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Abstract
Identifying	patterns	and	drivers	of	plant	community	assembly	has	long	been	a	central	
issue	in	ecology.	Many	studies	have	explored	the	above	questions	using	a	trait-	based	
approach;	however,	there	are	still	unknowns	around	how	patterns	of	plant	functional	
traits	 vary	with	 environmental	 gradients.	 In	 this	 study,	 the	 responses	of	 individual	
and	multivariate	trait	dispersions	of	134	species	to	soil	resource	availability	were	ex-
amined	based	on	 correlational	 analysis	 and	 torus-	translation	 tests	 across	 four	 spa-
tial	scales	 in	a	subtropical	forest,	China.	Results	 indicated	that	different	degrees	of	
soil	 resource	availability	had	different	effects	on	 trait	dispersions.	Specifically,	 lim-
ited	resource	(available	phosphorus)	showed	negative	relationships	with	trait	disper-
sions,	non-	limited	resource	(available	potassium)	showed	positive	relationships	with	
trait	 dispersions,	 and	 saturated	 resource	 (available	nitrogen)	had	no	effect	on	 trait	
dispersions.	Moreover,	compared	with	the	stem	(wood	density)	and	architectural	trait	
(maximum	height),	we	found	that	leaf	functional	traits	can	well	reflect	the	response	
of	plants	to	nutrient	gradients.	Lastly,	the	spatial	scale	only	affected	the	magnitude	
but	not	the	direction	of	the	correlations	between	trait	dispersions	and	environmental	
gradients.	Overall,	the	results	highlight	the	importance	of	soil	resource	availability	and	
spatial	scale	in	understanding	how	plant	functional	traits	respond	to	environmental	
gradients.
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1  |  INTRODUC TION

Identifying	 the	patterns	 and	drivers	of	 plant	 community	 assembly	
has	long	been	a	central	issue	in	ecology	(Chapman	&	McEwan,	2018;	
Chesson,	2000).	There	is	a	growing	consensus	that	the	assembly	of	
natural	plant	communities	is	governed	by	stochastic	(random	events	
related	 to	 dispersal,	 establish,	 mortality,	 etc.)	 and	 deterministic	
(Hubbell,	2001;	Macarthur	&	Levins,	1967)	processes.	In	particular,	
the	 two	deterministic	processes	environmental	 filtering	and	biotic	
interactions	have	attracted	more	attention	in	community	assembly	
research	(Kuczynski	&	Grenouillet,	2018;	Swenson	&	Enquist,	2009).	
Environmental	 filtering	 increases	species	similarity	 through	abiotic	
constraints,	while	biotic	interactions	lead	to	a	limitation	of	the	sim-
ilarity	of	coexisting	species	(Gotzenberger	et	al.,	2016;	Ramm	et	al.,	
2018;	 Spasojevic	&	 Suding,	 2012).	 Plant	 functional	 traits	 describe	
ecological	 differences	 between	 different	 species;	 however,	 which	
plant	functional	traits	could	well	reflect	plant	response	to	environ-
mental	 gradients	 and	 how	 they	 respond	 remain	 questions	 (Costa	
et	al.,	2017;	Wang	et	al.,	2018).

Trait	dispersion	is	a	measure	of	the	variation	in	functional	traits	
within	a	community.	Revealing	how	trait	dispersions	vary	with	envi-
ronmental	gradients	is	important	to	advance	the	predictive	ability	of	
functional	ecology	(Muscarella	&	Uriarte,	2016).	A	widely	used	ex-
planatory	proposition	for	the	relationships	between	trait	dispersions	
and	 environmental	 gradients	 is	 the	 stress-	dominance	 hypothesis	
(SDH),	which	predicts	that	environmental	filtering	plays	a	major	role	
in	 stressful	environments,	yielding	a	clustered	pattern	of	 trait	dis-
persion,	whereas	biotic	interactions	determine	community	assembly	
in	benign	environments,	 favoring	an	overdispersed	pattern	of	trait	
dispersion	(Coyle	et	al.,	2014;	Swenson	&	Enquist,	2007;	Weiher	&	
Keddy,	1995).	Therefore,	an	increasing	trait	dispersion	pattern	from	
stressful	to	benign	environments	should	be	expected	(Costa	et	al.,	
2017;	Spasojevic	&	Suding,	2012;	Wang	et	al.,	2018).	Although	many	
studies	have	 tested	 the	universality	of	 the	SDH	 in	 forest	 commu-
nities,	empirical	supports	are	still	contradictory	(Coyle	et	al.,	2014;	
Lhotsky	et	al.,	2016;	Spasojevic	&	Suding,	2012;	Wang	et	al.,	2018).

Firstly,	testing	of	the	SDH	depends	on	the	proxy	used	to	mea-
sure	 environmental	 gradients	 (Costa	 et	 al.,	 2017;	 Lhotsky	 et	 al.,	
2016;	Wang	 et	 al.,	 2018).	 It	 is	 noteworthy	 that	 different	 studies	
often	calculate	standing	biomass	as	proxies	of	environmental	gradi-
ents	(Costa	et	al.,	2017;	Lhotsky	et	al.,	2016;	Liu	et	al.,	2010)	and	this	
method	implicitly	assumes	that	the	environmental	stress	 increases	
with	decreasing	standing	biomass	(Grime,	1977;	Gross	et	al.,	2010).	
However,	the	variation	in	standing	biomass	could	be	driven	by	the	
topography,	 soil,	 or	 microhabitat	 properties	 in	 the	 research	 area	
(Gross	 et	 al.,	 2010;	Michalet,	 2006),	which	makes	 the	 comparison	
between	 different	 studies	 without	 basis	 and	 leads	 to	 conflicting	
empirical	 supports	 (Li	 et	 al.,	 2019).	 Secondly,	whether	 the	 SDH	 is	
true	for	different	functional	traits	is	still	unknown,	because	different	
functional	traits	may	respond	differently	to	environmental	gradients	
(Li	et	al.,	2019;	Wang	et	al.,	2018).

