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Being the first successfully prepared two-dimensional material, graphene has attracted
extensive attention from researchers due to its excellent properties and extremely wide
range of applications. In particular, graphene and its derivatives have displayed several
ideal properties, including broadband light absorption, ability to quench fluorescence,
excellent biocompatibility, and strong polarization-dependent effects, thus emerging as
one of the most popular platforms for optical sensors. Graphene and its derivatives-based
optical sensors have numerous advantages, such as high sensitivity, low-cost, fast
response time, and small dimensions. In this review, recent developments in graphene
and its derivatives-based optical sensors are summarized, covering aspects related to
fluorescence, graphene-based substrates for surface-enhanced Raman scattering
(SERS), optical fiber biological sensors, and other kinds of graphene-based optical
sensors. Various sensing applications, such as single-cell detection, cancer diagnosis,
protein, and DNA sensing, are introduced and discussed systematically. Finally, a
summary and roadmap of current and future trends are presented in order to provide
a prospect for the development of graphene and its derivatives-based optical sensors.
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INTRODUCTION

The development of science often starts with unexpected experimental discoveries, which are even
inconsistent with previous theories. However, it is through these unexpected discoveries that science
has often advanced. For a long time in the past, scientists have believed that at room temperature,
free-standing graphene could not exist due to the minimization of its surface energy (Peierls, 1935;
Landau, 1937). This speculation was overthrown after the discovery of graphene in 2004 by Andre
Geim and Konstantin Novoselov (Novoselov et al., 2004). Since it was first isolated via peeling
graphite with adhesives, graphene has attracted tremendous attention from researchers due to its
novel properties and wide range of applications (Gilje et al., 2007; Huang et al., 2011; Avouris and
Dimitrakopoulos, 2012; Avouris and Xia, 2012; Yang et al., 2013; Gao et al., 2020). As firstly prepared
two-dimensional materials, graphene is composed of a one atom-thick planar sheet of sp2-bonded
carbon atoms perfectly arranged in a honeycomb lattice (Novoselov and Geim, 2007; Nair et al.,
2008; Neto et al., 2009). Graphene has many remarkable properties such as high mechanical strength
(high Young’s modulus of 1 TPa), thermal properties (high thermal conductivity >3,000WmK−1),
and excellent optical characteristics including broadband optical absorption in near infrared and
visible range, and nonlinear optical properties, such as saturation absorption (Balandin et al., 2008;
Bolotin et al., 2008; Bonaccorso et al., 2010; Koppens et al., 2011; Mak et al., 2012; Han et al., 2014).

Edited by:
Karin Chumbimuni-Torres,

University of Central Florida,
United States

Reviewed by:
Gang Wei,

Qingdao University, China
Chih-Ching Huang,

National Taiwan Ocean University,
Taiwan

*Correspondence:
Ling-Xiao Cheng

chenglingxiao01@163.com
Wen-Shuai Jiang

jws19860826@126.com
Fei Xing

xingfei@sdut.edu.cn

Specialty section:
This article was submitted to

Analytical Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 08 October 2020
Accepted: 04 January 2021

Published: 05 February 2021

Citation:
Gao X-G, Cheng L-X, Jiang W-S,

Li X-K and Xing F (2021) Graphene and
its Derivatives-Based Optical Sensors.

Front. Chem. 9:615164.
doi: 10.3389/fchem.2021.615164

Frontiers in Chemistry | www.frontiersin.org February 2021 | Volume 9 | Article 6151641

REVIEW
published: 05 February 2021

doi: 10.3389/fchem.2021.615164

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.615164&domain=pdf&date_stamp=2021-02-05
https://www.frontiersin.org/articles/10.3389/fchem.2021.615164/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.615164/full
http://creativecommons.org/licenses/by/4.0/
mailto:chenglingxiao01@163.com
mailto:jws19860826@126.com
mailto:xingfei@sdut.edu.cn
https://doi.org/10.3389/fchem.2021.615164
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.615164


Due to its unique optical and electrical properties, graphene is
widely used in photonic and optoelectronic devices, such as
polarizers, modulators, ultrafast lasers, sensors, photodetectors
and light-emitting diodes (Fowler et al., 2009; Cheng et al., 2010;
Mueller et al., 2010; Sun et al., 2010a; Sun et al., 2010b; Wu et al.,
2010; Bao et al., 2011; Kim and Choi, 2012; Liu et al., 2012;
Sensale-Rodriguez et al., 2012; Son et al., 2012; Yuan and Shi,
2013; Liu et al., 2014).

