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Physiologically based Pharmacokinetic (PBPK) models are used for predictions of internal or target dose from environmental
and pharmacologic chemical exposures. Their use in human risk assessment is dependent on the nature of databases (animal or
human) used to develop and test them, and includes extrapolations across species, experimental paradigms, and determination
of variability of response within human populations. Integration of state-of-the science PBPK modeling with emerging
computational toxicology models is critical for extrapolation between in vitro exposures, in vivo physiologic exposure, whole
organism responses, and long-term health outcomes. This special issue contains papers that can provide the basis for future
modeling efforts and provide bridges to emerging toxicology paradigms. In this overview paper, we present an overview of the field
and introduction for these papers that includes discussions of model development, best practices, risk-assessment applications of
PBPK models, and limitations and bridges of modeling approaches for future applications. Specifically, issues addressed include:
(a) increased understanding of human variability of pharmacokinetics and pharmacodynamics in the population, (b) exploration
of mode of action hypotheses (MOA), (c) application of biological modeling in the risk assessment of individual chemicals and
chemical mixtures, and (d) identification and discussion of uncertainties in the modeling process.

1. Introduction: PBPK Modeling

After exposure of environmental pollutants or pharmaceu-
ticals to humans, experimental animals and, where relevant,
cellular systems, potential adverse effects are dependent on
an agent’s toxicokinetic information (absorption, distribu-
tion, metabolism, and elimination (ADME). Physiologi-
cally based pharmacokinetic (PBPK) models are a class of
biological models that utilize this information to translate
external exposures into an internal (target) dose in the
body. PBPK models are not only often used to predict
toxicologically relevant internal doses, but also to account
for any nonlinearities between internal and external applied

dose or exposure. Traditionally, these models have been used
for performing extrapolations between different routes of
exposure and between different species; they use species
specific anatomical, physiological, chemical-specific, and
biochemical parameters [1, 2]. However, parameters may
vary between species and chemicals of interest (e.g., solubility
and metabolic transformation rates within tissues of the
body) and the accuracy of any PBPK model dependent on
the accuracy of its parameter information [3]. Not only
are metabolic parameters species-specific, but in many cases
considerable parameter variability exists between individuals
within populations. The impact of parameter variability on
predictions of toxicologically relevant doses can be estimated
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through PBPK model configuration changes. Although
thought to be greater in humans than in the test animals
often used to test toxicity, the impact of variability within
species can be estimated by sensitivity and uncertainty
analyses of PBPK models.

PBPK models describe the mass balance of materials
within and between various tissue compartments. In terms
of model structure, if the transfer of substances across the
capillary and cellular membrane is very rapid compared to
the perfusion rate of the tissue, then the three compartments
can be collapsed into one homogeneous compartment
depicting the whole organ. In these cases, the model is
called a “flow-limited” model, and the ratio of concentration
between the blood and the organ (partition coefficient) is
governed by the solubilities in each tissue and metabolic
processes within the organ [3]. Therefore, the disposition of
a chemical throughout the body is governed by partitioning
between organs and blood, partitioning between blood and
air, blood flows to organs, ventilation rates, absorption rates,
metabolic rates, and elimination rates [3].

Toxicological applications for PBPK modeling have been
increasing over the last 30 years. The many applications and
role of this science include determining: (a) environmental
exposure from sampling of parent and/or metabolite(s) in
tissue and biological fluids, (b) target organ or system
concentrations of parent and/or metabolite(s) from expo-
sure, (c) the appropriate dose metric from mode of action
(MOA) information, and (d) the use of PBPK modeling to
test hypothesis regarding the effects of metabolic variation.
When human data (e.g., pharmacokinetic and exposure)
are available, PBPK models can be used directly to trans-
form external exposure estimates into internal doses. When
experimental animal data are only available, extrapolation
uncertainty can be reduced by the use of an appropriate
PBPK model. However, this reduction in one type of
uncertainty may be outweighed by the introduction of
other types of uncertainty associated with the structure and
assumptions inherent in the modeling. Such uncertainty
includes the limitations of describing the scope and nature
of variability of pharmacokinetics and pharmacodynamics of
an agent within the human population. Human variability
could be due to differences among individual adults, across
genders, or between life stages. In support of human health
assessments, a key expectation of future PBPK modeling
efforts increased ability to accommodate increases in knowl-
edge of population variability in a number of areas, such as
target organ structure, types and numbers of cells at risk to
toxicant exposure, age- and gender-specific differences, and
human activity patterns. In this way, mechanistic and mode
of action (MOA) explanations can be linked to quantified
measures of exposure.