Although	soil	resource	availability	is	a	major	driving	force	in	com-
munity	trait	structure	(John	et	al.,	2007;	Katabuchi	et	al.,	2012;	Pinho	

et	al.,	2018),	it	has	been	rarely	considered	when	analyzing	how	trait	
dispersions	vary	with	environmental	gradients.	As	the	"big	three"	of	
crucial	soil	nutrients,	the	resource	availability	of	nitrogen	(N),	phos-
phorus	(P),	and	potassium	(K)	strongly	affects	competition	between	
plant	species,	as	species	vary	 in	their	ability	to	cope	with	different	
nutrient	resources	(Koerselman	&	Meuleman,	1996;	Mao	et	al.,	2019).	
In	response	to	N	limitation,	legumes	could	fix	atmospheric	N	in	a	sym-
biotic	 relationship	with	bacteria	 (Xu	et	al.,	2019),	and	plant	species	
could	also	coexist	by	varying	in	the	form	in	which	they	preferentially	
absorb	N	(e.g.,	NO3

−,	NH4
+,	or	organic	N)	in	an	N-	limited	community	

(Ehrenfeld	et	al.,	2005).	Moreover,	plants	can	respond	 in	two	ways	
to	overcome	P	 limitation:	 increasing	P-	use	efficiency	aboveground,	
and/or	 adjusting	 their	 P-	uptake	 strategies,	 including	 root	morpho-
logical,	physiological,	and	biotic	adaptations	(Ehrenfeld	et	al.,	2005;	
Kitayama,	2013;	Vitousek	et	al.,	2010).	Recent	studies	have	revealed	
that	 plants	 that	 had	 the	highest	mycorrhizal	 dependency	 could	 be	
supplied	90%	P	by	mycorrhizal	 fungi	 (van	der	Heijden	et	al.,	2006,	
2015).	Plants	could	also	absorb	nutrients	over	their	needs	to	prevent	
other	species	from	taking	over	(Van	Wijk	et	al.,	2003).	For	instance,	
when	there	is	plenty	of	K	in	the	soil	then	plants	secure	it	more	than	
the	 normal	 amount	 and	 these	 reserves	 could	 be	 used	 to	 support	
growth	 when	 external	 nutrients	 are	 not	 available	 (Chapin,	 1980).	
Overall,	plants	evolve	a	variety	of	strategies	to	cope	with	the	change	
in	soil	resource	availability,	which	can	ultimately	be	reflected	in	the	
distribution	patterns	of	plant	functional	traits	(Suding	et	al.,	2005).

Here,	we	tested	how	trait	dispersions	varied	with	soil	resource	
availability,	 which	 may	 contribute	 to	 reconciling	 the	 contrasting	
relationships	 between	 trait	 dispersions	 and	 environmental	 gra-
dients.	 We	 hypothesized	 that	 different	 degrees	 of	 soil	 resource	
availability	 (limited	 resource,	 non-	limited	 resource,	 and	 saturated	
resource)	 should	 have	 different	 effects	 on	 trait	 dispersion	 pat-
terns.	Firstly,	trait	dispersion	should	be	highest	in	habitats	with	the	
lowest	 concentration	 of	 limited	 resources,	 where	 competition	 for	
those	 resources	 is	 strongest	 (Figure	1).	 It	means	 that	 the	 less	 the	
limited	resources,	the	more	the	intense	competition	between	plants.	

F I G U R E  1 Conceptual	models	of	the	effects	of	soil	resource	
availability	on	trait	dispersion.	Limited	resource	has	a	significant	
negative	effect	on	trait	dispersion	from	more	stressful	to	less	
stressful	habitats;	Non-	limited	resource	has	a	significant	positive	
effect	on	trait	dispersion	from	less	benign	to	more	benign	habitats;	
saturated	resource	has	no	significant	effect	on	trait	dispersion	from	
less	saturated	to	more	saturated	habitats
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Empirical	 studies	have	 shown	 that	plants	 in	 infertile	 soils	produce	
more	roots	to	increase	the	competitive	ability	for	belowground	nu-
trients	(Chen	et	al.,	2021;	Schenk,	2006).	Secondly,	non-	limited	re-
sources	should	have	significant	positive	effects	on	trait	dispersions	
from	less	benign	to	more	benign	habitats	(Figure	1).	 In	fact,	plants	
can	adjust	energy	allocation	between	shoots	and	roots	in	different	
environments	 (Campbell	 et	 al.,	 1991).	 Previous	 studies	 found	 that	
aboveground	competition	for	light	was	most	intense	in	benign	habi-
tats	(Grime,	1977;	Weiss	et	al.,	2019;	Wilson	&	Tilman,	1993)	and	nu-
trient	addition	(single	nutrient	or	multiple	nutrients	in	combination)	
ultimately	shifted	biotic	interactions	from	belowground	competition	
for	 nutrients	 toward	 aboveground	 competition	 for	 light	 (Harpole	
et	al.,	2016).	Lastly,	saturated	resources	should	have	no	significant	
effects	on	trait	dispersions	because	these	resource	supplies	exceed	
the	biological	demands	(Figure	1).

It	 is	 undeniable	 that	 trait	 dispersion	 may	 depend	 on	 which	
functional	 traits	 are	 involved	 (Li	 et	 al.,	 2019;	Wang	 et	 al.,	 2018).	
As	different	functional	traits	are	often	related	to	different	ecolog-
ical	 strategies	 (Violle	 et	 al.,	 2007),	 testing	 our	 hypotheses	 based	
on	 single	 and	multivariate	 trait	 dispersions	 may	 provide	 more	 in-
sights	about	particular	niche	axes	(Lhotsky	et	al.,	2016;	Spasojevic	
&	 Suding,	 2012).	Moreover,	 the	 detectability	 of	 trait	 dispersion	 is	
also	scale-	dependent	(Cavender-	Bares	et	al.,	2009;	Weiher	&	Keddy,	
1995;	Zhang	et	al.,	2018).	For	example,	trait	overdispersion	has	been	
more	often	detected	at	small	spatial	scales	where	competitive	ad-
versity	predominates	(Li	et	al.,	2019;	Price	et	al.,	2017).	Additionally,	
previous	studies	also	found	that	the	relative	importance	of	environ-
mental	variables	to	community	assembly	increased	with	increasing	
spatial	 scales	 (Chase,	 2014;	 Legendre	 et	 al.,	 2009).	 Thus,	multiple	
spatial	scale	analysis	is	helpful	to	evaluate	the	relationships	between	
trait	dispersions	and	environmental	gradients,	since	a	large	number	
of	quadrats	 represent	a	wide	 range	of	 spatial	variability	 in	 soil	 re-
source	availability	and	species	composition	(Coyle	et	al.,	2014).

The	20-	ha	 subtropical	 forest	plot	 in	Dinghushan	 (DHS),	China,	
is	 characterized	by	 the	 following	soil	 features:	 (1)	 limited	available	
phosphorus	(AP)	due	to	low	soil	pH	caused	by	nitrogen	deposition	
and	highly	weathered	soil	 feature	of	 the	old	age	of	 this	 forest,	 (2)	
non-	limited	available	potassium	(AK)	and	(3)	saturated	available	ni-
trogen	(AN)	due	to	long-	term	high	nitrogen	deposition	in	this	region	
(Fang	et	al.,	2006;	Koerselman	&	Meuleman,	1996;	Lin	et	al.,	2013;	
Lu	et	al.,	2010;	Mo	et	al.,	2006).	All	of	these	soil	features	provide	an	
ideal	background	for	examining	how	trait	dispersions	vary	with	soil	
resource	availability.	Here,	we	analyzed	trait	dispersion	patterns	of	
134	species	across	six	functional	traits	and	four	spatial	scales	while	
taking	 into	 account	 the	 edaphic	 data.	 We	 hypothesized	 that:	 (1)	
given	that	plants	respond	differently	to	the	change	of	soil	resource	
availability,	 different	 degrees	 of	 soil	 resource	 availability	 should	
have	different	effects	on	trait	dispersion	patterns.	Specifically,	the	
limited	 AP	 should	 have	 negative	 effects	 on	 trait	 dispersions;	 the	
non-	limited	 AK	 should	 have	 positive	 effects	 on	 trait	 dispersions;	
and	the	saturated	AN	should	have	no	significant	effects	on	trait	dis-
persions	 across	 spatial	 scales;	 (2)	 as	 different	 functional	 traits	 are	
often	 related	 to	 different	 ecological	 strategies,	 their	 responses	 to	

environmental	gradients	may	differ	markedly;	and	(3)	because	both	
trait	 dispersion	 and	 environmental	 gradient	 are	 scale-	dependent,	
their	relationships	may	vary	with	the	spatial	scale.

