can be used to track the interactions of brain areas during sensory processing,
cognition, or motor control and, moreover, to evaluate such neurological disorders as Alzheimer’s
disease (AD), characterized by altered connectivity. The few studies regarding this field [156–160],
integrating previous observations obtained with the use of the TMS alone (for example, [161,162],
already showed that the cortical stimulation in AD patients was associated with significant disruption
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in TMS-induced activity over several brain areas compared with healthy controls, suggesting a potential
role of TMS–EEG as a neurophysiological marker for diagnosis and early identification of mild cognitive
impairment (MCI) and AD (Table A1 in Appendix A).

In this context, our research group was able to describe—for the first-time—specific
neurophysiological hallmarks of motor cortex functionality in early AD [158]. By using TMS–EEG
co-registration, we have demonstrated that in mild AD patients without motor symptoms, the
sensorimotor system is strongly hyperexcitable and deeply rearranged with the recruitment of
additional neural sources, the activation of reverberant local circuits, and their integration in the
distributed network subtending sensorimotor functions. Thus, we have proposed this plastic cortical
reorganization would be ensured by the particular organization of the sensorimotor system based on a
distributed network with a replicated topographic organization of the same body part and could be
interpreted as a compensatory mechanism allowing for the preservation of sensorimotor programming
and execution since the preclinical stage trough the MCI stage and over a long period of time in spite
of disease progression [158]. Because of such encouraging findings, we are now employing TMS–EEG
to investigate hallmarks of sensorimotor cortex functionality in aMCI, assuming they represent the
subtending long-term plastic rearrangement induced by the neurodegeneration during the pauci
symptomatic prodromal stage and can thus affordably predict the future conversion to AD. TMS–EEG
recordings and analysis will be performed both to describe the excitability and effective connectivity of
the somatosensory network of the whole aMCI group with respect to a control group, and to investigate
baseline differences in these neurophysiological properties between the two groups. Particularly
we want to determine (1) whether the sensorimotor networks would show peculiar alterations in
aMCI as a whole group, and (2) if there is any hallmark of sensorimotor network disruption able to
predict long-term disease progression at the individual level. We are now finalizing a five-year clinical
follow-up in a restricted group of aMCI, and, effectively, our preliminary results are promising and
indicate that some parameters of the M1 functionality can be used as reliable biomarkers of AD.

3. Conclusions

The time is now right for searching for instrumental biomarkers for early—hopefully,
preclinical—diagnosis of dementia in order to contrast as soon as possible all the modifiable risk factors
for neurodegeneration, as well as to initiate (as soon as they will become available) disease-modifying
drugs. To reach this goal, all the health systems are actually looking for a combination of biomarkers
having clear characteristics: high accuracy/specificity/sensitivity, affordable costs, non-invasiveness,
and large territorial availability. Neurophysiological techniques have all the required characteristics
and are optimal candidates, at least for a 1st level screening.
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Appendix A

Table A1. Summary of the main studies that analyzed neurophysiological changes associated with the
development of dementia. List of abbreviations: electroencephalography (EEG), fluorodeoxyglucose
positron emission tomography (FDG–PET), mild cognitive impairment (MCI), Alzheimer’s disease
(AD), normal elderly (Nold), Small Worldness (SW), transcranial magnetic stimulation (TMS),
repetitive transcranial magnetic stimulation (rTMS), motor cortex (M1), Mini Mental State Examination
(MMSE), default mode network (DMN).

Author
(Year) Methods Biomarkers Subjects Main Findings Reference

Babiloni C
(2016)

EEG,
FDG-PET

spectral
analysis
(power)

AD

19 AD patients were compared
with a group of 40 Nold. The AD
group performed FDG-PET. In the
AD patients, there was a positive

correlation between the
Alzheimer’s discrimination

analysis tool (PALZ) score and the
activity of delta sources in the

cortical region of interest (p < 0.05)
suggesting a relationship between

resting-state cortical
hypometabolism and

synchronization of cortical
neurons at delta rhythms in AD

patients with dementia.

[22]

Rossini PM
(2006) EEG

spectral
analysis
(linear

coupling)

AD, MCI

In 69 MCI, baseline fronto-parietal
midline coherence, delta

(temporal), theta (parietal,
occipital and temporal), and alpha

1 (central, parietal, occipital,
temporal, limbic) sources were

stronger in MCI Converted than
stable subjects (p < 0.05). Low
midline coherence and weak

temporal source were associated
with a 10% annual rate AD
conversion, while this rate

increased up to 40% and 60%
when strong temporal delta

source and high midline gamma
coherence were observed

respectively.

