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Pancreatic intraepithelial neoplasia (PanIN), the most common premalignant lesion of the pancreas, is a histologically
well-defined precursor to invasive pancreatic ductal adenocarcinoma (PDAC). However, the molecular mechanisms
underlying the progression of PanINs have not been fully elucidated. Previously, we demonstrated that the expression
of collapsin response mediator protein 4 (CRMP4) in PDAC was associated with poor prognosis. The expression of
CRMP4 was also augmented in a pancreatitis mouse model. However, the role of CRMP4 in the progression of
PanIN lesions remains uncertain. In the present study, we examined the relationship between CRMP4 expression
and progression of PanIN lesions using genetically engineered mouse models. PanIN lesions were induced by perito-
neal injection of the cholecystokinin analog caerulein in LSL-KRAS®*??; Pdx1-Cre (KC-Crmp4 wild-type, WT) mice
and LSL-KRAS®??P; pdx1-Cre; Crmp4~/~ (KC-Crmp4 knockout, KO) mice. We analyzed pancreatic tissue sections
from these mice and evaluated PanIN grade by hematoxylin and eosin staining. CRMP4 expression was examined
and the cellular components assessed by immunohistochemistry using antibodies against CRMP4, CD3, and a-
smooth muscle actin (SMA). The incidence of high-grade PanIN in KC-Crmp4 WT mice was higher than that in KC-
Crmp4 KO animals. CRMP4 was expressed not only in epithelial cells but also in aSMA-positive cells in stromal
areas of PanIN lesions. The CRMP4 expression in stromal areas correlated with PanIN grade in WT mice. These results

suggested that the expression of CRMP4 in stromal cells may underlie the incidence or progression of PanIN.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) constitutes a leading cause
of cancer death [1,2], primarily owing to the lack of effective early detec-
tion methods and poor efficacy of existing therapies. Moreover, even
among the 10% to 20% of patients who received a diagnosis of surgically
resectable PDAC, most ultimately die of recurrent and metastatic disease
[3]. These low survival rates are attributed in part to the fact that PDAC me-
tastases have often progressed to the point where surgical removal cannot
provide a cure. In order to improve the cancer mortality, detection and
treatment in the early phase are necessary. Toward this end, analyses of
PDAC pathological specimens and of genetically engineered PDAC mouse
models have suggested that PDAC develops from pancreatic intraepithelial
neoplasia (PanIN) [4,5].
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PanlIN represents the most common pancreatic precursor lesion. An ac-
tivating K-ras point mutation is almost uniformly present in early stage
PanIN, whereas subsequent inactivating mutations in p16, p53, and
Smad4 occur in advanced lesions [6-9]. The development of genetically
engineered mouse models with PDAC, such as PdxI-Cre; LSL-Kras®!?P
[101, Pdx1-Cre; LSL-Kras®'2?; Ink4a/Arf"/f°* [11], and Pdx1-Cre; LSL-
Kras®12P; LSL—p53R17 2H [71], has facilitated our understanding of the molec-
ular mechanisms of pancreatic neoplasia [10,12].

Recently, collapsin response mediator proteins (CRMPs), also known as
the dihydropyrimidiase-like protein (DPYSL) family, have been shown to
be involved in malignant tumors [13-20]. Altered expression of different
CRMPs has been observed in various malignant tumors including lung,
breast, colorectal, prostate, liver, gastric, pancreatic, and neuroendocrine
lung cancer [21]. CRMPs were originally identified as the intracellular sig-
naling mediators of a repulsive axon guidance molecule, semaphorin-3A
(Sema3A) [22]. The CRMP family consists of five members, CRMP1-5
[23,24], which are highly expressed in the developing and adult nervous
system. CRMPs are involved in axon guidance, axonal elongation, cell mi-
gration, synapse maturation, and the generation of neural polarity
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[22,25,26]. In these developmental processes, CRMPs play critical role in
regulating cytoskeletal rearrangement, which is largely mediated by their
phosphorylation-dependent interaction with F-actin and microtubules
[27,28]. CRMPs can be phosphorylated by various kinases including
Cdk5, GSK3p, Rho-kinase, and Fyn [29-34]. In addition, CRMPs have
also been implicated in a variety of cellular and molecular events such as in-
flammation and cell growth in peripheral tissues or organs as well as in the
central nervous system [35-37].