2  |  MATERIAL S AND METHODS

2.1  |  Study location

The	 study	 was	 conducted	 in	 the	 20-	ha	 (500	 m	 ×	 400	 m)	 plot,	
which	 was	 established	 between	 December	 2004	 and	 April	
2005	 in	 Dinghushan	 Nature	 Reserve	 (23°09′21″–	23°11′30″N,	
112°30′39″–	112°33′41″E),	 Guangdong	 Province,	 China	 (Li	 et	 al.,	
2019).	This	forest	is	well	protected	from	anthropogenic	disturbance	
for	over	400	years	and	is	treated	as	climax	vegetation	in	south	China	
(Zhang	 et	 al.,	 2018).	 The	mean	 annual	 temperature	 in	 this	 plot	 is	
20.9°C,	with	the	highest	monthly	average	temperature	being	28.0°C	
in	 July	 and	 the	 lowest	 being	 12.6°C	 in	 January.	 The	mean	 annual	
precipitation	is	1929	mm,	approximately	70%	of	which	falls	between	
April	and	September	(Li	et	al.,	2019).	The	topography	in	the	DHS	plot	
is	very	complex	with	elevations	varied	from	237.1	m	to	466.2	m,	con-
vexity	varied	from	−13.4	to	17.7	degree,	and	slope	ranging	from	4.4	
to	88.6	degree	at	20	m	×	20	m	spatial	scale	(Zhang	et	al.,	2018).	The	
tree	census	in	this	plot	followed	a	standard	protocol	and	included	all	
stems	with	a	diameter	at	the	breast	height	(DBH)	larger	than	1.0	cm	
at	 1.3	m	above	 the	 ground	 (https://www.fores	tgeo.si.edu/).	 Every	
individual	 tree	 in	 the	 plot	 has	 been	 revisited	 every	 5	 years	 since	
2005.	Here,	the	first	tree	census	data	collected	in	2005	were	used	
in	the	following	analyses	with	a	total	number	of	71,336	individuals	
from	51	families,	110	genera,	and	183	species.

2.2  |  Functional trait measurement

For	the	134	species	that	accounted	for	99.0%	of	all	individuals	with	
DBH	≥	1.0	cm,	six	plant	functional	traits	including	a	stem	trait	(wood	
density,	WD),	 an	 architectural	 trait	 (maximum	 height,	 Hmax),	 and	
four	leaf	traits:	leaf	area	(LA),	specific	leaf	area	(SLA),	leaf	dry	matter	
content	 (LDMC),	 and	 leaf	 thickness	 (LT),	were	measured	 (Li	 et	 al.,	
2019;	Shen	et	al.,	2016).	Traits	selected	in	this	study	are	expected	
to	be	good	predictors	of	the	response	of	plant	species	to	variation	
in	 resource	 availability	 (Li	 et	 al.,	 2019;	 Pinho	 et	 al.,	 2018;	 Poorter	
et	al.,	2008).	LA	(cm2)	is	related	to	light	acquisition	(Hao	et	al.,	2018).	
SLA	 (cm2 g−1)	 is	 a	 good	 indicator	 of	 the	 potential	 relative	 growth	
rate	of	plants	 (Hao	et	al.,	2018;	Wright	et	al.,	2004).	LDMC	(g	g−1)	
is	associated	with	leaf	 life	span	and	correlated	with	leaf	resistance	
(Cornelissen	et	al.,	2003;	Vaieretti	et	al.,	2007).	LT	(mm)	has	impor-
tant	consequences	for	leaf	water	content	and	nutrient	cycling	(Afzal	
et	al.,	2017;	Pérez-	Harguindeguy	et	al.,	2016).	WD	 (g	cm−3)	 repre-
sents	a	trade-	off	between	low	construction	costs	and	high	growth	
rates	 vs.	 high	 construction	 costs	 and	 low	 growth	 rates	 (Poorter	
et	al.,	2008).	Hmax	(m)	 is	 indicative	of	plant	competitive	vigor	and	
strategy	(Hao	et	al.,	2018).	Wood	samples	for	each	species	followed	

https://www.forestgeo.si.edu/
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Cornelissen	et	al.	(2003),	and	WD	was	calculated	as	the	ratio	of	dry	
mass	to	fresh	volume.	Specifically,	6–	12	individuals	were	randomly	
selected	for	each	species	and	10	mature	leaves	for	each	individual	
were	 measured	 (Li	 et	 al.,	 2019).	 Detailed	 sampling	 protocols	 for	
these	 six	 functional	 traits	 were	 described	 in	 previous	 studies	 (Li	
et	al.,	2019;	Shen	et	al.,	2016).	We	calculated	the	mean	value	of	each	
trait	for	each	species	(Li	et	al.,	2019)	to	represent	the	characteristics	
of	 species	because	of	 the	 larger	 variations	 in	 functional	 traits	 be-
tween	than	within	species	(Garnier	et	al.,	2001;	Shipley,	2007).

2.3  |  Soil data measurements

Because	of	the	thin	soil	layer	in	the	DHS	plot,	topsoil	(0–	10	cm	depth)	
was	collected	using	a	5.0-	cm-	diameter	soil	auger	after	removing	the	
litters	on	the	soil	surface	based	on	regular	grids	of	30	m	×	30	m	(Lin	
et	al.,	2013).	Each	of	the	238	grid	points	was	paired	with	two	addi-
tional	sample	points	at	2,	5,	or	15	m	in	a	random	compass	direction	
from	the	grid	to	capture	fine-	scale	variation	in	soil	properties	(John	
et	al.,	2007).	In	total,	710	soil	samples	(four	of	714	samples	were	not	
taken	because	they	fell	in	creeks	or	on	rocks)	were	collected	and	nine	
soil	properties	were	measured	(Lin	et	al.,	2013),	including	soil	mois-
ture	(SM),	organic	matter	(OM),	soil	pH	(pH),	total	phosphorus	(TP),	
available	phosphorus	(AP),	total	potassium	(TK),	available	potassium	
(AK),	total	nitrogen	(TN),	and	available	nitrogen	(AN).	Kriging	meth-
ods	were	used	to	obtain	the	predicted	values	of	the	nine	soil	proper-
ties	for	each	quadrat	at	5	m	×	5	m,	10	m	×	10	m,	20	m	×	20	m,	and	
50 m ×	50	m	spatial	scale	(Gallardo,	2003).	Descriptive	statistics	of	
the	edaphic	variables	across	four	spatial	scales	are	given	in	Table	1.