The cover of this special issue (i.e., shown below in
Figure 1) illustrates key extrapolations made between the
cellular in vitro responses from single cells to risk of health
effects in humans. These steps include (1) interpretation
of in vitro cellular signals within a complex network of
signaling pathways at the cellular level (i.e., the pathway
shown is for NFκB which is relatively complex and context
dependent on its action [4]), (2) construction of a validated

PBPK model (i.e., the recently published PBPK model for
trichloroethylene which represents a complex and state of
the art effort), and (3) extrapolation of internal dose and
response of a target organ or system in DaVinci’s “ideal
man.” While such a prediction to the ideal or “average”
individual is often the reported result, such predictions
are not representative of sensitive subpopulations that are
epigenetically and genetically diverse, and more liable to
express an endpoint of concern resulting from concurrent
exposures, gender, age, and stage of development. The goals
of this editorial overview are threefold: (1) to highlight the
principles of best practices in PBPK models intended for risk
assessment application, (2) to provide a perspective on the
articles in the special issue, and (3) to present our viewpoints
of what represents the cutting edge of science in this field and
what specific research needs and approaches may be useful in
making progress towards future applications.

2. Best Practices

Computational models of toxicological processes are devel-
oped based on hypothetical or proven interrelationships
among critical processes and parameters. However, before
they can be used confidently in risk assessments or
other applications, it is essential that the model structure,
parameters, and performance are evaluated systematically.
Even though the terms—model validation and model
evaluation—are used interchangeably or preferentially, they
refer to whether a model with a given set of input parameters
can reasonably reproduce the system behavior for a defined
set of conditions, and whether the key determinants of the
system behavior have been adequately captured by the model
[5]. Often, the developers of the model and those who apply
the model have different views and expectations in regard to
model validation.

An important aspect in assessing the performance of
a PBPK model is how well it fits several data sets. It is
important to be able to understand and characterize the
strengths, limitations, and relevance of the data to the
endpoint(s) of concern, and to choose measured endpoints
for comparison with predicted results. The accuracy and
precision of the methods used in each study used to provide
that data and the apparent reproducibility of results must
be examined so that such judgments can be made. Variation
of results reported from differing studies may reflect human
variability of response, the effects of differing exposure
protocols, or differences in the accuracy or precision of
measured values in each study [3].

Even though there has been extensive focus on a model’s
ability to provide predictions that match closely with some
limited data, the more relevant goal should be to characterize
the level of confidence in the model’s fit for a specific purpose
or end-use. Accordingly, there is increasing emphasis on
evaluating a model rather than validating a model (e.g., [6]).
If a model has been developed for a specific purpose (e.g., a
particular risk assessment application), then relevant aspects
of the model should be evaluated in context. In this regard,
the International Program on Chemical Safety (IPCS) of the
World Health Organization (WHO) has recently published
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Figure 1: This figure represents, in simplistic fashion, major extrapolations between data that has been derived from in vitro isolated cell
systems to interpretations of that data for cell-signaling pathways, the extrapolation of cell signaling results in regard to PBPK models that
assign appropriate dose metrics and target organ concentrations, and finally the prediction of human risk from resulting models for a
particular xenobiotic exposure.

guidelines for characterization and purpose-specific evalu-
ation of PBPK models [7]. A detailed description of the
PBPK model evaluation process for use in risk assessment
is also described in a recent publication [8]. Accordingly,
if the model is to be used for conducting interspecies
extrapolation for the oral route based on a particular dose
metric (e.g., AUC), then the evaluation should focus on the
ability of the model to provide the relevant simulations, and
not on generically “validating” the model for all possible
applications. Thus, the level of confidence in the use of a
PBPK model for a defined and specific purpose in a risk
assessment (e.g., prediction of a dose metric for conducting
rat to human extrapolation) can be established on the basis
of the following [7]: In this context, the following key
aspects/questions are evaluated [7].

(i) Do the model structure and parameters have a
reasonable biological basis?

(ii) How well does the PBPK model reproduce the
chemical-specific pharmacokinetic data under vari-
ous experimental or exposure conditions?

