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Mining human preference 
via self‑correction causal structure 
learning
Jian Sun1, Chenye Wu2,3*, Weihua Peng4*, Jiayan Huang4, Cuiyun Han4, Yong Zhu5 & 
Yajuan Lyu5

Spurred by causal structure learning (CSL) ability to reveal the cause–effect connection, significant 
research efforts have been made to enhance the scalability of CSL algorithms in various artificial 
intelligence applications. However, less effort has been made regarding the stability and the 
interpretability of CSL algorithms. Thus, this work proposes a self-correction mechanism that embeds 
domain knowledge for CSL, improving the stability and accuracy even in low-dimensional but high-
noise environments by guaranteeing a meaningful output. The suggested algorithm is challenged 
against multiple classic and influential CSL algorithms in synthesized and field datasets. Our algorithm 
achieves a superior accuracy on the synthesized dataset, while on the field dataset, our method 
interprets the learned causal structure as a human preference for investment, coinciding with domain 
expert analysis.

Exploring Human Preference (HP, Table 1 lists the main acronyms used in this work) plays an essential role 
in many areas. Specifically, exploring HP for jobs affects human capital investments1; exploring HP for travel 
service helps improving user profiling for airline industry2,3, and accommodation sector4,5, and exploring HP for 
investment advances the financial and capital market, benefiting the whole economy6. Generally, HP explora-
tion is a delicate task since it is by nature heterogeneous and can be influenced by each individual’s surrounding 
environment7. The Covid-19 brings a golden opportunity to conduct HP exploration as the global pandemic 
has drastically changed people’s lifestyles and preferences in this short period8. Specifically, this paper focuses 
on the changes of HP on investment which has attracted much research attention. Most of the literature utilizes 
statistical methods, such as Friedman Rank Test, Chi-square6, and Granger causality9. In contrast to the literature, 
we notice that the changes in HP on investment can be inferred by the different price fluctuation propagation 
chains between the main financial products before and after the pandemic: different HPs result in different price 
fluctuation propagation chains, which reveal the cause–effect connections between prices.

Causal Structure Learning (CSL)20, one of the mainstream frameworks for causal inference, is a natural 
candidate for this task because CSL aims at inferring the causal structure presented by Directed Acyclic Graph 
(DAG), where the directed arrows indicate the cause–effect connections. For example, both raining and opening 
the sprinkler can make the grass wet, and there is no causal relation between raining (weather condition) and 
opening the sprinkler (human activities). Suppose a dataset contains three Boolean variables: the status of the 
rain (Rain), the operation of sprinkler (Sprinkler), and the wetness of the grass (Wet) of each day in a year. CSL 
could infer a DAG like ‘Rain→ Wet ← Sprinkler’.

The classical taxonomy divides CSL into three categories21. Constraint-based algorithms22 test for conditional 
independences (CIs) in the data and then find a Markov equivalence class of DAGs (rather than the specific DAG) 
that best explains these independences since some DAGs are observational equivalent. Each Markov equivalence 
class can be represented by a Completed Partially Directed Acyclic Graph (CPDAG)23 that involves both directed 
and undirected edges shared among all class members. Score-based algorithms24 define a hypothesis space of 
possible DAGs and a scoring function that measures how well the DAG fits the observed data, and then such 
algorithms find the highest-scoring DAG. Thus, they do not rely on hypothesis testing as much as constraint-
based ones. However, different hypothesis space and scoring functions can result in different “best” DAGs 
even on the same dataset. Hybrid algorithms17 combine the above two schemes by learning the graph skeleton 
through a constraint-based algorithm, using CIs as constraints to construct the skeleton, and then employing 
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the score-based algorithm for evaluating causal graphs through a goodness-of-fit score function. Comprehensive 
comparison analysis is available25 for interested audience. Among all methods, the constraint-based ones are the 
most intuitive and most processing efficient22.

However, CSL, even using constraint-based algorithms, can produce meaningless structures. Take the impact 
of Covid-19 as an example, a widely adopted domain knowledge (DK) is that the rapid spread of Covid-19 has 
dramatic impacts on financial markets all over the world26. Thus, in the causal structure between the price of 
main financial products after the outbreak of Covid-19 and the daily confirmed diagnosis of U.S. data, there 
should be arrows pointing at the financial products from Covid-19. However, Fig. 1a–e show that many learned 
causal structures not only fail to reflect the DK but even contradict the DK.

In addition to conflicting with DK, CSL results can also contain self-conflict. We again take constraint-based 
algorithms to exemplify this phenomenon better. One type of self-conflict is an edge oriented into two opposite 
directions during the algorithms, termed as bi-oriented edges. Figure 1f counts the number of these bi-oriented 
edges of 6 constraint-based algorithms on nine synthetic datasets. The self-conflict significantly reduces the cred-
ibility of the whole algorithm since constraint-based algorithms cannot contain the error propagation, as shown 
by the blue part in Fig. 3 (The details will be introduced later.). Such errors could mislead the entire procedure21 
due to the lack of a self-correction mechanism.

