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Background. Acute type A aortic dissection (ATAAD) is one of the most lethal cardiovascular diseases, and its molecular
mechanism remains unclear. Methods. Differentially expressed genes (DEGs) between ATAAD and control were detected by
limma R package in GSE52093, GSE153434, GSE98770, and GSE84827, respectively. The coexpression network of DEGs was
identified by the WGCNA package. Enrichment analysis was performed for module genes that were positively correlated with
ATAAD using clusterProfiler R package. In addition, differentially methylated markers between aortic dissection and control
were identified by ChAMP package. After comparing with ATAAD-related genes, a protein-protein interaction (PPI) network
was established based on the STRING database. The genes with the highest connectivity were identified as hub genes. Finally,
differential immune cell infiltration between ATAAD and control was identified by ssGSEA. Results. From GSE52093 and
GSE153434, 268 module genes were obtained with consistent direction of differential expression and high correlation with
ATAAD. They were significantly enriched in T cell activation, HIF-1 signaling pathway, and cell cycle. In addition, 2060
differentially methylated markers were obtained from GSE84827. Among them, 77 methylation markers were ATAAD-related
DEGs. Using the PPI network, we identified MYC, ITGA2, RND3, BCL2, and PHLPP2 as hub genes. Finally, we identified
significantly differentially infiltrated immune cells in ATAAD. Conclusion. The hub genes we identified may be regulated by
methylation and participate in the development of ATAAD through immune inflammation and oxidative stress response. The
findings may provide new insights into the molecular mechanisms and therapeutic targets for ATAAD.

1. Introduction

Aortic dissection (AD) is a serious invasive vascular disease
with high mortality and limited treatment options [1]. The
incidence of aortic dissection ranges from between 3.5 and
6/100,000 person-years in the general population to as high
as 10/100,000 person-years in the elderly [2]. Usually, aortic
dissection is caused by intimal tear, which further causes
blood to flow into the media layer of the aorta, resulting in
the separation of the layers within the aortic wall [3]. When
the ascending aorta is involved, this dissection is known as
Stanford type A aortic dissection (STAAD) [4]. Surgical mor-
tality for acute Stanford type A aortic dissection (ATAAD) is
relatively high, despite advances in medical and surgical
treatment over the past 30 years [5]. Theoretically, once acute

STAAD is diagnosed, patients should undergo emergency
surgical treatment immediately [6]. However, limited by
geographical, economic, and technical conditions, not all
patients can receive timely treatment.

Early clinical symptoms of ATAAD may mimic those of
other diseases, such as acute coronary syndrome, pulmo-
nary embolism, or pneumothorax, often leading to delayed
diagnosis [7–9]. When ATAAD is detected early and
treated promptly, the chance of survival is greatly improved
[10–12]. However, even in experienced cardiac centers, the
early mortality rate for surgical treatment of acute aortic
dissection is around 10%, and many patients still die before
surgery [13]. Therefore, we believe that identifying early
prognostic biomarkers can leverage patient characteristics
and symptoms to optimize treatment strategies [14, 15].
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Figure 1: Continued.

2 Computational and Mathematical Methods in Medicine



At present, the molecular mechanism of ATAAD
remains unclear. Chronic inflammation of the aortic lining
has been reported to cause aneurysm growth, leading to
aortic dissection [16–18]. In animal models, adventitial
inflammation characterized by neutrophil aggregation can
promote tissue damage, leading to aortic dilation and rupture
[19]. In addition, the medial integrity maintained by collagen
and elastin cross-linking is one of the keys in preventing aor-
tic dissection [20]. Bone marrow mesenchymal stem cells are
also potential contributors to aortic repair [21].

It is increasingly believed that human disease states are
not caused by a single change but by the multifactorial
regulation of biological systems [22]. In many cardiovascu-
lar diseases, important epigenetic modifications, including
methylation, have been shown to affect the development
or progression of the disease [23]. Methylation modifica-
tion of the gene may serve as a diagnostic and prognostic
marker in patients with aortic dissection [24].

Weighted gene coexpression network analysis (WGCNA)
is a widely used method to build coexpression pairwise corre-
lation matrices [25]. Exclusively based on coexpression anal-
ysis, it will better represent genes with a small effect size
acting together [26]. WGCNA provides a systems-level
insight into the signaling networks that may be associated
with a phenotype of interest [27].