(iii) How reliable is the PBPK model with regard to
its predictions of dose metrics relevant to risk
assessment? In this regard, it is important to evaluate

the level of sensitivity of the predictions to the
model parameters and the level of uncertainty of the
parameter values. Emphasis is placed on sensitivity
and uncertainty sensitivity analyses so as to identify
the following:

(a) the model parameters that most strongly influ-
ence the dose metrics associated with human
risk assessment conditions (e.g. exposure path-
ways, relevant exposure conditions such as
acute or chronic), and

(b) the model parameters that have the most influ-
ence on the dose metrics associated with the
study or studies from which the critical end-
points are derived (i.e. toxicity, epidemiological,
and clinical studies).

Documentation of model development is not only
essential for evaluation of the key aspects of the model that
appear to function appropriately, but also for those that did
not during the development process. The following general
principles constitute the current state of best practice in
PBPK modeling [7–10]. (1) The model should be capable of
simulating all potentially useful dose metrics for the exposure
routes, lifestages, and doses in the species of relevance to
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an assessment; (2) the structure of the PBPK model should
contain the target organ (or a surrogate tissue) as well as
compartments representing tissues of unique physiological
and biochemical relevance to the pharmacokinetics of the
chemical; (3) the equations chosen to describe ADME should
be scientifically supported; (4) the tissue volumes, flow
rates, ventilation: perfusion ratios used in the model should
be within physiological limits, the sum total of the tissue
volumes should not exceed the body weight, and the sum
total of tissue blood flow rates should equal cardiac output;
(5) partition coefficients for the model should be obtained
using in vitro methods, in vivo data obtained at steady-
state, or theoretical algorithms within their boundary of
valid application; (6) biochemical parameters for the model
should be estimated from in vivo data or on basis of adequate
scaling of in vitro data; (7) solutions to the differential equa-
tions in a PBPK model need not to be evaluated if a highly
reputable commercial or open source simulation software
has been used although an appropriate algorithm should
have been selected; (8) the appropriateness of the integration
algorithm and integration intervals should be justified,
particularly when a new software tool or a custom-made
program is used for modeling; (9) evaluation of the model
structure and parameters should be conducted to ensure
that the model adequately predicts the pharmacokinetic
behavior (i.e., bumps and valleys in the concentration versus
time plot) of the chemical and that the parameters (point
estimates, range of values, or distributions) consistently
describe available data; (10) sensitivity, uncertainty, and
variability analyses should be conducted using acceptable
statistical methods.

3. State-of-the Art Application of PBPK
Modeling in Risk Assessments

While the toxicological profiles and IRIS values produced
by EPA are not complete risk assessments, they provide
information on a chemical’s potential for causing adverse
health effects along with information about the relationship
between the dose of the substance and the biological
response. When this information is combined with informa-
tion about exposure, these values are used internationally to
characterize the public health risks of chemical substances
[11]. PBPK models have been developed for several high pro-
file chemicals that are the subject of EPA IRIS assessments.
Recent state-of-the-art analyses have used PBPK models and
human and rodent data sets for such applications to high
impact and complex risk assessments. They form a bridge
for future development of PBPK model applications to even
more complex data sets.

Dichloromethane (methylene chloride or DCM) has
been modeled to have two pathways of metabolism (i.e.,
oxidative and GSH conjugation pathway) with the GSH
pathway assumed to be responsible for its carcinogenicity
[12, 13]. Alternatively for one of the most important P450
isozymes (CYP2E1) in the toxicology of environmental expo-
sures, new PBPK models and a reexamination of in vitro and
in vivo data show that DCM metabolism can primarily occur
through this enzyme via the oxidative pathway, but with two

sites for DCM metabolism [14, 15]. Trichloroethylene (TCE)
is a widespread environmental contaminant with complex
metabolism that also involves the same two pathways [16].
Both pathways of metabolism are a crucial component of
its toxicity, particularly in liver (via the oxidative pathway)
and kidney (via the GSH pathway). A state-of-the-art PBPK
model for TCE with detailed lung compartments, extensive
rodent and human datasets, and Bayesian analyses have been
used to (1) characterize uncertainty and variability in these
metabolic pathways, and (2) to describe the complex mixture
of internal exposures of metabolites linked to TCE’s MOA
in several target organs that includes predictions of GSH
conjugation and bioactivation in the kidney [16–18].