By definition, an optical sensor is a device that can convert
any external physical stimuli, such as electric field signals,
pressure, heat, motion, sound, and biomolecules, into optical
or electrical output for reading or further processing. For many
years in the past, zero-dimensional material quantum dots,
gold nanoparticles, one-dimensional material carbon
nanotubes, and nanowires have been widely used in the
design of optical sensors (Kong et al., 2001; Modi et al.,
2003; Matsui et al., 2005; Frasco and Chaniotakis, 2009;
Kuang et al., 2011; Shen et al., 2012). Since then, graphene
has been widely employed in the field of optical sensors due to
its unique properties. For example, graphene has the following
characteristics: the thickness of one-atom layer, large specific
surface area, high chemical stability, excellent biocompatibility,
and the ability to absorb biomolecules through π-π stacking.
These properties allow for the fabrication of gas/chemical
vapor, electromechanical, pH, mass, electrochemical, and
optical sensors. Graphene-based sensors have shown many
advantages over conventional sensors, including reduced
dimensions and weight, higher strength, ease of use and
fabrication, and reduced cost. Furthermore, graphene
derivatives have been also widely used in the field of optical
sensors, including graphene oxide (GO), reduced graphene
oxide (RGO), and graphene quantum dots (GQDs)
(Robinson et al., 2008; Dong et al., 2010; Lipatov et al.,
2013; Sun et al., 2013; Ananthanarayanan et al., 2014;
Sansone et al., 2014; Wang et al., 2014; Wang et al., 2016).
GO is not only an effective fluorescence quencher, but can also
be used to achieve the detection of biomolecules with high
sensitivity and high selectivity. Graphene prepared through
mechanical exfoliation and chemical vapor deposition (CVD)
methods has a high quality, but its low yield and high cost have
seriously hindered its application. On the other hand, RGO is
characterized by high yield and low cost, which render it more
suitable for sensing application. In addition, compared with
pure graphene, the oxygen functional group contained in RGO
makes it easy to interact with biochemical molecules. At the
same time, GQDs, another derivative of graphene, have also
been extensively used in the field of biochemical sensing GQDs
exhibit plenty of advantages such as excellent optoelectronic
properties, extremely small size (3–20 nm), stable aqueous
colloidal suspensions, ease of functionalization, and tunable
fluorescence. Although there have been great achievements
regarding graphene and its derivatives-based optical sensors,
just a few reviews either highlights graphene-based
fluorescence, or only mention graphene-based SERS. To
better grasp the whole picture of this area, it is necessary to
summarize the recent progress in graphene and its derivatives-
based optical sensors. In this review, recent developments in

graphene and its derivatives-based optical sensors are
summarized, covering aspects related to fluorescence,
graphene-based substrates for surface-enhanced Raman
scattering (SERS), optical fiber biological sensors, and other
kinds of graphene-based optical sensors (Figure 1). Various
sensing applications, such as single-cell detection, cancer
diagnosis, protein, and DNA sensing, are introduced and
discussed systematically. Finally, a summary on recent
progress in graphene and its derivatives-based optical
sensors is provided, alongside with a proposal for future
applications and an outline for researches.

FLUORESCENCE SENSING

Graphene is composed of a one atom-thick planar sheet of sp2-
bonded carbon atoms, which exhibits no fluorescence
characteristics due to its zero band gap (Novoselov et al.,
2012; Zheng and Wu, 2017). The rich oxygen-containing
functional groups contained in GO and RGO not only make
them to be composed of sp2 and sp3 carbon atoms, but also give
them a band gap and result in fluorescence (Huang et al., 2012;
Mathkar et al., 2012). Compared with traditional fluorescent
materials, GO has the characteristics of low cost, nontoxic,
biocompatible, and environmentally friendly. In addition, GO
can achieve adsorption of biomolecules through electrostatic
force, hydrogen bonding or π-π interactions, which also
provides conditions for the interaction between biomolecules.
Therefore, GO has been widely used in fluorescence sensing (Eda
and Chhowalla, 2010; Loh et al., 2010; Zhu et al., 2010; Dreyer
et al., 2011; Qiang et al., 2014). In this section, the principle and

FIGURE 1 | The application of graphene and its derivatives in optical
sensors.
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properties of GO fluorescence will be introduced in detail. The
application of GO fluorescence in the field of sensing will then be
discussed.

The fluorescence of GO comes from its electronic energy
transitions. As displayed in Figure 2A, each fluorescence peak
of functionalized GO is derived from the corresponding specific
electronic transitions (Zhu et al., 2011). In addition, GO contains
various types of oxygen-containing functional groups, such as
epoxy (C-O-C), carboxyl groups (COOH), hydroxyl groups
(COH), and aromatic rings (C�C), which lead to the overlap
of many fluorescence peaks. The position and intensity of the
fluorescence peak of GO is highly susceptible to functional
groups, solvents, localized domains, and strain. As shown in
Figure 2A, the fluorescence peak position and intensity are
modified when GO is enriched with OH or COOH groups,
respectively (Li et al., 2012). Figures 2B,C show the effect of
pH on the fluorescence of GO (Galande et al., 2011). Under acidic
conditions, GO exhibits a broad fluorescence peak centered at
∼680 nm. However, as the pH value increases, an amazing
phenomenon could be observed. One fluorescence peak
(∼680 nm) gradually decreases until it disappears, and another
fluorescence peak (∼500 nm) appears under basic conditions.
This change in the fluorescence properties caused by PH is mainly

due to the excited-state proton transfer, as shown in Figure 2D
(Cushing et al., 2014). Under acidic conditions, the COOH group
mainly exists in the aqueous solution in the form of ionic COO−.
Under excitation of incident bean, the two kinds of ions COO−

and COOH in the excited-state contributes to the broad
fluorescence peak at 668 nm. Furthermore, the fluorescence of
GO displays excitation-wavelength-dependent properties due to
the giant red-edge effect. As displayed in the Figure 2D, due to
the extra relaxation process introduced by the polar solvent, such
as water, a giant red-edge effect can be observed When the
solvation dynamics occur on a timescale which is orders of
magnitude shorter than that of the fluorescence, the solvation
is usually completed prior to fluorescence. Therefore, the final
fluorescence only undergoes a small redshift.