Similar to other CRMP family proteins, CRMP4 is highly expressed in
the central nervous system. CRMP4 expression is also observed in malig-
nant tumors originated from various organs including the intestine, liver,
pancreas, and prostate [14,38-45]. However, the roles of CRMP4 in tumor-
igenesis or tumor progression remain unknown. Overexpression of CRMP4
suppresses the invasion ability and inhibits tumor metastasis of prostate
cancer cells [14]. Consistent with this, lower expression of CRMP4 mRNA
in hepatocellular carcinoma tissues is associated with shorter recurrence-
free survival and subsequent adverse prognosis [42]. In contrast, high ex-
pression levels of CRMP4 mRNA in gastric cancers are significantly associ-
ated with shortened recurrence-free survival [39]. Previously, we reported
that CRMP4 expression is associated with poor prognosis through the pro-
motion of liver metastasis of pancreatic cancer [43]. In addition, CRMP4
knockdown using siRNA reduces the cellular invasion of Capan-1 cells, a
human pancreas adenocarcinoma cell line. CRMP4 expression was also
found to be enhanced in the pancreatic parenchyma and the infiltrated lym-
phocytes in pancreatic tissue of a pancreatitis mouse model [46]. In turn, a
meta-analysis of chronic pancreatitis has shown a relative risk of 13.3 for
developing malignancy [47], and chronic pancreatitis is considered to
have a strong relationship with carcinogenesis and pancreatic cancer
[48]. Together, these findings suggest that CRMP4 is involved in the path-
ogenesis of pancreatic cancer, although direct causality has not been dem-
onstrated. To further clarify the role of CRMP4 in in pancreatic
carcinogenesis, in this study, we examined the role of CRMP4 in the pro-
gression of PanIN in a genetically engineered mouse model of pancreatic
cancer.

Materials and Methods
Ethics Statement

All animal procedures were performed according to the Guide for the
Care and Use of Laboratory Animals (Japanese Association for the Labora-
tory Animal Science) and the Guide for Yokohama City University. Specific
approval for the mouse experiments was obtained from the Institutional
Animal Care and Use Committee of Yokohama City University School of
Medicine with the protocols F-A-15-042 and F-A-16-019 “Biological func-
tion of CRMP4 in metastasis and invasion with pancreatic cancer model
mice.” All surgical procedures were performed under isoflurane (Pfizer,
New York, NY) and pentobarbital sodium (Kyoritsu seiyaku, Tokyo,
Japan) anesthesia, and all efforts were made to minimize the number of an-
imals used and their suffering.

Reagents

Antibodies purchased were as follows: polyclonal rabbit anti-CRMP4
(AB5454, Merck Millipore, Darmstadt, Hessen, Germany), monoclonal rab-
bit anti-CD3 (ab5690, Abcam, Cambridge, Cambridgeshire, UK), and
monoclonal mouse anti-a-smooth muscle actin (SMA) (14-9760,
eBioscience, San Diego, CA). Alexa Fluor 488 Goat Anti-rabbit-IgG and
Alexa Fluor 594 Goat Anti-mouse-IgG antibodies were purchased from
Life Technologies (Carlsbad, CA).

Purification of Recombinant CRMP4 Peptide

GST-fused CRMP4 fragment was expressed in Escherichia coli BL21
strain [35], and CRMP4 was affinity-purified using glutathione-resin
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following digestion with Prescission protease (GE Healthcare, Little
Chalfont, Buckinghamshire, UK) [35].

Animals

Wild-type (WT) C57BL/6JJmsSLc male mice were purchased from
Japan SLC (Hamamatsu, Shizuoka, Japan). All mice were maintained at
the animal care facility of Yokohama City University under a 12-hour
light/12-hour dark cycle at 23°C = 1°C, with free access to water and
food. All mice were fed commercially available MF feed (Oriental Yeast
Kogyo Co., Tokyo, Japan).

We used a genetic strategy to selectively knock-in the K-ras mutation in
the pancreas. Using the Cre/loxP system, we crossed LSL-KRAS®'?” mice
and Pdx1-Cre mice to generate LSL-KRAS®'2P; Pdx1-Cre (KC-Crmp4 WT)
mice, which exhibit conditional K-ras mutation in the pancreas [10,49].
Crmp4~’/~ mice were established as previously described (Acc. No.
CDB0637K) and maintained on a 129/SV X C57BL/6J hybrid background
[50-52].

The Pdx1-Cre transgenic mouse strain, LSL-KRAS®’?" knock-in mouse
strain, and Crmp4~/~ mouse strain were intercrossed. LSL-KRAS®'?P
knock-in and Crmp4~/~ mice were interbred to generate Pdx1-Cre; LSL-
Kras®12P; Crmp4~/~ (KC-Crmp4 KO) mice (Figure 1, A and B).