While metabolism is usually limited by the blood flow
into the liver of the parent compound (i.e., flow-limited), in
the case of methyl tertiary butyl ether (MTBE) metabolism is
limited by the ability of the enzyme to metabolize the parent
compound (i.e., enzyme-limited) [3]. In this case, human
microsomal data in combination with an updated PBPK
model may be used to (1) predict human variability for dose
metrics potentially associated with human response, and (2)
to test hypothetical scenarios representative of the range of
human metabolism of MTBE [3]. This example illustrates
the use of microsomal metabolism differences in conjunction
with PBPK models as a more robust tool than microsomal
metabolism differences alone to predict differences in risk.

Evans and Caldwell [14] brought forth that the use of
two binding sites for CYP2E1 has the potential not only to
account for the broad range of chemicals that it is able to
metabolize, but also inferences regarding PBPK modeling
and the use of chamber data to discern pharmacokinetics
and MOA. The two-binding-site work by Evans and Caldwell
[14] was commented on a letter to the editor authored by
Anders et al., [19] followed by a response by Evans and
Caldwell [15]. In this Special issue Cuello et al. use a similar
approach to analyze inhalation chamber data, metabolism
data (CYP2E1 and GSH conjugation), and a PBPK model
to examine the plausibility of whether two sites on the
same enzyme or two separate enzymes can account for in
vivo metabolic clearance profiles of bromochloromethane,
a brominated disinfection byproduct. For both metabolic
hypotheses, sensitivity analyses of in vivo experimental data
are used to evaluate model parameter impacts on predicted
outcomes, and to guide the design of future experiments
needed to fully address the metabolic mechanisms involved
for this specific chemical.

As the available database and PBPK models for a partic-
ular chemical can be complex, another layer of complexity
can be added from the existence of internal and external
metabolite exposure (e.g., TCE and its metabolites) or
coexposures to similar compounds. In this special issue,
Sasso et al. present a lipid-based PBPK model for the
analysis of a mixture of six polychlorinated biphenyls
(PCBs) in rats. Population Bayesian analysis was applied
that incorporated an internal exposure-response model
linking enzyme induction and metabolic rate. The PBPK
model was specialized to simulate concentrations of highly
lipophilic compounds in tissue lipids without the need for
partition coefficients. In addition, a hierarchical treatment of
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population metabolic parameters and a CYP450 induction
model were incorporated, and Markov-Chain Monte Carlo
simulation applied. For all dose levels and dose profiles,
the model predicted PCB concentrations in multiple tissues.
This specific computational technique provides an alternate
approach for analysis of compounds for which partition
coefficients are not experimentally available (e.g., as is the
case for most nonvolatile compounds).

After exposure, a chemical’s MOA and background
metabolite exposure affects the selection of an appropriate
dose metric for modeling internal concentrations in target
organs or systems. Along with differences in pharma-
cokinetic parameters, there is variability in response to
a particular dose metric concentration within the human
population due to a number of factors that include devel-
opmental status and age at exposure (i.e. children versus
adults). The differences in pharmacokinetic parameters and
development of PBPK models between potential sensitive
human subpopulations and/or life stages are the subject of
several papers in this Special issue.

In 2008, Health Canada concluded that (1) while
recent developments in PBPK modeling of manganese were
important and informative, the science was not appropri-
ate at that point in time for establishing a health-based
reference concentration for inhaled manganese, and (2) a
validated, peer-reviewed human inhalation PBPK model
for manganese parameterized for the various subgroups of
concern was needed [20]. These subgroups include neonates,
iron-deficient individuals, and others with certain medical
conditions such as cholestatic liver disease [21, 22]. In
this special issue, Dorman et al. present a review of the
topic as it relates to generation of pharmacokinetic infor-
mation on the inorganic manganese combustion products
of the organometallic fuel additive methylcyclopentadienyl
manganese tricarbonyl (MMT) in compliance with the test
rule under the US Clean Air Act. The Alternative Tier 2
testing program for MMT is described with emphasis on
the development of pharmacokinetic data and generation
of PBPK models for manganese. In the companion paper,
Taylor et al. review (1) the development of PBPK models
for experimental animals and human at various stages of
development, (2) relevant risk assessment applications of
the models, and (3) model predictions of manganese tissue
concentrations for individuals with altered physiology due
to life stage or condition including age (e.g., fetal, neonatal),
pregnancy status, liver disease, or chronic inhalation expo-
sure to manganese. Applications of such model predictions
include the development of uncertainty factors for use in risk
assessments that take into account these populations.