[31]

Jelic V (2000) EEG
spectral
analysis
(power)

MCI

In 27 MCI patients, progression to
AD in a follow up of 21 months

was associated with a significantly
higher theta relative power and
lower beta relative power and

mean frequency at the temporal
and temporo - occipital

derivations

[34]

Adler G
(2003) EEG

spectral
analysis
(power)

AD

A study with 31 AD compared
with 17 Nold. AD patients

showed a widespread increase in
delta and theta power density and

posterior decrease in α and β
power density with a lowering of

α power density peak.

[35]
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Table A1. Cont.

Author
(Year) Methods Biomarkers Subjects Main Findings Reference

Stam CJ
(2007) EEG

spectral
analysis
(graph
theory)

AD

In a study with 15 AD vs. 13 Nold,
the characteristic path length L

was significantly longer in the AD
patients, whereas the cluster

coefficient C showed no
significant changes. This pattern
was still present when L and C

were computed as a function of K.
A longer path length with a
relatively preserved cluster
coefficient suggests a loss of

complexity and a less optimal
organization.

[42]

Jelles B (1999) EEG
spectral
analysis
(power)

AD

In a study with 24 probable AD vs.
22 Nold, the correlation

dimension (D2) was significantly
lower in the Alzheimer patients

compared to controls

[43]

Dauwels J
(2010) EEG

spectral
analysis

(nonlinear
coupling)

MCI

Two synchrony measures,
Granger casuality, and stochastic

event synchrony are able to
distinguish MCI patients from
age-matched control subjects.

[44]

Azami H
(2016) MEG entropy AD

In 36 AD vs. 26 Nold, multiscale
dispersion entropy (MDE) values
in AD compared with multiscale
permutation entropy (MPE) and

multiscale entropy (MSE) was
significantly lower than their

corresponding MSE- and
MPE-based values.

[45]

Babiloni C
(2009) EEG, MRI

spectral
analysis
(power)

AD, MCI

In a study with 35 AD, 80 MCI and
60 Nold, the EEG sources showed

a significant linear correlation
with hippocampal volume also

supported a non-linear correlation
with hippocampal volume

strongly for the logarithmic one,
suggesting that progressive

atrophy of hippocampus
correlates with decreased cortical

alpha power, as estimated by
using LORETA source modeling,
in the continuum, along MCI and

AD conditions.

[47]

Babiloni C
(2009) EEG, MRI

spectral
analysis
(power)

MCI

Study with 54 MCI subjects with
follow-up of 1-year vs. 45 Nold

and 50 AD. In MCI, the EEG
recordings showed a decreased
power of posterior alpha1 and
alpha2 sources, suggesting that

the resting state EEG alpha
sources were sensitive-at least at
the group level-to the cognitive
decline occurring in the amnesic

MCI group over 1 year.

[51]
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Table A1. Cont.

Author
(Year) Methods Biomarkers Subjects Main Findings Reference

Jeong J (2004) EEG
spectral
analysis

(nonlinear)
AD

EEG in AD showed a lower
correlation dimension (D2) and
the largest Lyapunov exponent
(L1) values than in the healthy.
Despite their different focus on

static and dynamic properties of
the EEGs, the results of both D2
and L1 were associated with a

reduction of complexity in EEG
activity due to AD

[54]

Smits FM
(2016) EEG fractal

dimension AD

A comparision between 67 AD vs.
41 Nold showed a reduced fractal

dimension in AD compared to
healthy especially in

temporal-occipital regions

[61]

Escudero J
(2006) EEG entropy AD, MCI

In a study with 11 AD and 11
Nold, entropy metrics of

spontaneous EEGs in AD and in
MCI showed reduced irregularity

in AD patients’ EEG activity

[69]

Vecchio F
(2015)

EEG,
MRI/DTI

spectral
analysis
(graph
theory)

AD, MCI

40 subjects, including 9 Nold, 10
MCI, 10 mild AD, 11 moderate

AD. Callosal fractional anisotropy
(FA) reduction, observed in

subjects with Alzheimer’s disease
(AD) and mild cognitive

impairment (MCI), is associated
with a loss of brain

interhemispheric functional
connectivity characterized by
increased delta and decreased

alpha path length.

[97]

Vecchio F
(2014) EEG

spectral
analysis
(graph
theory)

AD, MCI

Analysis of a database of 378
participants, including AD, MCI,
and Nold. Path Length showed a
different pattern between normal

cognition and dementia as
observed in the theta band (MCI

subjects are found similar to
healthy subjects), while for the

normalized Clustering coefficient
a significant increment was found
for AD group in delta, theta, and
alpha 1 bands; the small world

parameter presented a significant
interaction between AD and MCI
groups showing a theta increase

in MCI.