Genotyping of Animals

Genotyping of the CRMP4 allele was performed by polymerase chain re-
action (PCR) using the following primers: Crmp4 fourth intron Rv, 5’-CAC
TGG CCT GGC TGA AGA TCA A-3’; Crmp4 WT Fw, 5-GTC AAG CTG CTA
AAG GAG CCT-3’; and CDB-Neo Fw, 5-GGC GAG GAT CTC GTC GTG
ACC-3'. The PCR was performed with 30 cycles of 95°C for 30 seconds,
62°C for 30 seconds, and 72°C for 1 minute to obtain a 790-bp mutant allele
and a 427-bp WT allele.

Genotyping of the LSL-Kras®'?" allele was performed by PCR using the
following primers: Kras Y116-common, 5-TCC GAA TTC AGT GAC TAC
AGA TG-3%; Kras Y117-LSL, 5’-CTA GCC ACC ATG GCT TGA GT-3’; and
Kras Y118-wt, 5-ATG TCT TTC CCC AGC ACA GT-3’. The PCR was per-
formed with 35 cycles of 95°C for 30 seconds, 60° C for 30 seconds, and
72°C for 30 seconds. The expected product size of Y117/Y116 is 327 bp
for LSL, and that of Y116/Y118 is 450 bp for WT. Genotyping of the
Pdx1-Cre allele was performed by PCR using the following primers: Pdx1-
Cre Rv, 5’-GGT GTA CGG TCA GTA AAT TTG-3’ and Pdx1-Cre Fw, 5’-CTG
GAC TAC ATC TTG AGT TGC-3'. The PCR was performed with 35 cycles
of 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds to ob-
tain a 650-bp product size.

Acute Pancreatitis-Induced PanIN Lesions in Conditional K-ras Mutant Mice

In order to investigate the role of CRMP4 in PanIN development, acute
pancreatitis was induced in KC mice [53] by treatment with the cholecysto-
kinin analog caerulein (C9026, Sigma-Aldrich, St. Louis, MO) [54]. Work-
ing aliquots (1 ml) at 100 pg/ml were stored at —20°C until use, at which
time it was dissolved in phosphate buffered saline (PBS), pH 7.4, at a con-
centration of 10 pg/ml. Acute pancreatitis was induced by seven hourly in-
traperitoneal injections of caerulein (50 pg/kg) at the age of 7-10 weeks,
which were repeated 48 hours later [53]. PanIN lesions developed with
3-4 months. The pancreas was removed at day 73-216 from the last injec-
tion. We also examined PanIN formation in the Crmp4~/~ background.
Caerulein was administered to LSL-KRAS®*?P; Pdx1-Cre; Crmp4~/~ (KC-
Crmp4 KO) mice to develop PanlIN lesions (Figure 1C). Overall, we prepared
30 PanIN model mice (KC-Crmp4 WT; n = 19 and KC-Crmp4 KO; n = 11).

Morphological Analysis of PanIN
Subsequent to euthanasia with an excessive dose of isoflurane and pen-

tobarbital, mice were perfusion-fixed with 4% (wt/vol) paraformaldehyde
in PBS. To obtain macroscopic and microscopic findings of both KC-Crmp4
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Figure 1. Experimental design. (A) Targeting endogenous KrasG12D expression to the mouse pancreas. Pdx1-Cre allele crossed to LSL-Kras

X LSL-KrasS120 ; pdx1-Cre; Crmp4 *-

!

KC-Crmp4 KO mouse
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G12D gllele. (B) Genetic makeup of

the KC-Crmp4 KO mouse. LSL-KRAS??P; Pdx1-Cre (KC-Crmp4 WT) mice were crossed with Crmp4~/~ mice. (C) Treatment protocol for caerulein in LSL-KRAS??; Pdx1-Cre
(KC-Crmp4 WT) (n = 19) and LSL-KRAS®*?"; Pdx1-Cre; Crmp4~/~ (KC-Crmp4 KO) mice (n = 11).

WT mice and KC-Crmp4 KO mice, the pancreas was removed together with
the spleen and duodenum. Collected pancreases were fixed in 4% parafor-
maldehyde in PBS for 12 hours at 4°C.