The impact of variability in human whole and sub-
populations on uncertainty factors was also examined by
Valcke et al. in this special issue; human kinetic adjustment
factors (HKAF) were discussed for inhaled volatile organic
chemicals (VOCs). Population distributions (i.e., for adults,
elderly, children, neonates and pregnant women) of blood
concentrations and rates of metabolism were generated by
Monte Carlo simulations to a steady-state algorithm for
Benzene and 1,4-dioxane (1,4-D) exposure. For these spe-
cific blood-flow-limited volatiles, blood concentration-based

HKAFs were the most affected in distinct subpopulations
(i.e, blood concentration having a greater effect than rates
of metabolism).

For one of the three case studies presented for PBPK
model applications in risk assessment, the specific effects of
age are also reported by Mielke and Gundert-Remy in this
special issue. In the first case study, lower enzyme expression
levels in newborn infants are used to estimate bisphenol A
(BPA) blood levels near the TDI for the oral exposure as
calculated by the European Food Safety Authority (EFSA). In
another case study, adult risk is reported from dermal expo-
sures to BPA. Finally, after dermal exposure to coumarin via
cosmetic products, PBPK modeling was used to identify liver
peak concentration (the dose metric used for liver toxicity).
Dermal and oral exposure pathways were compared. In these
cases PBPK modeling was useful to support risk assessments.

When linked with biomarker data, the reconstruction
of exposure dose using PBPK modeling has been offered
as a valuable tool. However, as noted by McNally et al. in
this special issue, due to the lack of exposure and kinetic
data, the correlation of biomarker levels with exposure
concentrations leads to difficulty in utilizing biomonitoring
data for biological guidance values. McNally et al., use
exposure reconstruction (i.e., reverse dosimetry), PBPK
modeling, global sensitivity analysis, Bayesian inference,
and Markov chain Monte Carlo simulation to obtain a
population estimate of inhalation exposure to m-xylene. The
importance of model structure and dimensionality is also
examined with respect to its ability to reconstruct exposure.

The example of chlorpyrifos illustrates the need to
take into account differences in susceptibility and the need
to understand background exposures of its metabolites in
children to reconstruct exposure through PBPK modeling.
The PBPK model of Lu et al. [23] had limited success in
predicting exposure from urine measurements due to the
combination of different sources of exposure. However, the
PBPK model for chlorpyrifos was a valuable tool when
describing urine in children having ingested specific known
amounts of chlorpyrifos. Using urinary biomarker data
as the input, Lu et al. report in this special issue the
development of a simplified pharmacokinetic model (SPK)
for estimation of absorbed doses of chlorpyrifos. Of note,
the dose estimates using the SPK model for individual
children were significantly higher than those from the
conventional PBPK modeling using aggregate environmental
measurements of chlorpyrifos as the inputs.

As demonstrated by the work of Lu et al., simplifications
of PBPK models are being developed, but the types of data
used to support such efforts are not always available. There
is a need for simplified modeling approaches that are still
valid for use in risk assessment. While all risk assessments
involve uncertainty related to extrapolations from study
data to human risk from environmental or pharmaceutical
exposures, PBPK models themselves contain two types of
uncertainty [3]. Model uncertainty refers to the lack of
knowledge needed to determine whether the scientific theory
on which a model is based is correct (e.g., alternative
choices for model structure, dose metrics, extrapolation
approaches, and the appropriateness of surrogate data as
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in inferences about children from adult data). Parameter
uncertainty refers to lack of knowledge about the values
of a model’s parameters which leads to a distribution of
values for each parameter; this uncertainty includes random
measurement errors, systematic measurement errors, the
use of surrogate data instead of direct measurements,
misclassification of exposure status, random sample errors,
and the use of an unrepresentative sample. Simplified PBPK
model development will need to be specific enough for the
types of compounds and scenarios modeled to address both
of these types of uncertainty.