In fluorescence sensing, when GO is used as a fluorescent
chromophore, its fluorescent properties can be modulated by
changing its sheet size, chemical composition and other factors.
Then, through the process of resonance-energy-transfer and
carrier transport, GO is often used as a fluorescence quencher
in the field of fluorescence sensing. This dual role of GO as both a
fluorophore and a quencher have also brought new ideas to
sensor design. Although GO could in principle be used as a
fluorescent label, its broad peak limits its sensing performance.

FIGURE 2 | The application of graphene and its derivatives in fluorescence sensing. (A) Fluorescence spectra corresponding to GO and GO treated with KOH and
HNO3; inset: the different electronic transitions (Li et al., 2012). (B) The pH-dependent photoluminescence of GO. (C) The intensities of photoluminescence at different
wavelengths (λ � 683, 506, and 479 nm) and its corresponding pH value (Galande et al., 2011). (D) Fluorescence mechanism of GO (Cushing et al., 2014). (E) Tunable
excitation-wavelength-dependent two-photon imaging. (F) Two-photon fluorescence imaging technique based on aptamer-modified GO and its application
(Pramanik et al., 2014b). (G)High-sensitivity detection of dopamine by using GO as a fluorescence quencher (Chen et al., 2011). (H)MicroRNA (miRNA) detection based
on GO and peptide nucleic acid (PNA) (Ryoo et al., 2013).
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Instead, GO is remarkably suitable for near infrared (NIR)
biological imaging via two-photon excitation spectroscopy
thanks to the giant red-edge effect (So et al., 2000; Tsai et al.,
2013; Pramanik et al., 2014b). In 2014, Pramanik et al. developed
graphene oxide sheet based two-photon multi-color bio-imaging
of multiple drug-resistance bacteria (MDRB), where multicolor
imaging is based on the fact that the two-photon fluorescence
wavelength of the graphene oxide sheet can be tuned just by
varying the excitation energy without changing its chemical
composition and size (Galande et al., 2011). As displayed in
Figure 2E, the imaging color and luminescence peak position can
be tuned from deep blue to red, just by varying the excitation
wavelength. Figure 2F displays multicolor two-photon
luminescence imaging of methicillin-resistant Staphylococcus
aureus (MRSA) at different wavelengths excitation.
Furthermore, two photon imaging with GO as a fluorescent
label has been widely used in the fields of cancer cell imaging
and food safety (Pramanik et al., 2014a; Shi et al., 2015;
Tchounwou et al., 2015; Wang et al., 2015b). In 2016, Kalluru
et al discovered that modified nano-sized GO exhibits wavelength
of the excitation dependent fluorescence effect, which is suitable
for fluorescence imaging (Kalluru et al., 2016). In addition, the
functionalized nano-sized GO can generate a large amount of
singlet oxygen through the irradiation of near-infrared light,
which is used for photodynamic therapy and photothermal
therapy The consequence of experiments also proved that
photodynamic and photothermal treatment based on
functionalized nano-sized GO can effectively extend the
lifespan of mice. In 2019, Song et al. creatively encapsulated
nanocrystals doped with rhenium into GO (NCs@GO) (Song
et al., 2019). The NCs@GO not only has a strong fluorescence
effect in the visible and near infrared bands, but also has
satisfactory solubility and biocompatibility. Then the NCs@GO
has been utilized not only to achieve high-sensitivity detection of
miRNA in cells, but also to realize real-time imaging of tumors.

GO as an effective fluorescence quencher is also widely used in
fluorescence sensing. Figure 2G displays the GO being used as an
efficient quencher through charge-transfer (Chen et al., 2011).
Only when the distance between the donor and the acceptor of
the charge is less than 10 Å, the charge transfer process is possible.
Such a short distance is often obtained through chemical bonding
or physical adsorption. In 2011, Chen et al. a GO-based
photoinduced charge transfer (PCT) label-free near-infrared
(near-IR) fluorescent biosensor for dopamine. The multiple
non-covalent interactions between GO and dopamine can
achieve effective fluorescence quenching and high-sensitivity
detection of dopamine. In 2013, Wu et al. used GO as a
fluorescence quencher to detect heavy metal cations (Li et al.,
2013a). The principle involved in the experiment is displays as
follows: first, the aptamer must be modified on the surface of GO.
When the aptamer captures Hg2+, a hairpin structure is formed.
In this structure, the charge transfer process between GO and
mercury ions causes the fluorescence of GO to be quenched. The
present optical sensor shows a limit of detection as low as 0.92 nM
and excellent selectivity over various metal ions. The fluorescence
sensing based on charge transfer has been applied to the detection
of more types of pollutants in environment and agriculture (Zhu