Tissues were embedded in paraffin. Paraffin-embedded pancreas sec-
tions (3 pm thick) were deparaffinized in xylene and rehydrated sequen-
tially in ethanol. Slides were washed in deionized water, stained with
hematoxylin (131-09665, Wako, Osaka, Japan) and eosin (051-06515,
Wako) in 60% ethanol, then dehydrated sequentially in ethanol, cleared
with xylenes, and mounted with Entellan new (Merck KGaA, Darmstadt,
Hessen, Germany). All slides were analyzed by a pathologist (LK.) for find-
ings of PanIN development. The pathologist was blinded to the tissue geno-
type. Each slide was classified as normal acinar/ductal cells; acinar-to-
ductal metaplasia; PanIN-1A, -1B, -2, or -3; or PDAC based on the classifica-
tion consensus [55]. Briefly, PanIN-1 constitutes flat (1A) or papillary (1B)
lesions of the columnar epithelium with basally oriented, round nuclei.
PanIN-2 represents papillary lesions with nuclear hyperchromasia,
crowding, and pseudostratification. PanIN-3 indicates papillary,
micropapillary, or cribriform lesions with nuclear pleomorphism, frequent
loss of nuclear polarity, and mitoses [56,57]. The tissue samples were eval-
uated at high optical power (objective, 40) for all PanIN lesions in a ran-
domly selected microscopic field. PanINs grade were presented as
incidence of the highest grade of PanINs in the tissue regions examined.
The grades of PanINs defined were roughly correlated with the density of
PanlNs in the tissue regions.

Immunohistochemistry

Paraffin-embedded pancreas sections (3 pm thick) were deparaffinized
in xylene and rehydrated sequentially in ethanol. Slides were quenched in
0.3% H,0, in 60% methanol for 30 minutes to block endogenous peroxi-
dase activity. Antigen retrieval was performed in 0.01 M citrate buffer
(pH 6.0) for 20 minutes at 120°C in autoclave. After blocking nonspecific
proteins with 10% normal goat serum (S-1000, Vector Laboratories, Burlin-
game, CA) in Tris-buffered saline, 0.1% Tween 20, and 0.00025% NaN3,

slides were incubated with primary antibody in 2% normal goat serum at
4°C overnight. The Vector ABC-HRP system kit was employed for signal am-
plification. The proteins were visualized using 3,3’-diaminobenzidine
(ImmPACT DAB; K-6100, Vector Laboratories) staining. Finally, slides
were counterstained with hematoxylin, dehydrated sequentially in ethanol,
cleared with xylenes, and mounted with Entellan new. The primary anti-
bodies and dilutions were anti-CRMP4, 1:1000; anti-CD3, 1:200; and anti-
aSMA, 1:200. Anti-CRMP4 and anti-CD3 antibodies were of rabbit origin,
for which 30-minute incubation with polyclonal goat anti-rabbit immuno-
globulins [Biotinylated anti-rabbit IgG (H + L); BA-1000, Vector Laborato-
ries] preceded the signal amplification step. Anti-aSMA antibody was of
mouse origin, for which 30-minute incubation with polyclonal goat anti-
mouse immunoglobulins [Biotin-SP (long spacer) affinity-purified goat
anti-mouse IgG (H + L); #115-065-146, Jackson Immuno Research Inc.,
West Baltimore, MD] was utilized. To verify the specificity of the antibody,
immunohistochemistry was performed using an anti-CRMP4 antibody
(1:1000) preincubated with antigen peptide at 4°C overnight.

For immunohistological evaluation of CRMP4, two investigators, 1. K.
and K. Y., independently assessed the stained sections. These investigators
were blinded to the sources of sections. The intensity of cytoplasmic
CRMP4 immunoreactivity was scored as follows: 0, no staining; 1, mild;
2, moderate; and 3, strong. In statistical analyses, scores 0 and 1 were de-
fined as CRMP4 negative, whereas 2 and 3 were defined as CRMP4 posi-
tive. For measurement of colocalization between CRMP4, and aSMA or
CD3, we quantitated the number of CRMP4-, aSMA-, and CD3-positive
cells using serial sections, respectively (n = 3).

Immunofluorescence Staining

The sections were incubated with primary antibody in 2% NGST at 4°C
overnight, followed by incubation with Alexa Fluor—conjugated secondary
antibodies. Primary antibodies used were polyclonal anti-CRMP4 (1:1000)
and monoclonal anti-aSMA (1:500). The samples were counterstained with
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DAPI (340-07971, Wako, Osaka, Japan), and examined and photographed
with confocal microscope (Fluo View FV1000, Olympus, Tokyo, Japan).