2.4  |  Statistical analysis

2.4.1  |  Comparing	the	observed	trait	dispersions	
with	those	from	null	models

Trait	 dispersion	 is	 quantified	 by	 a	 multidimensional	 functional	 di-
versity	 index:	 functional	 dispersion	 (FDis)	 (Laliberté	 &	 Legendre,	

2010).	FDis	is	defined	as	the	mean	distance	of	individual	species	to	
the	centroid	of	all	species	in	the	multidimensional	trait	space	within	
a	 given	 community	 (Laliberté	 &	 Legendre,	 2010).	 Among	 several	
available	metrics	of	functional	diversity	(Mouchet	et	al.,	2010),	the	
main	reasons	why	FDis	was	selected	were	as	follows:	Firstly,	FDis	is	
independent	of	species	richness	 (Zhang	et	al.,	2018);	 furthermore,	
FDis	can	take	relative	abundances	of	the	species	into	account	(Wang	
et	 al.,	 2018);	 finally,	 FDis	 can	 be	 used	 for	 single	 or	multiple	 traits	
(Spasojevic	&	Suding,	2012).	Moreover,	FDis	well	represents	the	de-
gree	of	 trait	 dissimilarity	 among	 coexisting	 species,	 and	 thus,	 it	 is	
closely	related	to	the	strategies	of	resource	utilization	(Chiang	et	al.,	
2016;	Hao	et	al.,	2018).

Before	 the	 analysis,	 all	 of	 the	 six	 functional	 traits	were	 res-
caled	to	center	on	zero	with	a	standard	deviation	of	1	to	eliminate	
the	 effects	 of	 the	magnitudes	 of	 the	 data	 on	 the	 calculation	 of	
FDis	 (Hao	 et	 al.,	 2018;	 Villeger	 et	 al.,	 2008).	 Besides,	 once	 the	
species-	species	 Euclidean	 distance	 matrix	 is	 obtained	 from	 the	
species–	trait	 matrix,	 a	 principal	 coordinates	 analysis	 (PCoA)	 is	
then	performed	on	 the	distance	matrix,	 and	 the	 resulting	PCoA	
axes	 were	 used	 as	 the	 new	 “traits”	 together	 with	 a	 species–	
abundance	matrix	to	compute	the	FDis	(Hao	et	al.,	2018;	Laliberté	
&	Legendre,	2010).	Detailed	algorithms	on	how	to	perform	mul-
tivariate	 dispersions	 in	 PCoA	 space	 from	 the	 species–	species	
Euclidean	distance	matrix	and	how	to	correct	for	negative	eigen-
values	can	refer	to	Anderson	(2006).	FDis	was	calculated	by	the	
R	package	 “FD”	 (Laliberté	et	 al.,	 2014).	To	 test	whether	 any	ob-
served	trait	dispersion	is	a	random	distribution	or	shows	trait	clus-
tering	or	trait	overdispersion	within	a	quadrat,	we	generated	999	
random	assemblages	for	each	quadrat,	keeping	the	same	number	
of	species	abundances	and	occurrence	frequency	in	the	DHS	plot	
and	only	randomly	shuffling	taxon	names	(Yang	et	al.,	2014).	The	
null	models	were	 run	by	 the	R	package	 “picante”	 (Kembel	 et	 al.,	
2010).	Based	on	the	999	random	assemblages,	a	standardized	ef-
fect	size	of	FDis	(ZFDis)	for	each	quadrat	following	Gurevitch	et	al.	
(1992)	was	calculated:

ZFDis =
(FDisobserved − FDisrandom)

FDissd

5 m × 5 m 10 m × 10 m 20 m × 20 m 50 m × 50 m

pH 3.75 ± 0.08 3.75 ± 0.08 3.75 ±	0.09 3.74	±	0.09

SM	(%) 18.84	± 2.67 18.83 ± 2.67 18.80 ± 2.71 18.72 ±	2.59

OM	(g	kg−1) 60.95	±	10.93 60.97	± 11.01 60.98	± 11.21 61.22 ±	11.74

AN	(mg	kg−1) 201.74	± 35.50 201.74	± 35.73 201.79	± 36.26 201.99	± 37.30

AP	(mg	kg−1) 1.81 ± 1.06 1.81 ± 1.05 1.80 ±	1.04 1.77 ± 1.00

AK	(mg	kg−1) 55.04	±	19.20 55.00 ±	19.30 54.99	±	19.58 54.81	±	19.85

TN	(g	kg−1) 1.18 ±	0.49 1.18 ± 0.50 1.18 ± 0.51 1.19	± 0.52

TP	(g	kg−1) 0.28 ± 0.05 0.28 ± 0.05 0.28 ± 0.05 0.28 ± 0.06

TK	(g	kg−1) 18.28 ±	3.34 18.24	± 3.35 18.15 ±	3.41 17.89	±	3.34

Note: The	mean	value	±	standard	deviation	of	each	variable	at	each	spatial	scale	was	shown.

TA B L E  1 Descriptive	statistics	of	the	
edaphic	variables	across	four	spatial	scales	
in	the	20-	ha	Dinghushan	plot,	China
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where	 FDisobserved	 and	 FDisrandom	 represent	 the	 observed	 FDis	 and	
mean	FDis	values	of	the	simulated	999	random	assemblages,	respec-
tively.	FDissd	represents	the	standard	deviation	of	FDis	values	gener-
ated	from	the	999	random	assemblages.	Positive	and	negative	ZFDis	
values	 represent	 trait	overdispersion	and	 trait	 clustering,	 suggesting	
that	community	assembly	is	dominated	by	biotic	interactions	and	en-
vironmental	filtering,	respectively	(Swenson,	2014;	Wang	et	al.,	2018).	
Firstly,	ZFDis	for	a	multivariate	trait	that	considered	all	traits	in	com-
bination	was	calculated.	Secondly,	ZFDis	for	each	individual	trait	was	
also	quantified.	It	should	be	noted	that	the	trait	dispersions	in	the	DHS	
plot	were	calculated	at	four	spatial	scales:	5	m	×	5	m,	10	m	×	10	m,	
20 m ×	20	m,	and	50	m	×	50	m.	To	provide	context	for	our	trait-	based	
analyses,	descriptive	statistics	(e.g.,	the	mean,	minimum,	and	maximum	
values)	 for	 species	abundance	and	 richness	across	 spatial	 scales	are	
given	in	Table	2.

2.4.2  |  Principal	components	analysis

Because	the	axis	scores	of	PCA	based	on	soil	factors	were	usually	
calculated	 as	 indicators	 of	 environmental	 gradients	 (Costa	 et	 al.,	
2017;	Coyle	et	al.,	2014;	John	et	al.,	2007),	we	also	conducted	the	
PCA	from	the	R	package	“vegan”	(Oksanen	et	al.,	2017)	for	the	nine	
measured	soil	variables.	To	determine	how	many	PCA	axes	should	
be	retained,	Horn's	parallel	analysis	was	also	conducted	and	compo-
nents	with	adjusted	eigenvalues	greater	than	1	are	retained	(Dinno,	
2018).	Finally,	the	retained	PCA	axes	were	selected	as	one	kind	of	
composite	indicator	of	the	environmental	gradients.