et al., 2014; Wang et al., 2015a; He et al., 2015). Fluorescence
resonance energy transfer (FRET) is a nonradiative energy-
transfer process based on the dipole-dipole interaction (Jung
et al., 2010; Kwak et al., 2014). It requires the donor’s
emission spectrum to overlap with the acceptor’s absorption
spectrum. In the FRET process, GO can serve as an energy
donor in which its fluorescence gets quenched by an energy
acceptor, such as gold nanoparticles or organic dyes.
Furthermore, GO can also act as an energy acceptor, in which
it quenches the fluorescence of an energy donor, such as quantum
dots and organic dyes. In 2013, Ryoo et al. developed a GO based
miRNA sensor, which allows quantitative monitoring of target
miRNA expression levels in living cells (Ryoo et al., 2013). The
strategy is based on tight binding of GO with peptide nucleic acid
(PNA) probes, resulting in fluorescence quenching of the dye that
is conjugated to the PNA, and subsequent recovery of the
fluorescence upon addition of the target miRNA. The present
miRNA sensor allowed the detection of specific target miRNAs
with a detection limit as low as ∼1 pM, as well as the simultaneous
monitoring of three different miRNAs in a living cell. By
inoculating different aptamers and antibodies on the surface of
GO, GO-based detection platforms will be used inmore fields (He
and Cui, 2012; Al-Ogaidi et al., 2014; Iranifam et al., 2016).
Compared with traditional organic dye molecules and other types
of nanomaterials, graphene and its derivatives have the
advantages of photostability and biocompatibility. In addition,
graphene and its derivatives could be used not only as
fluorophore, but also as fluorescence quenchers in fluorescence
sensing, making it widely used in the fields of biosensing and
bioimaging. However, the oxygen-containing functional groups
in GO form a broad fluorescence peak, which limits its
application in biosensing. Therefore, the functional treatment
of GO is very critical.

Graphene-Based Surface-Enhanced
Raman Scattering Sensing
Due to the extremely high detection sensitivity and the capability
of chemical fingerprints recognition, SERS has been an attractive
analytical technique used in various fields (Kneipp et al., 1997; Li
et al., 2011; Alvarez-Puebla and Liz-Marzán, 2012; He and Cui,
2012; Zhang et al., 2013). Furthermore, since the phenomenon of
graphene based surface enhanced Raman scattering was
discovered, the graphene based substrate has attracted wide
attention of researchers. Compared with traditional Raman
substrates, the introduction of graphene has many advantages,
and at the same time it has brought tremendous development.
Graphene can not only effectively quench the photoluminescence
of fluorescent dyes and drastically eliminate the fluorescence
background, but it can also cooperate with typical noble
metallic nanoparticles as high-performance SERS substrates.
Furthermore, it can serve as an excellent charge transfer-only
SERS substrate for understanding the exact role of chemical
mechanism without the interference of electromagnetic
mechanism (Dalfovo et al., 2014; Lin et al., 2017). In this
section, graphene-based SERS substrates and the role played
by graphene in graphene-based SERS substrates are
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summarized. Furthermore, the SERS applications of graphene-
based substrates in biomedical areas, including biomolecule
detection and bio-imaging are discussed.

Graphene exhibits universal absorption independent of
wavelength in the visible range, and has plasmon resonance in
the terahertz. The Raman enhancement effect of graphene is
mainly attributed to the charge transfer between graphene and
various molecules, which result in a chemical enhancement. In
2010, Ling et al. explored the possibility that graphene could be
used as a substrate for enhancing Raman signals of adsorbed
molecules (Lai et al., 2018). Several different types of molecules,
used as Raman probe, were deposited through an identical
process both on graphene and on a SiO2/Si substrate using
vacuum evaporation or solution soaking. By comparing the
Raman signals of molecules on graphene and on a SiO2/Si
substrate, they demonstrated that the intensities of the Raman
signals on graphene were much stronger than on a SiO2/Si
substrate. Figure 3A displays the graphene-only substrates. In
Figure 3B, the intensities of the Raman signals of phthalocyanine
(Pc) on graphene are much stronger indicating that graphene can
enhance the Raman signals of these molecules.

In addition, graphene derivatives-based substrates have also
been extensively studied. In 2013, Liu et al. explored the effects of
pH values on SERS intensities of some aromatic molecules on

GO. They concluded that the GO-mediated SERS is associated
with charge-type selectivity according to electrostatic interactions
(Liu et al., 2013). In 2016, Yin et al. explored the SERS effects of
RGO with different degrees of reduction (Yin et al., 2016). They
found that the Raman intensities of RGO decreased with
increasing the reduction duration from 2 to 60 min, while the
strongest Raman intensity of R6G molecules was observed for
10 min. Graphene-only substrates provide a better way to
understand the chemical mechanism of SERS, but their
enhancement effect remains still no strong enough for
application. Therefore, it is necessary to develop
graphene–metal substrates for highly sensitive SERS analysis.
Figure 3C displays the graphene-supported nanostructures
substrate. Leem et al. developed a mechanical self-assembly
strategy to enable a new class of 3D crumpled graphene-gold
(Au) nanoparticles hybrid nanoplasmonic structures for SERS
applications (Leem et al., 2015). The 3D crumpled graphene-Au
NPs exhibit at least one order of magnitude higher SERS
detection sensitivity than that of conventional, flat graphene-
Au NPs. The hybrid structure is further adapted to arbitrary
curvilinear structures for advanced, in situ, nonconventional,
nanoplasmonic sensing applications. The graphene-covered
metal nanostructures substrates are displayed in Figures 3D,E
(Hao et al., 2012; Zhu et al., 2013). In this structure, graphene can