Immunoblot Analysis

After euthanization, the brains were immediately removed from
Crmp4*/~ and Crmp4~/~ mice and homogenized in immunoprecipitation
buffer: 20 mM Tris-HCI (pH 8.0), 150 mM NaCl, 5 mM EDTA, 1 mM NaF,
0.5 mM NazVOy,, 1% Triton X-100, and 2% Protease Inhibitor Cocktail
(P8340; Sigma-Aldrich). The lysates were centrifuged at 20,400g for
5 minutes at 4°C, and supernatants were normalized for total protein con-
centration. Equal amounts of total protein were separated by 8% sodium
dodecyl sulfate—polyacrylamide gel electrophoresis and transferred to a
nylon membrane using Ez Fastblot (#2332590, ATTO, Tokyo, Japan).
After being blocked with TTBS buffer (25 mM Tris HCI pH 7.4, 137 mM
NaCl, 2.7 mM KCl, and 0.2% Tween-20) supplemented with 5% skim
milk, the membrane was incubated with primary antibody: anti-CRMP4 an-
tibody (1:2000) diluted in 10% bovine serum albumin at 37°C for
30 minutes. Following 2% skim milk wash, the membrane was incubated
with secondary antibody in signal enhancer HIKARI Solution B (#02267-
41, Nacalai Tesque, Kyoto, Japan) at 37°C for 30 minutes. After reaction
with Lumina Forte (AWBLUFO0500, Millipore Merck KGa), an ImageQuant
400 (GE Healthcare) was used to detect the signals.

Statistical Analyses

Data are presented as the means + standard deviation and were ana-
lyzed with the built-in Student's t test using SPSS computer software pack-
age version 26.0 for Windows (SPSS Inc., Chicago, IL). P values of <.05
were considered significant. The relationship between the progression of
PanIN grade and the expression of CRMP4 was analyzed using Fisher's
exact test in R software for Windows version 3.3.2 (R Foundation for

KC-Crmp4 WT mouse
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Statistical Computing, Vienna, Austria). In all cases, a group size was cho-
sen that produced statistically unambiguous results.

Results

Low-Grade PanlIN Progression in KC-Crmp4 KO Compared to KC-Crmp4 WT
Mice

Gross pathological findings included swelled pancreas with hard nodu-
lar lesions in KC-Crmp4 WT and KC-Crmp4 KO mice. No obvious difference
was observed between WT and KO mice (Figure 2, A and B). Histological
examination revealed pathological lesions in the pancreatic tissues of WT
and KO mice that were similar to those in human PanIN (Figure 2, C and
D). Notably, PanIN-2 lesions were mainly observed in KC-Crmp4 WT mice
(Figure 2C, Table 1), which showed a papillary structure with
pseudostratification and enlarged nuclei. Conversely, PanIN-1 lesions
were mainly observed in KC-Crmp4 KO mice (Figure 2D, Table 1), which
consisted of tall columnar cells with basally located nuclei and abundant
supranuclear mucin.

Table 1 shows the grade of PanIN in both genotypes. High-grade PanIN
lesions (PanIN-2 and -3) were observed more frequently in KC-Crmp4 WT
mice than in KC-Crmp4 KO mice (Table 1). The acinar-to-ductal metaplasia
was similarly observed in both groups. The observation period was 139.2
+ 41.2 days for KC-Crmp4 WT and 126.0 + 23.1 days for KC-Crmp4 KO
mice (Student's t test, P = .340).

Increased Expression of CRMP4 in PanIN Lesions

We first validated the sensitivity and specificity of the anti-CRVIP4 anti-
body. Western blot analysis using brain lysate revealed that the band de-
tected in Crmp4*/~ samples was absent in Crmp4~/~ (Figure 3A). In
immunohistochemistry using pancreatic tissues, CRMP4 expression was de-
tected in the ductal and acinar cells in Crmp4*/* but not in Crmp4 KO

KC-Crmp4 KO mouse

Figure 2. High-grade PanIN lesions in KC-Crmp4 WT mice. (A, C) Representative findings of PanIN lesions developed in KC-Crmp4 WT mice. (A) Gross appearance of PanIN-2
lesions. Scale bar, 1 cm. (C) Prominent papillary architecture and mild-to-moderate cytologic atypia including hyperchromasia, increased nuclear size, crowding,
pseudostratification, and some loss of polarity are observed. The arrows indicate the representative feature of PanIN-2. Scale bar, 20 pm. (B, D) Representative PanIN
lesions in KC-Crmp4 KO mice. (B) Gross appearance of PanIN-1 lesions. (D) Flat epithelial lesions consisting of tall columnar cells with basally located nuclei and
abundant supranuclear mucin are observed. The arrowheads indicate representative feature of PanIN-1. Scale bar, 20 pm. KC-Crmp4 WT: LSL-Kras®'??; Pdx1-Cre; Crmp4