The network-based approach provided a powerful option
for systematic analysis to identify candidate target genes. The

aim of this study was to identify DEGs and related methyla-
tion modifications in ATAAD compared with healthy con-
trols. At the same time, the molecular mechanisms involved
in gene expression changes were discussed. This study is
helpful in identifying new DNA methylation markers and
improving both our understanding and the treatment level
of ATAAD.

2. Materials and Methods

2.1. Data Sources. Aortic dissection data were collected from
the Gene Expression Omnibus (GEO) database. We screened
datasets with a sample size greater than 5. GSE52093
included gene expression data of dissected ascending aorta
from patients with acute Stanford type A aortic dissection
(n = 7) and normal controls (n = 5). GSE98770 included gene
expression data of dissected ascending aorta from patients
with acute type A aortic dissection (ATAAD) (n = 6) and gene
expression data of nondissected ascending aorta obtained
from transplant donors (n = 5). GSE153434 included gene
expression data of dissected ascending aorta from patients
with Stanford type A aortic dissection (n = 10) and normal
control samples (n = 10).

2.2. Differential Gene Expression Analysis. The differential
expression analysis between aortic dissection and healthy
controls was performed by using the R software package
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Figure 1: WGCNA network for differentially expressed genes. (a) Volcano map of differentially expressed genes between acute type A aortic
dissection and controls in GSE52093. Red nodes are significantly upregulated genes, and green nodes are significantly downregulated genes.
(b) The soft-threshold power versus scale-free topology model fit index and mean connectivity for GSE52093. The left image shows the scale-
free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right image shows the average connectivity (degree, y-axis) as a
function of the soft-thresholding power (x-axis). (c) Module clustering tree of differentially expressed genes in GSE52093. (d) Volcano map of
differentially expressed genes between acute type A aortic dissection and normal controls in GSE153434. (e) The soft-threshold power versus
scale-free topology model fit index and mean connectivity for GSE153434. (f) Module clustering tree of differentially expressed genes in
GSE153434.
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Figure 2: Continued.
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limma [28]. The genes with P ≤ 0:05 (up-/downregulated) were
extracted as differentially expressed genes (DEGs) [29, 30].

2.3. WGCNA. A gene coexpression network was constructed
through the WGCNA package [31] using differentially
expressed genes. The genes with similar expression behavior
were divided into different modules. After determining the
soft thresholding, the network was developed. Module-trait
relationships were calculated using a Pearson correlation
between modules and clinical trait. P value < 0.05 was
regarded as significant.

2.4. Enrichment Analysis. Module genes were analyzed using
the clusterProfiler R package [32] for Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG).
The Gene Ontology (GO) enrichment results included the
biological process (BP), cellular component (CC), and
molecular function (MF) [33]. A term with P < 0:05 was con-
sidered a functionally enriched term.

2.5. Methylation Data Analysis. GSE84274 included methyl-
ation profiling of ascending aorta from 6 normal and 12 aor-
tic dissection patients. The difference of methylation sites
between aortic dissection and healthy controls was analyzed
by the ChAMP software package [34]. Adjust (adj) P value
< 0.05 was regarded as significant.

2.6. PPI Network Construction. We utilized the Search Tool
for the Retrieval of Interacting Genes (STRING) database

(http://string-db.org) to construct a protein-protein interac-
tion (PPI) network for module genes, with a combined
score > 0:4. The PPI network was visualized through Cytos-
cape software (Version 3.7.0) [35–38]. The genes with the
top 5 degrees for connecting other genes in the network were
considered as hub genes.

2.7. Single-Sample Gene Set Enrichment Analysis (ssGSEA).
To investigate the immune infiltration landscape of acute
type A aortic dissection, ssGSEA was performed to evaluate
the level of immune infiltration in a sample according to
immune cell-specific marker genes [39]. Infiltration levels
for immune cells were quantified using the ssGSEA imple-
mentation in gsva R package. P value < 0.05 was considered
significant.

