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Airway Basal Cells in Chronic Obstructive Pulmonary Disease:
A Continuum or a Dead End?

Progressive airflow limitation in chronic obstructive pulmonary
disease (COPD) develops because of stable changes in airway
structure known as airway remodeling. Common features of airway
remodeling in COPD include airway wall thickening, narrowing of
the airway lumen and its occlusion by excessively produced mucus,
and loss of small bronchioles (1). Some of these changes emerge
relatively early during COPD development before emphysema and
before airway obstruction is clinically detectable (2). Cigarette
smoking, the major risk factor for COPD, causes many components
of airway remodeling relevant to COPD. However, specific
mechanisms driving the transition of otherwise reversible smoking-
induced lesions into stable airway remodeling that underlies
persistent airway obstruction in COPD remain unknown.

Among multiple cell types that may contribute to pathogenesis
of airway remodeling in COPD, basal cells (BCs) have recently
received particular attention. As resident stem cells, BCs are
responsible for maintenance and regeneration of airway epithelium
(3), the primary target of smoking-induced injury. Because of their
ability to self-renew, BCs maintain the homeostatic stem cell pool in
the airway epithelium. Some BC-derived progenitors differentiate to
produce ciliated and secretory cells (Figure 1A). Numbers of all these
cell types, including BCs themselves, are altered in smoking-induced
lesions, such as BC hyperplasia and mucous hyperplasia, implying a
possible role of stable changes in BC function in the evolution of these
lesions into persistent airway remodeling (4). Located in the basal
epithelial layer, right above the basement membrane that separates
airway epithelium from the underlying mesenchyme (Figure 1B), BCs
can interact with stromal and immune cells present in the
subepithelial compartment, potentially relevant to airway fibrosis and
inflammation (5, 6). Furthermore, as self-renewing stem cells, BCs are
at risk of accumulating genetic or epigenetic alterations that may
determine long-term changes in their function, enabling these
progenitors to continuously produce remodeling patterns (4).
However, little is known about specific changes that occur in airway
BCs during COPD development.

To tackle this problem, in this issue of the Journal, Wijk and
colleagues (pp. 103–113) conducted a study in which gene
expression and clonogenic function of BCs—indicative of their
self-renewal ability—were assessed immediately after their
isolation from airway biopsy samples of subjects with or without
COPD (7). To isolate BCs, they employed a FACS sorting strategy,
which selects cells expressing NGFR (nerve growth factor
receptor), a cell-surface marker of airway BCs (3), and also exhibits
high forward scatter profile. Targeted gene expression analysis of
individual isolated cells confirmed that all of them expressed the
classical BC markers, keratin 5 and tumor protein TP63. About a

third of BCs isolated from healthy airways expressed markers of
secretory (SCGB1A1) or ciliated (FOXJ1) lineages, which likely
represent committed progenitors (Figure 1A). This observation is
in line with recent single-cell RNA-sequencing (scRNA-seq)
studies that identified airway BC subsets with transitional gene
expression patterns indicative of early differentiation (8, 9).

To evaluate the impact of cell culture, commonly used to expand
BCs in in vitro studies, Wijk and colleagues (7) evaluated changes
occurring in airway BCs after passaging them in culture. After the
initial passage, the clonogenic capacity of BCs increased multifold,
paralleled by downregulation of NGFR and early differentiation
markers. This was accompanied by upregulation ofMKI67, a cell
proliferation marker, and KRT14, a keratin expressed by activated
BCs in the injured airway epithelium or in association with squamous
metaplasia (10). Thus, whereas freshly isolated cells contain the
spectrum of homeostatic biological states of BCs (“state 1” in Figure
1C), BC culture reduces their natural heterogeneity, inducing or
selecting for an activated BC state similar to that found in the injured
or repairing airway epithelium (“state 2” in Figure 1C). How does
airway BC heterogeneity change in COPD? To address this question,
Wijk and colleagues (7) compared the transcriptomes of airway BCs
freshly isolated from patients with COPD to those without disease
using scRNA-seq analysis. This analysis revealed remarkable
heterogeneity of airway BCs, which, based on their global
transcriptional profiles, formed four clusters. Two of these clusters
were dominated by BCs isolated from “healthy airways” and included
minor subsets of BCs from patients with COPD, whereas the
remaining two clusters were almost exclusively composed of BCs
isolated from airways of patients with COPD. Together, these clusters
formed a continuum of biological states of BCs, from healthy to
COPD, which, as the authors hypothesize, may represent a trajectory
of molecular phenotypes of BCs that gradually evolve as COPD
develops.