*+/* KC-Crmp4 KO: LSL-Kras®*?"; Pdx1-Cre; Crmp4 =/~



K. Yazawa et al.

Table 1
PanIN Grade in KC-Crmp4 WT or KC-Crmp4 KO Mice
KC-Crmp4 WT KC-Crmp4 KO
Grade of PanIN (n =19 (n=11)
Normal or 1 5 (26.3%) 7 (63.6%)
2o0r3 14 (73.7%) 4 (36.4%)

Histological analysis of PanIN progression in KC-Crmp4 KO compared to KC-Crmp4
WT mice (3 test; P = .044).

tissue (Figure 3, E-H). In WT mice, weak expression of CRMP4 was detected
in some of the nuclei of the ductal and acinar cells (Figure 3F). CRMP4 ex-
pression was also detected in the cytoplasm of cells in PanIN lesions (Figure
3, G and H) and in the stroma surrounding PanIN lesions (Figure 3, G and H,
black arrowheads).

Preabsorption of anti-CRMP4 antibody with antigen peptide reduced
the immune signal (data not shown). These findings supported the specific-
ity of the anti-CRMP4 antibody used.

CRMP4-Positive Cells in Stromal Areas Coincide with aSMA-Positive Cells

To examine the immunohistochemical features of the CRMP4-positive
cells in the stromal areas, pancreatic tissues were stained with an antibody
against aSMA, the most common marker of fibroblasts/myofibroblasts, and
against CD3, a general marker of T cells. Serial sections of PanIN-2 lesions
were stained using hematoxylin and eosin along with antibodies against
CRMP4, CD3, and aSMA. CRMP4-positive spindle-shaped cells were ob-
served in the stromal areas (Figure 4). The staining pattern of CRMP4 was
similar to that of aSMA but not of CD3 (Figure 4, B and D, black arrow-
heads). Quantitative colocalization analysis was performed. The percentage
of colocalization between CRMP4 and aSMA or CRMP4 and CD3 was
39.0% * 1.95% or 13.7% = 0.98%, respectively (n = 3, P = .003,
Figure 5, A and B). Immunofluorescence staining of PanIN-2 lesion
(Figure 6, C and D, yellow arrowhead) illustrated strong expression of
CRMP4. Moreover, some stromal cells surrounding the PanIN lesions
coexpressed CRMP4- and aSMA-positive cells (Figure 6, F, G and H;
white arrowhead).
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Immunohistochemical Analysis of CRMP4 in PanIN Lesions and Stromal Areas

To examine the relationship between expression of CRMP4 and the
PanIN grade, we evaluated CRMP4 expression in the epithelial cells and
stromal cells in PanIN lesions in WT mice. The expression levels of
CRMP4 in the epithelial cells of PanIN lesions showed no correlation with
PanIN development (Table 2, P = .588). In stromal cells, however, high-
grade PanINs were observed more frequently in the CRMP4-positive
group than in the CRMP4-negative group (Table 2, P = .023). These results
indicated that the expression levels of CRMP4 in the stromal cells of PanIN
lesions correlated with the progression of high-grade PanIN in the mouse
model of pancreatic cancer. PanIN-1 was found in almost every tissue exam-
ined, while PanIN-2 or -3 was rarely seen.

Discussion

In this study, we demonstrated that PanIN progression was suppressed
in KC-Crmp4 KO mice compared with KC-Crmp4 WT mice. CRMP4 expres-
sion was increased in both epithelial cells and the stromal areas of PanIN le-
sions, especially in aSMA-positive cells. These findings suggested that
CRMP4 may participate in the development of PanIN. In addition,
CRMP4 expression was observed in in the epithelium of PanIN lesions as
well as in normal acinar and ductal cells. This expression profile of
CRMP4 in the pancreatic tissue of mice coincides with that in human surgi-
cal specimens of PDAC [43]. Whether CRMP4 is also involved in PanIN in
human pancreatic cancers thus represents an important issue to be ad-
dressed in future studies.