3. Results

3.1. Coexpression Network of Differentially Expressed Genes.
To obtain genes related to acute type A aortic dissection,
we compared them with healthy controls. A total of 4913 dif-
ferentially expressed genes were obtained in GSE52093
(Figure 1(a)). We selected β = 18 as the soft thresholding to
ensure that the network can obey the scale-free criteria
(Figure 1(b)). The created network included three modules
(Figure 1(c)). Then, 4682 differentially expressed genes were
obtained in GSE153434 (Figure 1(d)). Setting β = 10 as the
soft thresholding, we got 9 modules (Figures 1(e) and 1(f)).
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Figure 2: The enrichment analysis of related genes for acute type A aortic dissection. The correlation between module and clinical trait in
GSE52093 (a) and in GSE153434 (b). Red represents positive correlation, and blue represents negative correlation. (c) Genes up- or
downregulated simultaneously from two datasets in modules which positively correlated with acute type A aortic dissection. (d) The main
biological processes of common gene enrichment. (e) The main KEGG pathway of common gene enrichment. Red bars represent
upregulated terms, and green bars represent downregulated terms.
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3.2. Biological Functions of Module Genes. The correlation
analysis found that MEturquoise (module 2) of GSE52093
had the strongest correlation with ATAAD (Figure 2(a)).
MEbrown (module 1), MEyellow (module 5), MEgreen
(module 4), and MEblack (module 7) in GSE153434 were
positively correlated with ATAAD (Figure 2(b)). Then, we
obtained 268 common genes that expressed in the same
direction (upregulated or downregulated expression) in these
modules (Figure 2(c)). They may have a stronger association
with ATAAD. Enrichment analysis revealed that common
genes were mainly enriched in response to oxygen levels, T

cell activation, leukocyte migration, and NIK/NF-kappaB
signaling biological functions (Figure 2(d)). In addition, the
p53 signaling pathway, the HIF-1 signaling pathway, the
FoxO signaling pathway, and the cell cycle of the KEGG
pathways were also significantly enriched (Figure 2(e)).

3.3. Methylated ATAAD-Related Genes. By comparing the
differences between aortic dissection patients and controls,
we obtained 46,845 differentially methylated positions
(DMPs) (Figure 3(a)). Most DMPs were concentrated at the
chr1 position (Figure 3(b)). We identified 2060 genes with
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Figure 3: Acute type A aortic dissection-related methylation markers. (a) Differential methylation positions between aortic dissection
patients and controls. (b) Proportion of differentially methylated positions in different chromosomes. (c) Genes whose transcription levels
are opposite to the methylation level. (d) Heatmap of the expression of methylation markers in GSE153434. Red nodes are significantly
upregulated genes, and blue nodes are significantly downregulated genes.
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opposite methylation and transcription levels as methylation
markers (Figure 3(c)). Interestingly, among these methyla-
tion markers, we found that 77 genes were common genes
(Figure 3(d)). Using the PPI network, we identified the top
five genes with the highest connectivity as hub genes
(Figure 4(a)). Compared with the control, MYC, ITGA2,
and RND3 were upregulated in ATAAD, and BCL2 and
PHLPP2 were downregulated (Figure 4(b)). The AUC values
of hub genes were greater than 0.8 in both datasets, which
may have a diagnostic role for ATAAD (Figure 4(c)).

3.4. Immune Cell Infiltration Difference in ATAAD. Differ-
ences in immune cell infiltration were found in ATAAD
patients compared with controls (Figure 5(a)). Th1 cells, B
cells, T helper cells, T cells, DC, iDC, Tgd, eosinophils, and
NK cells were significantly downregulated. The different
directions of Th1 cells, Tgd, T cells, T helper cells, iDC,
DC, and B cells were consistent in GSE52093, GSE98770,
and GSE153434 (Figure 5(b)). These immune cells were clus-
tered into four categories, and there was a positive or negative
correlation between the cells (Figure 5(c)). In ATAAD, iDC
and macrophages had the strongest positive correlation,
while in the control group, iDC and neutrophils had the
strongest positive correlation (Figure 5(d)). The correlation
analysis results between immune cells and hub genes showed
that Th2 cells had the strongest correlation with ITGA2,
while NK cells and Th17 cells had the strongest correlation
with BCL2 (Figure 5(e)).

4. Discussion

Repair of acute type A aortic dissection remains a challenge
with high operative mortality [40]. As ATAAD is one of the
most elusive and life-threatening vascular diseases, a better
understanding of the molecular mechanisms of ATAAD is
essential to improve clinical efficacy. In this study, genes with
higher correlation with ATAAD were identified by compar-
ing gene expression differences between ATAAD and con-
trols. These genes were mainly associated with immune
inflammation. The genes modified by methylation were
screened as important genes to construct a PPI network,
and five hub genes were identified. In addition, by comparing

the difference of immune cell infiltration between ATAAD
and control, we also similarly found that immune cells played
an important regulatory role in the disease process [41].