2.4.3  |  Correlational	analysis	and	torus-	
translation	test

Pearson's	 correlation	 coefficient	 (r)	 was	 calculated	 between	 trait	
dispersion	and	each	of	the	five	environmental	variables	(PC1,	PC2,	
AN,	AP,	and	AK)	at	four	spatial	scales.	We	tested	whether	r	between	
trait	dispersion	and	each	environmental	variable	at	each	spatial	scale	
was	significant	using	torus-	translation	tests,	which	take	into	account	
the	inherent	spatial	autocorrelation	in	both	trait	dispersions	and	en-
vironmental	 variables	 (Harms	 et	 al.,	 2001).	 Torus-	translation	 tests	
compare	observed	r	between	trait	dispersion	and	each	environmen-
tal	 variable	with	 r	 predicted	under	 a	null	model	 in	which	 the	 trait	
dispersion	is	distributed	randomly	with	respect	to	quadrat.	To	obtain	
the	predicted	values	of	r,	each	spatial	distribution	map	of	an	environ-
mental	variable	is	overlaid	on	the	trait	dispersion	map	at	each	spatial	
scale,	 and	 translated	while	 the	 trait	dispersion	map	 remains	 fixed,	
and	the	edges	of	the	distribution	map	of	each	environmental	varia-
ble	wrap	back	on	each	of	the	four	cardinal	directions	(up,	down,	left,	
and	right)	(Comita	et	al.,	2007).	With	the	20	m	×	20	m	spatial	scale	in	
this	plot	(consisting	of	500	20	m	×	20	m	quadrats)	for	example,	500	
unique	 torus-	translated	 distribution	 maps	 of	 each	 environmental	
variable	were	 initially	possible	 (including	the	true	distribution	map	
of	each	environmental	variable).	From	this,	it	is	possible	to	generate	

three	 original	maps	 to	 continue	 this	 two-	dimensional	 torus	 trans-
lation:	mirror	 image,	 180	 rotation,	 and	 180	 rotation	 of	 the	mirror	
image.	 In	 total,	 these	procedures	provide	another	1500	translated	
maps	(not	including	the	true	distribution	map	of	each	environmental	
variable),	each	of	which	provides	a	predicted	r	value.	p-	values	were	
calculated	based	on	 the	number	of	 times	 that	 the	observed	 r	was	
higher	or	lower	than	the	predicted	r	values	(Comita	et	al.,	2007).	If	
the observed r	value	was	lower	than	5.0%	or	higher	than	95.0%	of	
the	expected	 r	 values	 in	a	given	spatial	 scale,	 then	we	could	 infer	
that	the	environmental	variable	has	a	significant	negative	or	positive	
effect	on	 trait	dispersion	at	a	 significance	 level	of	0.05.	Overall,	 a	
total	of	32,000,	8000,	and	320	translated	maps	were	generated	at	
5 m ×	5	m,	10	m	×	10	m,	and	50	m	×	50	m	spatial	scale,	respectively.	
For	each	environmental	variable,	r	values	were	plotted	against	the	
spatial	scales	(quadrat	area),	and	their	trends	were	tested	by	fitting	
linear	regression	models.	All	analyses	were	conducted	in	R	3.5.1	(R	
Core	Team,	2018).

3  |  RESULTS

3.1  |  Environmental gradients

AP	in	DHS	plots	ranged	from	0.40	to	4.87	mg	kg−1	(Figure	2a);	AK	
ranged	from	30.11	to	121.18	mg	kg−1	 (Figure	2b);	AN	ranged	from	
133.26	to	291.09	mg	kg−1	(Figure	2c).	This	set	of	edaphic	factors	was	
also	described	by	the	PCA.	According	to	Horn's	parallel	analysis,	2	
axes	should	be	retained	for	all	spatial	scales	considered	except	for	
50 m ×	50	m	spatial	scale	(Figure	S1).	To	ensure	the	consistency	of	
analysis,	 the	 first	 two	axes	of	PCA	for	each	spatial	 scale	were	se-
lected	for	further	analysis.	Specifically,	they	explained	77.9%,	78.0%,	
77.9%,	and	79.1%	of	the	variance	across	four	spatial	scales,	respec-
tively	(Table	3).	In	all	cases,	PC1	showed	a	soil	fertility	gradient	from	
infertile	to	fertile	habitats	(Table	3).	It	should	be	addressed	that	AP,	
pH,	and	SM	were	negatively	correlated	with	the	PC1	(Table	3).	PC2	
represented	 a	 gradient	 from	 stressful	 (low	 TK	 and	 SM)	 to	 benign	
(high	TK	and	SM)	conditions	(Table	3).

3.2  |  Trait dispersion patterns along with 
spatial scales

We	quantified	ZFDis	for	a	multivariate	trait	that	considered	all	traits	
in	 combination.	Overall,	 trait	 dispersions	 in	 our	 plot	 showed	both	
trait	clustering	and	overdispersion	patterns	across	four	spatial	scales	
(Figure	3).	Moreover,	interquartile	ranges	of	the	multivariate	trait	dis-
persions	were	0.31,	0.39,	0.52,	and	0.55	at	5	m	×	5	m,	10	m	×	10	m,	
20 m ×	 20	m,	 and	50	m	×	 50	m	 spatial	 scale,	 respectively.	 ZFDis	
for	each	trait	individually	was	also	quantified,	and	the	interquartile	
ranges	of	these	trait	dispersions	also	increased	with	increasing	spa-
tial	scales	except	for	LA	(Table	4).	Overall,	a	wider	range	of	spatial	
variability	in	patterns	of	plant	functional	traits	was	detected	with	the	
increasing	spatial	scale.



6 of 14  |     LI et aL.

3.3  |  The effects of soil resource availability on 
trait dispersions

Different	degrees	of	soil	resource	availability	showed	distinct	rela-
tionships	with	the	multivariate	trait	dispersions	across	spatial	scales	
(Figure	4).	Specifically,	PC2	and	non-	limited	AK	showed	significant	
positive	relationships	with	multivariate	trait	dispersions	(Figure	4b,d)	
and	limited	AP	had	significant	negative	relationships	with	trait	dis-
persions	across	spatial	scales	(Figure	4c).	However,	neither	PC1	nor	
saturated	AN	exhibited	significant	correlations	with	trait	dispersions	
across	spatial	scales	(Figure	4a,e).