Our study revealed that CRMP4 is expressed in both epithelial cells and
in stromal areas, especially in aSMA-positive cells (Figures 4 and 6). Previ-
ous studies have shown that the formation of PanIN accompanies the accu-
mulation of a desmoplastic stroma and abundant immune infiltrates
[48,58]. It has been suggested that the desmoplastic reaction by inflamma-
tion participates in the development of PanIN [59,60]. aSMA-positive cells
in stromal areas of PanIN lesions are considered to constitute an active type
of pancreatic stellate cells [61]. It is generally accepted that the quiescent
type of pancreatic stellate cells, which contain vitamin A, become changed
to active type by tissue injury or inflammation [62]. The active type of pan-
creatic stellate cells accelerates the production of extracellular matrix such

KC-Crmp4 WT mouse
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Figure 3. CRMP4 expression in normal pancreatic tissue and in PanIN lesions. (A) Western blot analysis for CRMP4 proteins in brain lysates from Grmp4*/~ and Crmp4 KO
mice. The band of 66 kDa corresponds to CRMP4, which is missing in brain lysates from Crmp4 KO mice. Hematoxylin and eosin stain (B-D) and immunostaining with anti-
CRMP4 antibody (E-H) in pancreatic tissue. (B, E, F) Representative normal tissue in KC-Crmp4 WT (B, F) and Crmp4 KO mice (E). Immunohistochemistry with anti-CRMP4
antibody in KC-Crmp4 WT (F) and Crmp4 KO mice (E). (C, G) Representative PanIN-1 in KC-Crmp4 WT mice. (D, H) Representative PanIN-2 in KC-Crmp4 WT mice. Expression
levels of CRMP4 are relatively high in PanIN lesions (F-H). Arrows indicate PanIN. Arrowheads indicate stromal areas. Scale bar, 20 pm. Insets show higher magnified view of

representative areas (B, E, F). Scale bar, 80 ym. The magnification is 1600 times.
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Figure 4. PanlIN lesions and stromal areas in pancreatic tissue from KC-Crmp4 WT mice. (A-D) Serial section of PanIN-2 lesion stained with hematoxylin and eosin (A), anti-
CRMP4 (B), anti-CD3 (C), and anti-aSMA antibodies (D). CRMP4-positive cells are coincident with aSMA-positive cells. Scale bar, 20 pm. All sections represent a PanIN-2

lesion in a KC-Crmp4 WT mouse.

A

CRMP4-: aSMA+
13.0 £ 15.0%

CRMP4+: aSMA+
39.0 £ 1.95%

CRMP4+: aSMA-
48.0 = 17.0%

B

CRMP4-: CD3+
14.3 £ 8.13%

CRMP4+: CD3+
13.7 + 0.98%

CRMP4+: CD3-
72.0 £ 8.49%

Figure 5. Colocalization of CRMP4 and aSMA or CD3 in stromal areas in KC-Crmp4 WT mice. (A) The percentages of CRMP4 and aSMA double-positive, CRMP4-positive and
aSMA-negative, or CRMP4-negative and aSMA-positive cells in total number of CRMP4 and/or aSMA positive-cells (107.0 = 46.8/area) were shown. (B) The percentages of
CRMP4 and CD3 double-positive, CRMP4-positive and CD3-negative, or CRMP4-negative and CD3-positive cells in total number of CRMP4 and/or CD3 positive-cells (109.7

+ 54.0/area) were shown (n = 3, Student's t test, P = .003).

as collagen, fibronectin, and laminin, thereby leading to pancreas fibrosis
[59,63,64]. Therefore, the interaction between pancreatic stellate cells
and pancreatic cancer cells or epithelial cells of PanIN may be involved in
the proliferation of PDAC or PanIN through the desmoplastic reaction.
Repeated acute pancreatic injury and inflammation serve as contribut-
ing factors to the development of pancreatic cancer. In particular, intracel-
lular activation of both pancreatic enzymes and the transcription factor NF-
B comprises an important mechanism that induces acute pancreatitis [65].
Recurrent pancreatic injury owing to genetic susceptibility, along with en-
vironmental factors such as smoking, alcohol intake, and conditions such as
obesity, leads to increases in oxidative stress, impaired autophagy, and con-
stitutive activation of inflammatory pathways. These processes can stimu-
late pancreatic stellate cells, thereby increasing fibrosis and encouraging
chronic disease development [66]. Fibrosis has a pivotal role in inflamma-
tion and carcinogenesis. PDAC is unique among solid tumors because of the
extremely dense desmoplastic reaction that surrounds the cancer cell
glands of this tumor. The desmoplasia, containing myofibroblastic pancre-
atic stellate cells, extracellular matrix proteins, and immune cells,

modulates the growth of the cancer by providing a scaffold for the cancer
cells to grow, along with growth factors, angiogenesis factors, and immune
modulators [67]. Considering that activated pancreatic stellate cells under-
lie the desmoplasia, CRMP4 expression in stellate cells surrounding PanIN
lesions may have a critical role in the development of PanIN.