FIGURE 3 | The graphene-based substrates for surface-enhanced Raman scattering (SERS). (A) Schematic illustration of the graphene only substrates. (B)
Raman spectra of Pc molecules on monolayer graphene and on a blank SiO2/Si substrate (Ling et al., 2010). (C) Schematic of SERS enhancement from a crumpled
graphene–Au nanoparticles hybrid structure (Leem et al., 2015). (D) Graphene-covered nanoparticles or nanohole arrays for SERS enhancement (Hao et al., 2012). (E)
Graphene-covered Au nanovoid arrays (Zhu et al., 2013). (F) Graphene-separated metal nanostructure substrates (Zhao et al., 2017). (G) Schematic illustration of
the SERS detection of DNA based on graphene (Duan et al., 2015). (H) Optical and Raman images of HeLa 229 cells. The scale bar is 10 µm (Zhang et al., 2015).
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serve not only as a protective layer, so that the metal
microstructure is not oxidized and corroded, but also to avoid
direct contact between the biomolecules and the metal
microstructure, thus allowing to exclude the side
photocatalytic reaction. The graphene-separated metal
nanostructure substrate is displayed in Figure 3F. Zhao et al.
developed an efficient SERS substrate by sandwiching graphene
between Au NPs and electron beam lithography-fabricated Ag
nanostar arrays (NSAs). The fabricated hybrid structure exhibits
137-fold enhancement of the Raman response of graphene, with a
limit of detection of 0.1 pM for rhodamine 6G molecules (Zhao
et al., 2017).

Undoubtedly, graphene has been widely employed in the
design of SERS substrates. Graphene has overcome some of
the limitations of the SERS substrates since it endows the
SERS substrates with better stability, sensitivity,
reproducibility, and biocompatibility. More importantly, high-
performance graphene based substrates have great application
potential in numerous fields. Various biomarkers and
biomolecules, such as DNA, nucleosides, proteins, bacteria,
and fungi have been successfully detected through the
employment of multiple graphene-based substrates (Kang
et al., 2010; Li et al., 2013b; Lin et al., 2014; Duan et al., 2015;
Xu et al., 2015; Ouyang et al., 2017). In addition, graphene-based
substrates have been shown to be effective for bio-imaging, cancer
diagnostics, drug delivery, photothermal therapy and
chemotherapy (Ilkhani et al., 2016; Cialla-May et al., 2017).
Figure 3G displays an example of DNA detection using
graphene-based SERS sensing. In 2015, Duan et al. developed
a new type of SERS substrate with thiolated graphene oxide (tGO)
nanosheets sandwiched between two layers of closely packed
plasmonic nanoparticles (Duan et al., 2015). Herein, tGO can
play multifunctional roles as a 2D scaffold to immobilize
interfacially assembled plasmonic nanoparticles, a nanospacer
to create SERS-active nanogaps between two layers of
nanoparticle arrays, and a molecule harvester to enrich
molecules of interest via π–π interaction. Furthermore, they
demonstrated that an SERS assay based on the PEGylated
substrate, in combination with magnetic separation, allows for
sensitive, multiplexed “signal-off” detection of DNA sequences of
bacterial pathogens. Cell imaging is a powerful method to reveal
mechanisms and cellular processes and to diagnose diseases. In
Figure 3H, Zhang et al. developed the Raman-fluorescence dual
imaging of cells based on a multifunctional GO/AuNPs/2-
aminoethanethiol (AET)/fluorescein isothiocyanate hybrid
platform (Zhang et al., 2015). Raman imaging of HeLa 229
cells with GO/AuNPs/p-ATP hybrids showed excellent
performance as the characteristic peaks of p-ATP at 1,078,
1,137, 1,330, 1,435, and 1,590 cm−1 could be clearly observed.
In 2017, Zhang et al. prepared Au triangular nanoarray/
graphene/Au nanoparticles sandwich structure as the SERS
substrate (Zhang et al., 2017). They have proved that the high-
temperature annealing process can effectively reduce the distance
between the Au nanoparticles and the Au triangular nanoarray,
and achieve effective amplification of the Raman signal. Then the
excellent SERS platform has been used for high sensitivity
detection of mercury ions (8.3*10−9 M). In 2018, Zeng et al.

successfully synthesized silver nanospheres coated with graphene
oxide (Ag@NGO) (Zeng et al., 2018). The hybrid nanomaterials
not only can effectively enhance the Raman signal, but also its
stability is greatly improved due to the presence of GO. Then they
proved that Ag@NGO nanoparticles can not only be used as an
effective nano-probe to monitor intracellular biological
molecular, but also can serve as a drug delivery nano-carriers
as well by π-π interaction with anticancer drug DOX. In 2020,
Choi et al. synthesized GO-coated gold nanoarrays in the shape of
tooth to achieve effective Raman signal enhancement (Choi et al.,
2020). Then the GO hybrid structure were utilized to achieve
rapid and highly sensitive detection of dopamine (10−4 to
10−9 M). In additional, SERS based on a reliable graphene-
based substrate has been successfully used to discriminate
various environment pollutants, including organic pollutants,
heavy metal ions, pathogens, and antibiotics. Compared with
traditional SERS substrates, graphene has proper modification
and improved biocompatibility, which also makes graphene-
based SERS substrates widely used in biosensing, drug
delivery, and bioimaging fields. However, graphene-based
substrates also need to address many difficulties and
challenges. First of all, the stability of graphene-based
substrates needs to be improved, especially when various
biochemical reactions occur on the surface of graphene. In
addition, non-specific adsorption on the graphene surface will
also cause serious disturbances. Therefore, it is urgent to develop
graphene based substrates with high stability and high specificity.