Moreover,	 the	effects	of	soil	 resource	availability	on	most	pat-
terns	of	individual	leaf	functional	traits	showed	similar	results	with	
the	multivariate	trait	dispersion	(Figures	5-	7).	However,	the	architec-
tural	trait	(Hmax)	and	stem	trait	(WD)	mainly	showed	no	responses	
to	environmental	 gradients	 (Figures	5-	7).	 It	 should	be	pointed	out	

that	 trait	 dispersions	 of	 Hmax	 showed	 positive	 correlations	 with	
AK	across	spatial	scales	 (Figure	6).	Overall,	 the	magnitudes	of	cor-
relation	 between	 environmental	 variables	 and	 trait	 dispersions	
increased	from	small	to	large	spatial	scales,	while	directions	of	cor-
relation	between	environmental	variables	and	trait	dispersions	did	
not	change	from	small	to	large	spatial	scales	(Figures	5-	7).

4  |  DISCUSSION

Many	studies	have	stressed	the	importance	of	abiotic	environments	
to	patterns	of	plant	functional	traits	(Chapman	&	McEwan,	2018;	Liu	
et	al.,	2013;	Uriarte	et	al.,	2004),	but	how	trait	dispersions	respond	
to	soil	resource	availability	remains	elusive.	Our	results	found	that	
the	relationships	between	trait	dispersion	and	environmental	gradi-
ent	depended	on	soil	resource	availability	and	spatial	scale.

Spatial scale Number of quadrats Abundance (stem) Richness (species)

5 m × 5 m 8000 9.02	±	0.06	(1,	45) 5.85 ±	0.03	(1,	24)

10 m × 10 m 2000 35.34	±	0.38	(1,	114) 14.14	±	0.11	(1,	33)

20 m × 20 m 500 141.29	±	2.55	(30,	358) 28.07 ±	0.32	(10,	55)

50 m × 50 m 80 883.08 ±	31.31	(324,	1648) 55.60 ±	1.06	(39,	79)

Note: The	values	out	of	the	brackets	represent	mean	±	SE,	and	those	in	the	brackets	represent	the	
minimum	and	maximum	values,	respectively.

TA B L E  2 Mean	species	abundance	and	
richness	across	four	spatial	scales	in	the	
20-	ha	Dinghushan	plot,	China

F I G U R E  2 Spatial	distribution	patterns	
of	AP	(a),	AK	(b),	and	AN	(c)	in	the	20-	ha	
DHS	plot,	China
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4.1  |  The effect of limited soil resource on 
patterns of plant functional traits

P	 limitation	 often	 occurs	 in	 tropical	 and	 subtropical	 forest	 eco-
systems	 (Mo	et	al.,	2006;	Yu	et	al.,	2018).	Here,	we	expected	that	
the	 less	 the	soil	 resource	availability,	 the	more	 the	 intense	below-
ground	 competition	 would	 be	 (Chen	 et	 al.,	 2021;	 Tilman,	 1982;	

Zemunik	et	al.,	2015),	 leading	to	an	increasing	trait	dispersion	pat-
tern.	 Consistent	 with	 our	 hypothesis,	 limited	 soil	 resource	 (AP)	
showed	negative	relationships	with	the	multivariate	trait	dispersions	
across	spatial	scales	 in	this	subtropical	 forest	 (Figure	4),	 indicating	
the	increasing	importance	of	niche	partitioning	for	belowground	re-
sources	in	limited	AP	habitats.	A	similar	result	was	also	observed	in	
the	 alpine	 tundra	 (Spasojevic	&	Suding,	 2012).	Wilson	 and	Tilman	

TA B L E  3 Factor	loadings	of	the	first	two	axes	of	principal	components	analysis	on	edaphic	variables	across	four	spatial	scales

5 m × 5 m 10 m × 10 m 20 m × 20 m 50 m × 50 m

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

pH −0.362 0.175 −0.361 0.175 −0.359 0.175 −0.352 0.185

SM	(%) −0.184 0.671 −0.186 0.670 −0.188 0.669 −0.211 0.650

OM	(g	kg−1) 0.371 −0.016 0.371 −0.015 0.372 −0.014 0.373 −0.014

AN	(mg	kg−1) 0.391 0.059 0.391 0.057 0.391 0.055 0.389 0.041

AP	(mg	kg−1) −0.308 −0.057 −0.307 −0.056 −0.306 −0.053 −0.300 −0.035

AK	(mg	kg−1) 0.343 0.092 0.343 0.092 0.344 0.094 0.346 0.112

TN	(g	kg−1) 0.395 −0.024 0.394 −0.020 0.394 −0.014 0.392 0.014

TP	(g	kg−1) 0.379 0.002 0.379 0.001 0.379 −0.002 0.378 −0.005

TK	(g	kg−1) 0.182 0.709 0.183 0.710 0.183 0.712 0.190 0.726

Cumulative	
proportion

0.647 0.779 0.648 0.780 0.649 0.779 0.666 0.791

F I G U R E  3 Distribution	patterns	of	the	
multivariate	trait	dispersion	(ZFDis,	the	
standardized	effect	size	of	trait	dispersion)	
at	four	spatial	scales.	The	color	bar	on	
the	right	of	each	map	indicates	the	ZFDis	
values.	“ZFDis	>	0”	indicates	that	trait	
dispersion	is	overdispersed,	and	“ZFDis	
<	0”	indicates	that	trait	dispersion	is	
clustered.	The	lines	in	each	map	represent	
the	contour	lines	at	20-	m	intervals
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(1993)	also	found	that	belowground	competition	was	most	intense	
in	the	lowest	N	availability	plots	and	decreased	significantly	with	N	
addition	in	an	N-	limited	sand	plain.

P	 is	 primarily	 derived	 from	 bedrock	weathering,	 and	 its	 avail-
ability	declines	with	the	increase	in	soil	age	(Wright	et	al.,	2011;	Yu	
et	al.,	2018).	Foliar	N:P	ratio	has	been	proposed	as	an	effective	in-
dicator	of	P	 limitation	 (Güsewell,	2004;	Koerselman	&	Meuleman,	
1996).	Liu	et	al.	(2013)	reported	the	mean	value	of	foliar	N:P	ratios	
in	this	forest	was	29.6,	which	far	exceeded	the	critical	threshold	of	
12.5	to	26.3	(Tessier	&	Raynal,	2003).	Moreover,	the	average	con-
tent	of	AP	is	1.81	mg	kg−1	(Figure	2a),	indicating	severe	P	limitation	
in	the	DHS	plot.

Here,	 we	 also	 explored	 how	 individual	 trait	 responded	 to	 P	
limitation.	 Compared	with	 the	 stem	 (WD)	 and	 architectural	 traits	
(Hmax),	leaf	traits	are	more	sensitive	to	P	limitation	and	these	trait	
dispersions	were	highest	in	the	most	P-	deficient	habitats.	Except	for	
fulfilling	 a	 structural	 role,	P	plays	 an	 integral	 role	 in	photosynthe-
sis,	plant	growth,	and	resistance	to	pathogens	and	abiotic	stresses	
(Kitayama,	2013;	Thuynsma	et	al.,	2016).	Overall,	the	results	showed	
that	leaf	functional	traits	could	well	reflect	the	adaptive	strategies	

of	 plants	 to	 survive	 in	 low	 P	 habitats	 (Roy-	Bolduc	 &	 Hijri,	 2011;	
Thuynsma	et	al.,	2016).