[98]
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Author
(Year) Methods Biomarkers Subjects Main Findings Reference

Miraglia F
(2016) EEG

spectral
analysis
(graph
theory)

AD, MCI

30 Nold, 30 aMCI, and 30 AD
during eyes closed EC and eyes

open EO. In Nold, in EO
condition, the brain network is
characterized by higher SW in
alpha bands and lower SW in

beta2 and gamma bands. In aMCI,
SW has the same trend, except for
delta and theta bands where the

network shows less SW. AD
shows a similar trend of Nold, but

with less fluctuations between
EO/EC conditions. aMCI presents

SW midway between AD and
Nold. In delta and theta bands, in

EC, the aMCI group presents
network’s architecture similar to

Nold, while in EO aMCI, SW
similar to AD

[112]

de Hann W
(2012) MEG

spectral
analysis
(graph
theory)

AD

In 18 AD vs. 18 Nold, graph
spectral analysis confirmed the
hub status of the parietal areas

and demonstrated a low centrality
of the left temporal region in the
theta band in AD patients that

was strongly related to the MMSE.
In AD, impaired network

synchronization and a clinically
relevant left temporal centrality

loss were found

[115]

Vecchio F
(2017) EEG

spectral
analysis
(graph
theory)

AD

In 110 AD and 34 healthy Nold,
Alpha band connectivity was

negatively correlated, while slow
(delta) and fast-frequency (beta,

gamma) bands positively
correlated with the hippocampal

volume of Alzheimer subjects.
The larger the hippocampal

volume, the lower the alpha, and
the higher the delta, beta, and

gamma Small World
characteristics of connectivity.

[126]

Vecchio F
(2018)

EEG, Apo-E
allele

spectral
analysis
(graph
theory)

aMCI

145 aMCI classified as Converted
to AD (C-MCI, 71) or Stable

(S-MCI, 74) according to follow
up. Small-World EEG analysis, in
combination with an Apo-E allele
testing, evaluate on an individual
basis with great precision the risk

of MCI progression (96.7%
sensitivity, 86% specificity and
91.7% accuracy (AUC = 0.97))

[127]
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Julkunen P
(2011) TMS-EEG

Cortical
Excitability

(P30
amplitude)

AD, MCI

In this study with 4 control
subjects, 5 MCI and 5 AD, the

TMS–EEG response P30
amplitude correlated with

cognitive decline and showed
good specificity and sensitivity in
identifying healthy subjects from

those with MCI or AD.

[156]

Casarotto S
(2011) TMS-EEG Cortical

Excitability AD

In this study with 9 healthy
young, 9 healthy elderly, and 9

AD, frontal cortex excitability was
not significantly different between

healthy young and elderly
individuals while was clearly

reduced in AD patients.

[157]

Ferreri F
(2016) TMS-EEG

M1 Cortical
Excitability

and
Connectivity

AD

In this study with 12 mild AD
patients, the sensorimotor system
was found hyperexcitable, and its

connectivity disrupted with
respect of 12 healthy elderly,
despite the lack of clinically

evident motor manifestations.

[158]

Bagattini C
(2019) TMS-EEG

Cortical
Excitability

(P30
amplitude)

AD

In this study with 26 AD patients,
the TMS–EEG response P30

amplitude predicted MMSE and
face-name memory scores.

Particularly higher P30 amplitude
predicted poorer cognitive and

memory performances.

[159]

Koch G (2018) rTMS,
TEM-EEG

Cortical
Excitability

and
Connectivity

AD

In 14 early AD, a 2-week
treatment with rTMS on the

precuneus induced a selective
improvement in episodic memory.

TMS-EEG recording revealed a
precuneus enhanced activity and

a modification of its functional
connectivity within the DMN

[160]

Ferreri F
(2003) TMS

M1 Cortical
Excitability

(MEP
amplitude)

AD

In 16 AD, motor cortex excitability,
measured with TMS, was

increased, and the center of
gravity of motor cortical output,
as represented by excitable scalp

sites, showed a frontal and medial
shift, without correlated changes
in the site of maximal excitability

(hot-spot).

[161]

Ferreri F
(2011) TMS

M1 Cortical
Excitability

(MEP
amplitude)

AD

In 10 AD patients before and after
long-term AchEIs therapy, M1

excitability was found to be
unchanged in patients with

stabilized cognitive performance
during the therapy.

[162]
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