The first question that comes to mind is, what genes change their
expression in airway BCs following the “logic” of disease
development and contribute to the “COPD BC trajectory” identified
byWijk and colleagues (7)? Strikingly, none of the genes that marked
physiological or culture- induced airway BC states were found by the
authors to be differentially expressed in COPD BCs, except forNGFR,
which was upregulated. Instead, the identified COPD BC trajectory
was found to be driven by progressively increased expression of a set
of cellular stress response genes commonly upregulated in growth
arrest conditions and in response to DNA damage and those
associated with oxidative stress, hypoxia, and apoptosis. This finding
suggests the possibility that in COPD, airway BCs, because of
continuous oxidative damage and tissue injury, become progressively
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“stressed out” and, at some point, lose their normal stem cell function
(transition from “state 3” to “state 4” in Figure 1C). In support of this
possibility, in previous studies, airway BCs of subjects with COPD
have been found to be exhausted, with decreased capacity to self-
renew and regenerate mechanically stable, normally differentiated
airway epithelium (11, 12).

Although data generated byWijk and colleagues (7) suggest a
number of interesting possibilities about the biology of airway BCs in
COPD, this study has several limitations. The first limitation relates to
the small sample size of this study; BCs from only three patients with
COPDwere isolated for the scRNA-seq analysis that was used to
build the pseudo–time trajectory. COPD is a heterogeneous disease
with multiple endotypes, and not all of themmay involve similar
changes in airway BCs (4). Second, BCs were isolated from the
fourth- to sixth-order bronchi, which is about 10 branching
generations away from the small airways where COPD pathology
develops (1). Changes observed in large airway BCs of patients with
COPDmay potentially reflect alterations occurring in these cells in
association with chronic bronchitis, believed to be a
pathophysiological precursor of COPD (13). Also, the analysis did

not include samples from patients with mild or moderate COPD,
which makes it impossible to confirm whether the identified
trajectory indeed reflects disease evolution. Finally, the BC sorting
strategy in this study was aimed at selecting cells that highly express
NGFR and have a large size (high forward scatter), thus precluding
the capture of BCs that do not express NGFR or are smaller, which
may represent a considerable subset of airway BCs (14).

In sum, the study ofWijk and colleagues (7) stimulates
innovative thinking about airway BC heterogeneity and its changes as
a biomarker and mechanism of airway remodeling that mediates
COPD progression. Alterations in airway BCs may be secondary to
changes in stromal, immune, vascular, and other cell types that
constitute their tissue-specific microenvironment, as recently shown
at the single-cell level in patients with asthma (15). Studies that survey
the entire diversity of cells and their interactions in airway regions
that undergo disease-relevant remodeling in a large cohort of patients
representing the broad spectrum of COPD heterogeneity, from pre-
and early COPD to end-stage disease, should be the next step in the
continuum of our search for new answers about mechanisms of
disease.�
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Figure 1. Airway basal cell (BC) heterogeneity and its contribution to airway remodeling in disease. (A) Stem/progenitor cell compartment of
airway epithelium includes basal stem cells, which self-renew to maintain stem cell compartment, and “early” and “committed” progenitors also
known as para-BCs, differentiating BCs, or intermediate cells, which differentiate to generate ciliated cells and secretory (mucus-producing and
nonmucus club) cells. (B) Airway epithelium composed of BCs, intermediate cells, and differentiated cells. BCs are located in the basal
epithelial layer, above the basement membrane, which separates airway epithelium from the subepithelial compartment, which contains stromal
cells, immune cells, and vessels. These cells constitute the subepithelial microenvironment for airway BCs. (C) Heterogeneous biological states
of airway BCs and BC-derived epithelial patterns: homeostatic (state 1; includes BCs, BC-derived differentiating progenitors, and differentiated
cells), injury-activated reparatory (state 2; characterized by emergence of activated reparatory BC states that respond to injury by increased
proliferation and migration), chronically stressed or remodeled (state 3; includes hyperplastic patterns of BC hyperplasia and mucus-producing
cell hyperplasia and metaplastic patterns of mucous metaplasia and squamous metaplasia; these patterns constitute airway remodeling
phenotypes), and hyporegenerative or senescent (state 4; characterized by loss of BC regenerative function, epithelial hypoplasia, and loss of
epithelial barrier integrity).
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