4.2  |  The effect of non- limited soil resource on 
patterns of plant functional traits

Plants	 can	 store	 more	 than	 normal	 amounts	 of	 K	 to	 support	
growth,	 and	 this	 phenomenon	 is	 called	 luxury	 consumption	
(Chapin,	1980).	K	is	considered	seldom	limited	plant	growth	in	the	
natural	community	(Koerselman	&	Meuleman,	1996).	The	average	
content	 of	AK	 is	 55.03	mg	 kg−1	 (Figure	 2b).	 The	moderate	 sup-
ply	 of	AK	 (Sun,	 2005)	 indicates	K	 is	 a	 non-	limited	 soil	 resource	
in	 the	DHS	plot.	 Thus,	we	predicted	 trait	 dispersions	 increased	
with	the	content	of	the	non-	limited	AK	from	less	benign	to	more	
benign	habitats.	 In	 line	with	our	hypothesis,	 significant	positive	
relationships	 between	AK	 and	 the	multivariate	 trait	 dispersions	
indicate	 that	 the	 intensity	of	aboveground	competition	 for	 light	
may	be	greater	in	more	benign	habitats	(Weiss	et	al.,	2019;	Wilson	
&	Tilman,	1993).

5 m × 5 m 10 m × 10 m 20 m × 20 m 50 m × 50 m

Hmax 0.33 0.38 0.55 0.86

LA 0.25 0.24 0.21 0.24

SLA 0.30 0.36 0.46 0.62

LDMC 0.31 0.35 0.42 0.48

LT 0.33 0.34 0.42 0.73

WD 0.29 0.34 0.41 0.81

Abbreviations:	Hmax,	maximum	height;	LA,	leaf	area;	LDMC,	leaf	dry	matter	content;	LT,	leaf	
thickness;	SLA,	specific	leaf	area;	WD,	wood	density.

TA B L E  4 Interquartile	ranges	of	trait	
dispersions	for	individual	trait	across	four	
spatial	scales	in	the	20-	ha	Dinghushan	
plot,	China

F I G U R E  4 Pearson's	correlation	
coefficient	(r)	between	different	
environmental	variables	and	multivariate	
trait	dispersion	(ZFDis,	the	standardized	
effect	size	of	trait	dispersion)	across	four	
spatial	scales.	Black	and	white	circles,	
respectively,	indicate	significant	and	
nonsignificant	effects	of	environmental	
variables	on	trait	dispersions	at	a	
significance	level	of	0.05	using	torus-	
translation	tests.	Lines	are	trends	fitted	
by	the	linear	regression	models,	and	the	
shaded	areas	represent	95%	confidence	
intervals
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The	results	based	on	the	individual	 leaf	and	architectural	traits	
also	 support	 our	 hypothesis.	 K	 plays	 essential	 roles	 in	 plant	 pro-
cesses,	 including	regulation	of	plants’	responses	to	light	and	stress	
resistance	 (Traenkner	et	al.,	2018;	Wang	et	al.,	2013).	For	 the	 leaf	
traits,	 LA	and	SLA	are	 associated	with	photosynthesis	 (Hao	et	 al.,	
2018;	Wright	et	al.,	2004),	and	LDMC	and	LT	are	related	to	plant	re-
sistance	to	physical	hazards	(Afzal	et	al.,	2017;	Vaieretti	et	al.,	2007).	
Thus,	we	can	 infer	that	competing	for	more	AK	not	only	 improves	
photosynthesis	 but	 also	 increases	 resistance	 to	 biotic	 and	 abiotic	
stress.	 Moreover,	 trait	 dispersion	 of	 Hmax	 also	 showed	 a	 posi-
tive	 relationship	with	 the	 increasing	 content	 of	AK,	 indicating	 the	

important	role	of	Hmax	in	determining	the	coexistence	of	species	at	
different	vertical	layers	(Li	et	al.,	2019).

It	should	be	noted	that	there	 is	still	no	clear	consensus	on	which	
functional	traits	are	more	related	to	which	ecological	processes	(Lhotsky	
et	al.,	2016;	Yang	et	al.,	2018).	Because	different	functional	traits	may	
represent	different	niche	axes	(Li	et	al.,	2019;	Violle	et	al.,	2007),	how	
these	functional	traits	respond	to	specific	environmental	gradients	re-
mains	to	be	further	explored	(Spasojevic	&	Suding,	2012).	Overall,	our	
results	confirmed	that	leaf	functional	traits	can	well	reflect	the	response	
of	plants	to	nutrient	gradients,	while	the	stem	trait	(e.g.,	WD)	was	not	an	
effective	indicator	of	plant	response	to	nutrient	gradients.

F I G U R E  5 Pearson's	correlation	
coefficient	(r)	between	limited	AP	
and	individual	trait	dispersion	(ZFDis,	
the	standardized	effect	size	of	trait	
dispersion)	across	four	spatial	scales.	
Black	and	white	circles,	respectively,	
indicate	significant	and	nonsignificant	
effects	of	environmental	variables	on	
trait	dispersions	at	a	significance	level	of	
0.05	using	torus-	translation	tests.	Lines	
are	trends	fitted	by	the	linear	regression	
models,	and	the	shaded	areas	represent	
95%	confidence	intervals

F I G U R E  6 Pearson's	correlation	
coefficient	(r)	between	non-	limited	AK	
and	individual	trait	dispersion	(ZFDis,	
the	standardized	effect	size	of	trait	
dispersion)	across	four	spatial	scales.	
Black	and	white	circles,	respectively,	
indicate	significant	and	nonsignificant	
effects	of	environmental	variables	on	
trait	dispersions	at	a	significance	level	of	
0.05	using	torus-	translation	tests.	Lines	
are	trends	fitted	by	the	linear	regression	
models,	and	the	shaded	areas	represent	
95%	confidence	intervals
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4.3  |  The effect of saturated soil resource on 
patterns of plant functional traits

Consistent	with	our	hypothesis,	we	found	the	saturated	AN	had	no	
significant	 effects	 on	 the	 individual	 and	 multivariate	 trait	 disper-
sions.	The	average	content	of	AN	is	201.76	mg	kg−1	in	the	DHS	plot	
(Figure	2c).	Due	to	the	increase	in	intensified	anthropogenic	activi-
ties,	total	wet	N	deposition	and	total	dry	N	deposition	were	34.4	kg	
N·ha−1·y−1	and	14.2	kg	N·ha−1·y−1	in	2009–	2010	in	this	plot,	respec-
tively	 (Lu	et	al.,	2018).	Fang	et	al.	 (2006)	also	pointed	out	that	the	
DHS	plot	can	be	considered	as	an	N-	saturated	ecosystem,	resulting	
in	increased	leaching	of	various	forms	of	N.