Graphene-Based Optical Fiber Sensing
Optical fiber sensors have received world-wide attention due to
their high sensitivity, small size, good anti-electromagnetism
disturbance ability and other potential advantages. As the first
prepared two-dimensional material, graphene has been used
extensively in the design of optical fiber sensors due to its
unique optical properties (Yao et al., 2014a; Zhang et al., 2014;
Dash and Jha, 2015; Li et al., 2015; Zeng et al., 2015). In this
section, the principles of different types of graphene-based optical
fiber sensors and their applications in biochemical sensing are
introduced in detail. It was shown that graphene had a great
potential in the optical fiber sensing technology.

Graphene based fiber optical sensors with various device
configurations for biochemical sensing are displayed in
Figure 4. Figure 4A shows a schematic structure of a thin
layer of graphene wrapped around a sub-wavelength-diameter
(1 μm) tapered single-mode microfiber (Shivananju et al., 2017).
In this structure, tapered or micro fibers are usually prepared via a
chemical etching process or a gently stretching process while
heating over a flame or using a heated filament. During the
preparation process, the fiber core becomes thinner, causing the
evanescent wave to reach the outside and thus being exposed to
the surrounding medium through the graphene. A surface
plasmon resonance (SPR) sensor is obtained by placing a
graphene layer over the tapered region, and is widely used in
gas sensing. In 2014, Yao et al. developed an all-optical NH3 gas
sensor based on graphene/microfiber hybrid waveguide
(GMHW) (Yao et al., 2014a). During the fabrication process
of the GMHW sensor, they transferred the graphene prepared via
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CVD to the MgF2 substrate. The graphene/MgF2 substrate was
then fixed on a translation stage and the microfiber was attached
onto the graphene. The SEM image of the graphene-coated
tapered microfiber is depicted in Figure 4B. The adsorption of
NH3 can change the effective refractive index of the GMHW. The
wavelength shift induced by the NH3 absorption is spectrally
demodulated using a microfiber-based Mach–Zehnder
interferometer. The GMHW has been demonstrated to have a
high sensitivity of ∼6 pm/ppm, and a resolution of 0.3 ppm. In
2014, Yao et al. observed the enhancement of the surface
evanescent field by graphene cylindrical cladding (Yao et al.,
2014b). It was found that the light in the fiber core can be
effectively modulated by graphene, improving the detection
sensitivity of the hybrid waveguide. The experimental results
for gas sensing verified the theoretical prediction, and ultra-high
sensitivities of ∼0.1 ppm for NH3 gas detection and ∼0.2 ppm for
H2O vapor detection were achieved (Figure 4C).

Figure 4D displays a schematic diagram of a fiber-to-graphene
coupler based on a side-polished or D-shaped optical fiber (Bao
et al., 2011). The optical images of a laterally polished optical fiber
and of a planar section of optical fiber covered by few-layer
graphene are displayed in Figure 4E. The working principle of
this structure is based on the interaction of the evanescent wave
with the surrounding environment. In 2014, Kim et al. developed
graphene-based D-shaped fiber optic SPR for biochemical sensing
applications (Kim et al., 2013). A graphene film synthesized via

thermal chemical vapor deposition is transferred onto the sensing
area of the optical fiber. The detection mechanism of this sensor is
based on the principle that the SPR signal changes according to the
refractive indices of the analytes. In this experiment, the LED light
(524 nm) is polarized and coupled into the graphene-coated fiber
sensor. The change in the polarized light due to the change in the
refractive index, caused by biomolecule interaction, is captured by
spectrometer. Figure 4F displays the bar chart for SPRwavelengths
for each analyte. The SPR peaks appear at ∼ 524 nm for the buffer
case and the case without analyte, 525.3–529.5 nm for biotinylated
double crossover DNA (DXB) samples, and 539.6–540.8 nm for
protein streptavidin (SA) samples. The consequences of this
experiment verify the sensitivity and selectivity of graphene-
coated fiber sensors for protein and DNA detection. Figure 4G
displays a schematic diagram of the optical ring resonator covered
with graphene (Gan et al., 2015). The graphene-coated optical ring
resonator sensor relies on light-analyte interaction to convert the
presence of biochemical molecules into quantitatively measurable
optical signals. The resonant wavelength of light circulates along
the graphene-coated ring resonator and has an evanescent field
that reaches several hundred nanometers into the biochemical
molecules to interact repeatedly with the analytes near the
resonator surface. Graphene-coated optical ring resonators are
more sensitive and can achieve high quality factors. The
schematic diagram of the graphene film coated on the optical
fiber end pigtail is displayed in Figure 4H. In this approach, light is