For use in site-specific health assessments, Mumtaz et
al. (this special issue) report progress on the ATSDR’s
initiative to develop a PBPK tool box. This tool is designed
to contain a series of published models coded in Berkeley
Madonna. Ongoing efforts focus on producing a Web linkage
to a PBPK database and models that can be accessed for
use in assessment activities. In addition, Mumtaz et al.
present examples of PBPK model applications that led to (1)
derivation of minimal risk levels (MRLs), (2) risk assessment
of mixtures, (3) assessment of occupational exposures, (4)
site specific assessment, and (5) interpretation of human
biomonitoring data.

Finally, in another current application of PBPK models,
data from a single patient are used for a clinical case
study. In this special issue, the brief communication of
Huynh-Delerme et al. is a good example of this type of
practical application of PBPK modeling. Potential ethanol
exposure was predicted from inhalation or dermal uptake
after repeated use of an ethanol-based hand sanitizer. The
study investigated whether blood concentrations could be
correlated with the incidence of acute pancreatitis in a single
patient potentially exposed in the classroom. Thus, this
example illustrates another way of applying PBPK models
in characterizing the association between health effects and
chemical exposures in humans.

4. Bridges and Limitations for
Future Applications

Extrapolation between rodents and humans of the pharma-
cokinetic behavior of an agent, using only differences in a
power of the body weight, inherently assumes that metabolic
clearance is scaled consistently across species. However, this
assumption does not hold for all dose metrics and enzyme
systems [7], and issues arise as to how appropriately scale
across species. Extrapolation based on appropriate dose
metrics simulated with PBPK models for the test and target
species is the preferred approach [7, 24].

Most PBPK models have been developed and tested
with experimental animal data and used for extrapolation
purposes. Increasingly, this type of data is less available and
in vitro data or high throughput data from gene expression
microarrays are being developed as replacements for animal
testing [25, 26]. Although in place for about 10 years,
microarray data is no longer the cutting edge with RNA
sequencing taking its place for exploration of what types
of responses and genetic predispositions lead to cancer and
noncancer outcomes. Cell-signaling and gene expression

data must in turn be processed through complex informatics
approaches to identify pathways and relationships that can
further be understood in a physiological context [27, 28].
For relevant dose metrics, PBPK model predictions provide
the bridge between concentrations associated with specific
cellular responses in vitro for a particular paradigm, and
the extrapolation to concentrations at the target system or
organ in the whole organism. However, all modeling should
have phenotypic anchoring in physiology, toxicology, and
sound modeling and mathematics to test and understand the
models.

The PBPK modeling approach has also been applied to
conducting in vitro to in vivo extrapolations of equivalent
doses on the basis of appropriate dose metrics [29–32].
Whole-body PBPK models have been developed for extrap-
olating the in vitro concentration-response curve to in vivo
dose response [33]. In the context of the next generation
toxicity testing initiatives, more recent development in terms
of cellular-level PBPK models (e.g., [34]), and biologically
based algorithms to predict partitioning into cells, interstitial
fluids, and vascular compartments (e.g., [35, 36]) are likely
to facilitate more elegant implementation of the in vitro to in
vivo paradigms.

Such biologically based mechanistic algorithms have
been developed for the determination of partition coeffi-
cients (PCs) that represent the equilibrium ratio of chemical
concentration and are, in turn, key input parameters of
PBPK models (e.g., blood : air, tissue : blood). The compo-
sition of cells, interstitial fluid, and vascular components
along with the physiochemical characteristics of chemicals
are used in these algorithms to help predict PCs of new
chemicals based on QSARs; the algorithms can then be
used to help characterize human variability. Initially based
on chemical solubility in water and lipid (i.e., from n-
octanol : water PCs or vegetable : water PCs (Po:w)), first
generation efforts focused on prediction of tissue : blood
PCs of VOCs, for which macromolecular binding in tissue
and blood is negligible [37, 38]. These algorithms were also
used to estimate preliminary PCs (e.g., tissue : air, blood : air,
tissue : blood) for nonionized and low molecular weight
organic chemicals with (1) negligible protein binding (or
assumed to be negligible) and (2) one or more CH3, CH2,
CH, C, C=C, H, Cl, Br, F, benzene ring, or H in benzene ring
fragments.