Our previous study demonstrated that CRMP4 was augmented in CD3-
positive cells in a pancreatitis mouse model [46]. In comparison, our pres-
ent study showed that CRMP4-positive cells were coincident with aSMA-
positive cells, whereas the expression of CRMP4 was barely detectable in
CD3-positive cells. The discrepancy might be attributed to differences in
the genetic background of the mouse models, the period of observation,
and other experimental conditions. For example, WT and CRMP4 KO
mice were examined in acute pancreatitis models [46], whereas WT and
CRMP4 KO with K-ras mutant background mice were examined in our cur-
rent study. It has been shown that K-ras—expressing pancreatic acinar cells
initiate microinflammation and that an interaction exists between PanIN
and aSMA-positive cells, which may contribute to the formation and pro-
gression of PanIN lesions [68]. Furthermore, in our previous study,
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Figure 6. Double immunofluorescence labeling with CRMP4 and aSMA in PanIN-2 lesion in KC-Crmp4 WT mice. Representative image of PanIN-2 lesion stained with anti-
CRMP4 antibody (A), anti-aSMA antibody (B), DAPI (C), and merged image (D). Scale bar, 50 pm. The epithelial cells were CRMP4 positive (yellow arrowhead). Some
stromal cells surrounding the PanIN lesions coexpress CRMP4 and aSMA (white arrowhead). Magnified images of boxed areas in the epithelial cells of PanIN lesion and
in stromal area in panel D were shown in panels E and F, respectively. Scale bar, 25 pm. The representative CRMP4 and aSMA double-positive cells (white arrowhead) in
stromal areas surrounding the PanIN-1A (opened arrowhead) were shown in panels G and H. Scale bar, 25 um. All sections represent PanIN lesions in a KC-Crmp4 WT mouse.
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Table 2
Positive Correlation Between PanIN Grade and CRMP4 Expression in the Stroma
CRMP4
Epithelial Cells Stromal Cells
Grade of PanIN Negative Positive Negative Positive
1A or 1B 3 1 4 0
2o0r3 7 7 4 10

Relationship between PanIN grade and CRMP4 expression in epithelial cells
(Fisher's exact test; two-sided, P = .588) and stromal cells (Fisher's exact test;
two-sided, P = .023).

CRMP4/CD3 double-positive cells were observed mainly in the phase of
acute pancreatitis [46], whereas in the present study, CRMP4-positive
cells were observed in the recovery phase from acute pancreatitis. It is pos-
sible that the number of CD3-positive cells may decrease in recovery phase.

CRMP4 may be involved in PanIN or pancreatic cancer pathogenesis
through several mechanisms. First, CRMP4 may promote the inflammation
pathway in the development of PanIN. It has been shown that K-ras muta-
tion and cell injury mediated by inflammation play important roles in the
development of PanIN lesions [53]. Previous studies have demonstrated
that CRMP4 is involved in inflammation pathways [46,51]. We reported
that both acute pancreatitis and chronic pancreatitis augment CRMP4 ex-
pression and its phosphorylation in infiltrated CD3 T-cells [46]. Therefore,
CRMP4 may play a pivotal role in pancreatic inflammation. Notably, dele-
tion of CRMP4 in a spinal cord injury mouse model promotes the recovery
of locomotion via neuroprotection and limited scar formation because
CRMP4 deletion suppresses the activation of microglia or macrophages
and reactive astrocytes following injury [51]. Therefore, we speculated
that CRMP4 may participate in the development of PanIN through the ac-
celeration of inflammation.

Second, CRMP4 may help to develop PanlIN lesions through reconstruc-
tion of the cytoskeleton, as this may induce morphologic changes compara-
ble to those observed during PanIN development [69]. In a pancreatitis
mouse model, it was found that RAS-related C3 botulium substrate 1
(Racl), which is an effector molecule of EGFR and K-ras, was necessary
for caerulein-induced acinar morphologic changes and filamentous actin
redistribution [70,71]. CRMP4 is also known to regulate the actin and mi-
crotubule growth cone cytoskeleton in hippocampal neurons [27,28,72].
Moreover, the alternatively spliced short (CRMP4a) and long (CRMP4b)
isoforms are known to be involved in many biological processes [73]. In
particular, CRMP4a suppresses RhoA activity, leading to reduced cytoskel-
etal reorganization and cell motility in prostate cancer [38]. However, fur-
ther studies are needed to clarify the molecular mechanism of CRMP4 in
PanIN development.

In conclusion, the incidence of high-grade PanIN was low in the
CRMP4-KO mouse model of pancreatic cancer. The expression of CRMP4
in the stroma cells correlated with the progression of PanIN lesions. These
findings suggest that CRMP4 inhibition may serve as a therapeutic strategy
to prevent PanIN development and PDAC.
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