Although	N	deposition	was	thought	to	play	a	major	role	in	biodi-
versity	loss	due	to	its	effects	on	soil	acidification,	aluminum	mobility,	
nutrient	base	cations,	and	the	ratios	of	N	versus	other	elements	in	
plant	tissue	(Gress	et	al.,	2007;	Tian	et	al.,	2018),	we	failed	to	detect	
the	influence	of	increasing	N	availability	on	trait	dispersions	across	
spatial	 scales.	 There	 may	 be	 two	 possible	 explanations.	 Firstly,	
the	mature	 forest	 in	 this	 plot	 is	 a	 regional	 climax	 forest	 type	 and	
has	 been	 protected	 for	 more	 than	 400	 years,	 which	 has	 become	
N-	saturated	from	both	the	old	age	of	this	forest	and	chronic	high-	
level	N	deposition	in	this	region	(Fang	et	al.,	2006;	Mo	et	al.,	2006).	
Presumably,	the	species	in	this	forest	may	be	adapted	to	this	kind	of	
high-	N	conditions	and	their	competition	for	N	might	be	minimal	(Lu	
et	al.,	2010).	This	could	be	supported	by	the	fact	that	the	N	contents	
in	both	leaves	and	roots	did	not	significantly	increase	with	chronic	N	
deposition	in	this	plot	(Liu,	Zhou,	et	al.,	2010).	Secondly,	in	a	field	ex-
periment	that	carried	out	near	this	plot,	Lu	et	al.	(2010)	found	that	N	
additions	only	decreased	the	abundance	of	understory	ferns,	moss,	
and	seedlings,	but	had	no	significant	effects	on	shrubs	and	canopy	
trees.	Besides,	the	effect	of	increasing	N	availability	on	community	
structure	 and	 composition	 should	 be	 time-	dependent	 (Güsewell,	

2005),	 and	detecting	 generalizable	 patterns	of	 trait	 dispersions	 at	
different	temporal	scales	should	be	rewarding.

4.4  |  The effect of PCA axis on patterns of plant 
functional traits

A	surprising	finding	was	that	the	PC1	that	demonstrated	soil	fer-
tility	 gradient	 from	 infertile	 to	 fertile	 soils	 had	 no	 significant	 ef-
fects	 on	 trait	 dispersions	 across	 spatial	 scales	 (Figure	 4a).	 Coyle	
et	al.	 (2014)	also	found	trait	dispersion	remained	constant	to	the	
stress	 gradient	 of	 soil	 nutrient	 availability,	which	was	 calculated	
using	PCA	in	eastern	North	American	tree	communities.	However,	
these	results	do	not	necessarily	imply	that	the	edaphic	conditions	
have	 no	 effects	 on	 trait	 dispersion	 patterns.	 In	 fact,	 it	 could	 be	
induced	by	the	opposite	loadings	on	this	axis,	such	as	AP,	pH,	and	
SM	(Table	3).	For	instance,	PC2	that	represented	a	gradient	from	
stressful	 (low	TK	and	SM)	to	benign	(high	TK	and	SM)	conditions	
showed	 significant	 positive	 relationships	 with	 trait	 dispersions	
across	spatial	scales.	Thus,	it	may	provide	a	more	accurate	assess-
ment	of	the	effect	of	environmental	gradients	on	trait	dispersions	
from	 the	 perspectives	 of	 a	 multivariate	 PCA	 and	 soil	 resource	
availability.

4.5  |  The effect of spatial scale on relationships 
between trait dispersion and soil resource availability

We	also	 found	 that	 spatial	 scale	 only	 affected	 the	magnitude	 but	
not	the	direction	of	the	correlations	between	trait	dispersions	and	
environmental	 gradients.	 The	 detectability	 of	 trait	 dispersion	 is	
scale-	dependent	(Weiher	&	Keddy,	1995;	Zhang	et	al.,	2018).	Many	

F I G U R E  7 Pearson's	correlation	
coefficient	(r)	between	saturated	AN	
and	individual	trait	dispersion	(ZFDis,	
the	standardized	effect	size	of	trait	
dispersion)	across	four	spatial	scales.	
Black	and	white	circles,	respectively,	
indicate	significant	and	nonsignificant	
effects	of	environmental	variables	on	
trait	dispersions	at	a	significance	level	of	
0.05	using	torus-	translation	tests.	Lines	
are	trends	fitted	by	the	linear	regression	
models,	and	the	shaded	areas	represent	
95%	confidence	intervals
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studies	found	that	trait	dispersions	tended	to	change	from	an	over-
dispersed	 to	 a	 clustered	pattern	with	 the	 increase	 in	 spatial	 scale	
(Cavender-	Bares	et	al.,	2009;	Li	et	al.,	2019).	Moreover,	community	
assembly	in	natural	communities	is	governed	by	stochastic	and	de-
terministic	 processes	 (Hubbell,	 2001;	 Macarthur	 &	 Levins,	 1967).	
As	 spatial	 scale	 declines	 to	 encompass	 fewer	 individuals	 and	 less	
environmental	heterogeneity,	the	relative	importance	of	those	sto-
chastic	events	to	the	community	assembly	increases	(Chase,	2014),	
resulting	 in	 a	 weak	 correlation	 between	 environmental	 gradients	
and	trait	dispersions	at	smaller	spatial	scales.	Previous	studies	also	
found	 that	 the	 relative	 importance	 of	 environmental	 variables	 to	
community	assembly	increased	with	increasing	spatial	scales	(Chase,	
2014;	Legendre	et	al.,	2009),	 leading	 to	a	 stronger	correlation	be-
tween	environmental	gradients	and	trait	dispersions	at	larger	spatial	
scales.	Thus,	multiple	spatial	scale	analysis	is	helpful	to	evaluate	the	
relationship	between	trait	dispersions	and	environmental	gradients.

5  |  CONCLUSIONS

Understanding	how	plant	functional	traits	change	along	with	envi-
ronmental	 gradients	becomes	 increasingly	 important,	 especially	 in	
the	 contexts	 of	 global	 climate	 change	 and	 the	 intensifying	human	
activities,	which	 show	 great	 impacts	 on	 environmental	 conditions	
and	 species	 composition	 of	 communities.	 The	 present	 study	 was	
designed	 to	examine	how	plant	 functional	 traits	 responded	 to	en-
vironmental	 gradients,	 and	 we	 have	 found	 that	 different	 degrees	
of	 soil	 resource	 availability	 have	 different	 effects	 on	 trait	 disper-
sions.	 Because	 different	 functional	 traits	 may	 represent	 different	
niche	 axes	 (Li	 et	 al.,	 2019;	Violle	 et	 al.,	 2007),	we	 also	 found	 that	
leaf	functional	traits	can	well	reflect	the	response	of	plants	to	nutri-
ent	gradients.	Lastly,	we	point	out	that	spatial	scale	only	affects	the	
magnitude	but	 not	 the	direction	of	 the	 correlations	between	 trait	
dispersions	and	environmental	gradients.	Overall,	these	findings	are	
essential	for	a	better	understanding	of	the	forces	that	determine	the	
structure	and	dynamics	of	natural	communities	and	to	advance	the	
predictive	theory	of	functional	ecology.
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