FIGURE 4 | The graphene based fiber optical sensors. (A) Schematic diagram of the graphene/microfiber hybrid waveguide (Shivananju et al., 2017). (B) Scanning
electron microscopy (SEM) image of the graphene-coated microfiber waveguide (Yao et al., 2014a). (C)Graphene-coatedmicrofiber waveguide used for high-sensitivity
gas sensing (Yao et al., 2014b). (D) Schematic model of the fiber-to-graphene coupler based on a side-polished optical fibre. (E) Optical images of a laterally polished
optical fiber and of a planar section of the optical fiber covered by few-layer graphene (Bao et al., 2011). (F) The fiber-to-graphene coupler were used for high-
sensitivity protein sensing (Kim et al., 2013). (G) Illustration of graphene-coated optical microring resonator (Gan et al., 2015). (H) Schematic of the end of an optical fiber
pigtail with a graphene coating on pinhole (Shivananju et al., 2017). (I) Comparative plots of the sensing responses of GO and RGO-coated polymer optical fibers (Some
et al., 2013).
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needed for single-ended probes with a common input and output
path and works in reflection mode. In 2013, Some et al. developed
novel one-headed polymer optical fiber sensor arrays using
hydrophilic GO and hydrophobic RGO (Some et al., 2013). The
working principle of this optical gas sensor is based on the change
in the reflection of light by the interfacial layer at the fiber end facet,
which in turn is induced by changes in the refractive index of the
GO and RGO layers. The response of the GO- and RGO-coated
sensors for volatile organic compounds, including hydrazine,
nitromethane, diethylamine, ethanol, methanol, acetone,
tetrahydrofuran (THF), and dichloromethane (MC), are
displayed in Figure 4I. Besides, the eco-friendly physical
properties of GO allow for faster sensing and higher sensitivity
when compared to RGO even under extreme environments of over
90% humidity, making it the best choice for gas sensor. Although
graphene-based optical fiber sensors have been widely used, there
are still many difficulties to overcome in reality. It is difficult for
graphene to be perfectly transferred to the surface of the optical
fiber, and its thickness and quality are also difficult to control.
Then, the stability and repeatability of graphene-based optical fiber
sensors still need to be improved.

Other Kind of Graphene-Based Optical
Sensors
The interaction between incident beam and graphene mainly
includes interband and intraband transitions. In the far infrared

and THz bands, the electronic response consists mainly of
intraband transition (free carrier response), which can be well
described by the Drude model. Instead, in the near infrared and
visible range, the absorption of graphene consists mainly of
interband transition, which is wavelength independent. Since
the absorption of single layer graphene is only 2.3%, a variety
of structures have been designed to enhance the absorption of
graphene (Mueller et al., 2010; Koppens et al., 2011; Wang et al.,
2013b; Pirruccio et al., 2013; Pospischil et al., 2013).

In 2013, Ye et al. discovered that graphene exhibits strong
polarization dependent optical absorption under total internal
reflection (Ye et al., 2013). Compared with the limited universal
absorbance of 2.3%, a larger absorption was observed in
monolayer, bilayer, and few-layer graphenes for transverse
electric (TE) wave under total internal reflection. Based on the
polarization-sensitive absorption effect, Wang et al. proposed a
method to accurately count the number of layers for both
exfoliated and chemical vapor deposition graphene on
transparent substrate (Wang et al., 2013a). Their method is
useful for graphene tests on transparent substrates, which is
different from the commonly used SiO2/Si substrate.

In addition, the polarized absorption optical properties of
graphene have also been used in sensor design. In 2014, Xing
et al. used the polarization dependent optical absorption of
graphene in combination with microfluidic technology to
achieve high sensitivity detection of cancer cells (Xing et al.,
2014). They obtained a graphene-based optical refractive index

FIGURE 5 | (A) Ultrasensitive sensing of single cell using graphene-based optical sensor (Xing et al., 2014). (B) Optical images of the RGO detection window as
lymphocytes roll across it. The scale bar is 15 μm. (C) Discrete time-dependent changes in signal that correspond to mixed lymphocytes and Jurkat cells as they roll
across the detection window. (D) The RGO-based optical sensor for detecting specific protein (Jiang et al., 2017b). (E) Signal changes caused by the interaction of
antigen and antibody. (F) Optical microscopy and SEM image of reduced graphene oxide microshell (RGOM) (Jiang et al., 2017a). (G) Schematic diagram of the
photothermal detection experimental setup (Gao et al., 2018b). (H) Time-dependent changes in photothermal signal when different kinds of liquid medium are injected.
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sensor with high resolution (1.7 × 10−8) and sensitivity (4.3 ×
107 mV/RIU), as well as an extensive dynamic range. Figure 5A
displays a schematic diagram of the graphene-based optical
sensor. The probe beam is generated by a He-Ne laser with a
wavelength of 632.8 nm, and its direction of polarization is
modulated by a polarizer and quarter-wave plate. The probe
beam is then focused onto the center of its microfluidic
channel. The inset of Figure 5A displays the schematic of
the graphene-based optical single-cell sensor (GSOCS), which
consists of a polydimethylsiloxane (PDMS) microfluidic chip/
h-RGO/quartz sandwich structure on the prism. After
interacting with graphene, the probe beam is separated into
s- and p-polarized beams by a polarization beam splitter. The
difference in intensity of the two modes is measured by a
balanced detector. The researchers regarded cancer cells and
normal cells as microspheres with different refractive indices.
When cancer cells and normal cells pass through the surface of
graphene, the refractive index changes induced are different,
thus enabling the detection of cancer cells. Figure 5B illustrates
the passing of cells through the microfluidic channel. In
Figure 5C, the high and low voltage levels represent the
signals from the cancer cell and normal cells. The GSOCS
can achieve high sensitivity detection of cancer cells, which has
significance for the early diagnosis and treatment of cancer. In
2017, Jiang et al. used graphene-based optical sensors to achieve
high sensitivity detection of rabbit IgG (Jiang et al., 2017b).
Figure 5D displays the schematic of the graphene-based optical
sensor. In this process, graphene acts not only as a molecular
link layer to inoculate antibodies, but also as a sensing layer to
detect changes in the refractive index caused by the interaction
of antigens and antibodies. Figure 5E displays a real-time
measuring result of the biosensor after fabrication and
biochemical treatment. The whole process of biomolecular
interaction between antigen and antibody can be observed
clearly, as shown in Figure 5D, which is similar to the
dynamic process of biomolecular interaction of SPR-based
sensor. Compared with a commercial SPR apparatus,
graphene-based optical sensors can achieve higher sensitivity
detection. The graphene based optical sensor shows a
satisfactory response to rabbit IgG with a minimum
concentration of 0.0625 μg/ml. Furthermore, Jiang et al.
developed a reduced graphene oxide microshell (RGOM)-
based optical biosensor for the determination of goat anti-
rabbit IgG (Jiang et al., 2017a). In Figure 5F, the RGOM was
prepared through a self-assembly of monolayer of
monodisperse polystyrene microspheres. Through high
temperature reduction, the RGOM was fabricated to
inoculate rabbit IgG. Compared with RGO, the periodic
microshells allowed for a simpler functionalization and
modification of RGOM with biomolecules. This method is
promising for immobilizing biomolecules on graphene
surfaces and for the fabrication of biosensors with enhanced
sensitivity.