Among the ATAAD-related biological functions we
identified, T cell activation had been confirmed by other
studies [42–44]. Different T cell subsets may play different
roles in the development of ATAAD. Elevated white blood
cell count is associated with poor prognosis in ATAAD [45,
46]. Inflammatory cells and cytokines, white blood cell count,
and neutrophil count have been reported to be responsible
for preoperative hypoxemia in ATAAD [47]. Increased
inflammatory response is a key factor in promoting the
occurrence and development of ATAAD [48]. High inflam-
matory biomarkers were observed in patients at onset, indi-
cating that the inflammatory response started early in
ATAAD [49]. More severe inflammation and oxidative stress
reactions occur in obese ATAAD patients [50]. Inflamma-
tion and hypoxia are often interdependent [51]. Our findings
also suggested that the HIF-1 signaling pathway was acti-
vated during ATAAD, thereby aggravating aortic dissection
[1]. Therefore, we believe that inflammation and oxidative
stress may play an important role in the process of ATAAD.

Notably, upregulated MYC, ITGA2, and RND3 and
downregulated BCL2 and PHLPP2 were identified as hub
genes of the PPI network. Studies had shown that MYC
was indeed upregulated in ATAAD [52]. MYC signaling is
involved in vascular smooth muscle cell (VSMC) dysfunc-
tion, vasoconstriction, and vascular remodeling in aortic dis-
section [53]. ITGA2 interacts with collagen in tumors,
promotes cell migration, and promotes apoptosis-free resis-
tance [54, 55]. Although there was no direct evidence that
ITGA2 was associated with ATAAD, aortic disease was asso-
ciated with collagen content or structure [56]. It suggested
that ITGA2 may act on the development of ATAAD through
collagen. In addition, ITGA3 and ITGA5 were identified as
new biomarkers for the onset of acute aortic dissection
[57]. RND3 played an important role in blocking cell cycle
distribution, inhibiting cell growth, and inducing apoptosis
and differentiation [58, 59]. Abnormal expression of RND3
may be the main cause of some cardiovascular diseases
[60]. The BCL2 protein family influenced the apoptosis of
vascular smooth muscle cells in human aortic dissection
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(c)

Figure 4: Identification of hub genes for acute type A aortic dissection. (a) The PPI network of 77 methylation markers based on STRING
database. (b) The expression of hub genes in GSE153434. (c) The AUC values of hub genes in two datasets. The darker orange color
represents a smallerPvalue. The darker red color represents a greater AUC value compared to what the gene has in GSE52093. The darker
green color represents a greater AUC value compared to what the gene has in GSE153434.
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[61]. PHLPP2 had been reported as a therapeutic target for
cancer and cardiovascular diseases [62, 63]. Although no
relationship between PHLPP2 and ATAAD had been
reported, our findings suggested that its downregulation
may be a risk factor for ATAAD.

Most studies used microarray technology to compare dis-
eased and normal aortic tissues and found some signs of
ATAAD differentially expressed genes [16, 22]. However,
the regulatory mechanisms of differentially expressed genes
remain to be determined. The hub genes identified in this
study were all modified by methylation. Alterations in gene
methylation may mediate the involvement of vascular
smooth muscle cells and inflammatory cells in the develop-
ment of aortic dissection [24]. At present, there are relatively
few studies on the regulation of methylation in ATAAD, and
we believe that hub genes may be regulated by methylation
and thus participate in the progress of ATAAD.

Like other studies, our study also had some limitations.
First, these results were obtained only by bioinformatics anal-
ysis and were not confirmed by molecular experiments. In
addition, although hub genes, potential methylation regula-
tors, and related biological functions of ATAAD had been
identified, there was still a long way to go to translate these
findings into clinical applications.

It was worth emphasizing that comprehensive network
analysis provided a new perspective to understand the molec-
ular basis of ATAAD and promised to elucidate the complex

relationship between DEGs in complex diseases. Hub genes
were regulated by methylation and participated in the devel-
opment of ATAAD through immune inflammation and oxi-
dative stress responses. This study will help to identify new
DNA methylation markers and improve the understanding
and treatment level of ATAAD.

5. Conclusion

There were a large number of differentially expressed genes
in ATAAD patients, which mainly regulated immune inflam-
mation and oxidative stress functions. In particular, MYC,
ITGA2, RND3, BCL2, and PHLPP2 were regulated by meth-
ylation in ATAAD. Differential expression of these genes
may be associated with the progression of ATAAD, which
may be a diagnostic biomarker and a new therapeutic target
for ATAAD.

Data Availability

The data used in our study could be found in GSE52093 and
GSE98770.
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