On the basis of the solubility and binding processes
that are relevant to both ionic and nonionic forms and
found in both intracellular and extracellular matrices, the
second-generation algorithms not only predicted PCs, but
also distribution coefficients (i.e., the sum of ionized and
non-ionized forms of chemical in both matrices) [39, 40].
Most recently, Schmitt [35] and Peyret et al. [41] integrated
existing algorithms within a single equation for the predic-
tion of distribution coefficients for drugs and environmental
chemicals, respectively. Ionization, lipid solubility, water
solubility, and tissue binding characteristics (i.e., binding
to tissue proteins, acid phospholipids, plasma proteins and
hemoglobin) were used in these integrated algorithms to
facilitate the prediction of the PCs. When only chemical
solubility in lipids and water determine partitioning, all



Journal of Toxicology 7

existing algorithms give the same prediction as that of the
first-generation algorithm of Poulin and Krishnan [37];
however, when binding to various components is significant
then second generation algorithms have been used as
reported for the development of PBPK models for pharma-
ceuticals [42]. However, despite the availability of algorithms
and QSARs for predicting partition coefficients of organic
chemicals, the availability of metabolism rates for PBPK
model development remains a major limiting factor. Very
limited research has been conducted for predicting maximal
velocity (Vmax) and Michaelis affinity constant (Km) for
hepatic and extrahepatic metabolism of chemicals (reviewed
in [36]). Even though a molecular structure-based QSAR for
hepatic clearance has been developed for integration within
PBPK models of VOCs, there has not been any attempt
to develop global QSARs or quantitative property-property
relationships (QPPRs) for wider applicability and integration
within PBPK models.

In this special issue, Peyret and Krishnan used QPPR
relationship to predict intrinsic clearance (Vmax/Km) for
volatile organic chemicals. Estimates of intrinsic clearance
were then used to parameterize a PBPK model for predicting
a blood concentration time course for a series of chemicals.
This approach presented in this paper is an initial attempt
to develop global QPPRs for estimating intrinsic clearance
for incorporation within PBPK models. The approach allows
for generation of pharmacokinetic profiles that are consistent
with the level of uncertainty in model predictions of intrinsic
clearance. It is important to note the limitations of such
estimates in order to provide transparency in the risk
assessment context, but also to aid in the design of future
studies for reduction of uncertainty.

Human liver tissues, hepatocytes, and microsomes con-
tinue to represent useful systems to explore individual
differences in metabolism of xenobiotics. However, alone
these data are not adequate to predict differences in
human responses [43]. Under circumstances where rate of
metabolism and not blood flow determines in vivo intrinsic
clearance [3], variability of metabolism extrapolated from
human microsomal data can be informative when coupled
with an appropriate PBPK model. However, there is uncer-
tainty with procedures extrapolating metabolic values from
in vitro systems, especially for enzymes that are membrane
bound. Recently, a computational approach for the accurate
estimation of metabolic clearance for membrane bound
compounds (such as P450s) has been developed to address
the complexity of these issues [44].

Given the desire to reduce the use of extensive animals
testing, there is great interest in extrapolation of in vitro
toxicity data (human and rodent systems) with PBPK
models to calculate human equivalent doses for a given
concentration in vitro. The corresponding NOAEC or AC50%
(i.e., the concentration at 50% some specified maximal
activity) could therefore be calculated using full-blown PBPK
models or steady-state algorithms. The feasibility of using
steady-state algorithms and in vitro screens to conduct in
vitro-in vivo extrapolation for hazard ranking development
has been reported [45, 46]. However, the adequacy of these
approaches with regard to their assumption of 100% oral

bioavailability and attainment of steady state during oral
exposures needs to be further evaluated as a function of the
information on chemical-specific dose metrics and MOA.

Although PBPK models and steady-state algorithms are
designed to predict tissue and/or blood concentrations, fur-
ther steps are needed to predict effects from internal doses.
After estimation of internal dose from an external dose via
PBPK modeling, biologically based dose-response (BBDR)
models use internal dose estimates to predict response or
toxicity through, for example, statistical correlations. Such
BBDR models have been proposed as a computational tool
for estimation of human risk. In general, there are a larger
number of published PBPK models than BBDR models. The
development of BBDR models is usually dependent on prior
development of PBPK models; the added complexity and
MOA information needed for BBDR model development
may also hinder such model development. A BBDR model
must also specify dosimetric and effect relationships across
different species and exposure types in order to be considered
successful, but such modeling does offer a unique opportu-
nity to incorporate MOA information into one framework
[47]. However, in addition to the uncertainty in both PBPK
and BBDR models themselves, there is inherent uncertainty
in the linkage of both components.