In 2018, Gao et al. used the polarization dependent
absorption of two-dimensional materials and a modulated
pump beam to measure their photothermal signal (Gao et al.,
2018a; Gao et al., 2018b; Gao et al., 2018c). Photothermal

detection (PTD) is a refractive index sensing optical
technique, in which a modulated pump beam is absorbed by
two-dimensional materials, leading to a local change in the
refractive index of the photothermal medium. The propagation
of the probe beam at different wavelengths is modified by the
produced periodical change of the refractive index. Figure 5G
displays the schematic diagram of the PTD experimental setup.
The pump beam used in the experiments is produced by a
semiconductor laser at a wavelength of 532 nm. The pump laser
is linearly polarized, with its polarization angle being changed
via a half-wave plate, and is regulated to a certain frequency
through an acousto-optic modulator. After reflecting on the
mirror, the pump beam is then focused onto the samples
through the objective lens. The probe beam is generated by a
He–Ne laser at 632.8 nm and its polarization is modulated by
the polarizer and a one-half plate. After interacting with the
sample, the probe beam is split into s- and p-polarized beams by
a polarization beam splitter. The detector measures the
difference between s- and p-polarization caused by the
modulated pump beam. By exploring the effect of the
polarization angle of the pump beam on photothermal signal,
Gao et al. explored the photothermal anisotropy of BP and
ReSe2. Furthermore, the photothermal anisotropies of BP/ReSe2
heterostructures were also explored. The photothermal
contrasts of samples were observed to change with different
stacking angles indicating that the photothermal anisotropy of
heterostructures is dependent on the stacking angle. These
findings provide new prospects for designing novel optical
devices based on two-dimensional anisotropic materials. In
addition, the PTD technique has been used for identification
of the crystalline orientation of anisotropic two-dimensional
materials on a transparent substrate. Compared with traditional
crystal orientation determination methods, the PTD overcomes
typical challenges associated with transparent substrates,
including insulating and rough surfaces, and enables the
unambiguous identification of crystalline orientation.
Figure 5H displays the effect of different types of liquid
media on the photothermal signal of graphene. Gao et al.
proved that the thermal conductivity, heat capacity, and
thermally-induced refractive index changes of the liquid
medium will cause the change in the photothermal signal,
indicating that the PTD technique can be implemented into
a new type of optical sensor.

CONCLUSION AND OUTLOOK

In summary, the recent progress in graphene and its derivatives-
based optical sensors have been reviewed, covering aspects
related to fluorescence sensing, graphene-based substrates for
surface-enhanced Raman scattering, optical fiber biological
sensors, and other kinds of graphene based optical sensors.
The last few years have witnessed a dramatic increase in
research effort on graphene-based optical sensors, both at the
fundamental level and from a technological point of view.
Graphene and its derivatives-based optical sensors have
several advantages, including fast response, high sensitivity,
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and high flexibility, and are widely used in cancer cell imaging,
DNA sensing and protein detection. Although tremendous
efforts have been devoted to this research field over the past
several years, there still undeniably remain several significant
issues that are required to be addressed and explored. The
challenges involved include not only the strategies to
synthesize graphene and its derivatives but also the
integration of sensors into practical applications. In the
synthesis process, a major challenge is to synthesize high-
quality graphene, and its properties can be tuned through
effective chemical methods. Another challenge is to achieve a
low-cost, environmentally friendly preparation method for
graphene and its derivatives. For the practical application of
optical sensors based on graphene and its derivatives, the
primary issue is to develop high-sensitivity and high-
specificity sensors, while another important objective is to
enable miniaturization for integration into wearable devices.
Overcoming the above challenges will not only boost graphene
and its derivatives toward applications in optical sensing
technology, but will also greatly advantage peoples’ life.
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