One of the major areas of BBDR development has been
the quantification of cancer data through the use of two-stage
clonal expansion models [48]. Although these BBDR models
are biologically defensible, one of their inherent limitations
is associated with the uncertainty of extrapolation from high
doses (experimental data) to low doses (environmental expo-
sure), as discussed by Crump et al. [49]. The technological
problem becomes one of quantification of effect at low doses,
where the noise in the data can overshadow the toxicological
effect being measured. Hence, the advantage introduced by
the addition of mechanistic steps into the model can be
negated by both the inability to describe the dose response
curve at low concentrations and to quantify the uncertainty
introduced by the extrapolation process itself. These aspects
of the process are not necessarily dependent on the biological
mechanism used to describe the relationship.

BBDR model development can be used to investigate
potential MOAs or the ability to identify data gaps. For a
series of chemicals having a common MOA, a generalized
BBDR model would be expected to explain relevant data
for all chemicals. However, a recent application of BBDR
modeling using a common liver MOA of action for several
chemicals was successful in fitting the data for the individual
chemicals but was not able to provide a generalized BBDR
model common to all chemicals [50]. These authors indi-
cated that, specifically for chloroform, the model may have
oversimplified events leading to cancer. Although additional
data may be helpful in establishing these details, the impact
of uncertainty in the MOA should be addressed alongside
BBDR model development [49].

Environmental exposures to contaminants do not occur
in isolation but as mixtures. The health effects associated
with mixture exposures are a result of not only the toxicity
of each component, but also the interactions among the
components. Even though the hazard characterization of
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individual specific chemicals has been the primary focus of
numerous agencies (e.g., EPA and IARC), site-specific risk
assessments are often for exposure to multiple chemicals.
PBPK modeling approaches are continually being developed
for mixtures. In this special issue, several papers addressed
this subject (Sasso et al., Wang et al., and Becker et
al.). Sasso et al. developed a PBPK model for a mixture
of polychlorinated biphenyls. Complex total petroleum
hydrocarbon (TPH) mixtures and their associated risks to
human health were assessed by Wang et al. utilizing in
silico or computational toxicological modeling approaches
(i.e., comparative molecular field analysis and hierarchical
clustering) in conjunction with established mixture risk
assessment methods. Wang et al.’s in silico approach was
compared to expert-driven judgment of fractionation of
TPHs and their associated potential. The continued devel-
opment of modeling approaches for complex mixtures is
expected to both provide consistency in the appropriate
grouping of chemicals in mixture analyses, and to predict
the contribution of the individual chemicals to the overall
toxicity.

On a broader scale, Becker et al. note that the evaluation
of a large number of chemicals in commerce for potential
human health risk has become a focus of attention in North
America and Europe. Using translation from an external
dose to a biomarker concentration framework, Becker et
al. describe approaches for development of screening-level
exposure guidance values. Specifically, applications of tools
and concepts are discussed that include the threshold
of toxicologic concern (TTC), biomonitoring equivalents
(BEs), and generic toxicokinetic and physiologically based
toxicokinetic models.

5. Summary and Conclusions

Along with traditional uses of route-to-route and species-
to-species extrapolations, PBPK models are being developed
and tested for MOA applications and, based on biological
sampling of metabolites and parent compounds in human
tissue, reconstruction of exposure from model predictions.
Increasingly sophisticated mathematical approaches and
analyses are also being used to examine variability in
pharmacokinetics. With less animal data available for model
inputs, current efforts for screening and future efforts for
new toxicology tests to replace animal testing are focusing
on approaches based on either simplified models suitable
for application to in vitro information or less-extensive
animal data. In addition to in vitro to in vivo extrapolation,
PBPK modeling applications continue to be developed as
risk assessment tools for mixtures risk assessments, and
developed for mechanism-based predictions that allow for
linkage between internal dose-derived predictions (i.e. from
PBPK models) and dose response (i.e. from BBDR models).
In summary, as exemplified by the papers in this special
issue, PBPK modeling provides tools for a wide spectrum of
risk assessment applications that include (1) facilitation of
the screening and prioritization of chemicals, (2) linkage of
exposure to internal dose, (3) use in analysis of mechanistic
information and prediction of risk to chemical mixtures,

and (4) provision of computational techniques and tools to
address uncertainty and variability questions related to iden-
tification and prediction of responses and pharmacokinetics
in potentially sensitive subpopulations.
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