We submit that these conflicts, including conflict with DK and self-conflict, come from two aspects, as shown 
by the gray part in Fig. 3. The first source is that constraint-based algorithms are highly dependent on CI test-
ing. On the one hand, this dependence contributes to the clear intuition of constraint-based algorithms; on the 
other hand, the CI testing accuracy can fundamentally affect the performance of the entire algorithm. However, 
in practice, the p value returned by the CI testing (the probability of a given CI hypothesis being true), is not 
reliable, as essentially, testing whether two random variables are independent (especially continuous variables) 
is a complex statistical problem27. Although many researchers aim to develop accurate CI testing algorithms, 
state-of-the-art algorithms are not flawless. Many true CI hypotheses still cannot be distinguished from the 
false ones, especially in the high-noise environment, as shown in Fig. 2. Thus, the decisions solely based on CI 
testings are not adequately convincing. The second source involves the CI testing error propagating, which may 
ultimately mislead the entire algorithm, with22 providing a relevant example. Let the ground truth be illustrated 
in Fig. 2b. If the edge X5 − X4 is mistakenly removed, then the edge X2 − X4 will not be removed because X2 
and X4 are dependent on every subset of their neighbor variables {X1,X3} . One may argue that the propagation 
will not exist if the independence is tested conditioning on every subset of all other variables {X1,X3,X5} . This 
approach suffers from high computational complexity. Moreover, although the error is no longer propagated, 
it cannot be corrected.

To summarize, CI testing errors are unavoidable, and they easily propagate since it is the only approach to 
characterizing the accepted CI hypothesis. In order to overcome this issue, inspired by the fact that a wrongly 
accepted/rejected CI hypothesis may cause conflicts during the edge orientation, this work suggests exploiting 
the consistency of causal structures. For example, when some accepted CI hypotheses suggest that the edge 
X1 − X2 should be oriented as X1 → X2 , while others indicate the opposite, this orientation difference indicates 
that some CI hypotheses have been wrongly accepted/rejected. Spurred by this idea, we design a CSL algorithm 
with a DK-embedded self-correction mechanism (termed as RPC* algorithm), which is proven to be complete, 
to correct CI testing errors and prohibit the error propagation, as shown by the green part of Fig. 3.

Table 1.   Acronym table.

Acronym Meaning

Covid-19 Coronavirus disease 2019

HP Human preference

CSL Causal structure learning

DAG(s) Directed acyclic graph(s)

CI(s) conditional independence(s)

CPDAG(s) Completed partially directed acyclic graph(s)

DK Domain knowledge

RCoT Randomized conditional correlation test

(MA)SHD (Minimal average) structural hamming distance

MAKL-d Minimal average Kullback–Leibler divergence

pc.stable Peter Spirtes & Clark Glymour algorithm (stable version)

RPC* Robust pc.stable algorithm

iamb(.fdr) Incremental Association Markov Blanket (with False Discovery Rate Correction) algorithm

fast/inter.iamb Fast/Interleaved Incremental Association Markov Blanket algorithm

gs Grow-Shrink algorithm

mmhc Max-Min Hill Climbing algorithm

h2pc Hybrid Hybrid Parents and Children algorithm

hc Hill Climbing search algorithm

tabu Tabu search algorithm



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5051  | https://doi.org/10.1038/s41598-022-08879-6

www.nature.com/scientificreports/

Figure 1.   We challenge ten influential CSL algorithms. Six of them are constraint-based: pc.stable10, gs11, iamb/
iamb.fdr12, fast.iamb13 and inter.iamb14. Two are score-based, employing different searching algorithms: hc15 
and tabu16. The remaining two are hybrid algorithms: mmhc17 and h2pc18. All of them are implemented by 
employing the bnlearn R package19. Five algorithms learn poor structures, which conflict with DK or contain 
self-conflicts, illustrated in (a–e). In the structures learned by pc.stable and mmhc, the Covid has no influence 
on the financial market. Besides, h2pc, tabu and hc suggest financial market can influence the daily confirmed 
diagnosis. In addition to the real dataset, all constraint-based algorithms are tested on 9 synthetic dataset and 
the number of self-conflict are counted in (f).

Figure 2.   Traditional constraint-based algorithm analysis. We take the state-of-the-art algorithm, Randomized 
conditional Correlation Test (RCoT)28, as an example. The tested dataset is generated from the structure shown 
in (a). The generation process is similar to that elaborated in Synthetic Data part. Several CI hypotheses are 
selected, and RCoT is conducted 100 times on each CI hypothesis, with the returned p values shown in (c). The 
y-axis shows CI hypotheses in the form of Xi + Xj|Z . The x-axis shows the corresponding 100 p values. The 
red forks are the p values of the CI hypotheses that should be accepted, and the brown dots should be rejected. 
However, it is hard to statistically distinguish whether a CI hypothesis should be rejected or not, making the 
decisions solely based on CI testings not adequately convincing. (b) shows an example of CI testing error 
propagating, which may ultimately mislead the entire algorithm.
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The DK generated from experience, knowledge graph, or other sources contributes to our proposed solu-
tion from two aspects. First, it accelerates the process by directly pointing out the wrongly accepted/rejected 
CIs, and second, it checks whether the DK criterion is satisfied as part of the consistency test. Thus, the output 
of the proposed algorithm is always consistent with DK. Besides, the self-correction mechanism enhances our 
algorithm’s stability and accuracy even in a high-noise environment where CI testing errors are more likely to 
exist. Hence, the output is guaranteed to be consistent and meaningful by combining the above two processes. 
The proposed algorithm can be effective in mining various HPs, much beyond HP for investment. Table 2 posi-
tions our proposed algorithm (RPC*) in the literature.

Results
We employ two types of datasets. One type is the synthetic dataset, where the ground truth structure, Gt , is 
known since the dataset is generated according to the structure. The other type is the real-life dataset, where the 
ground truth is unknown. For the first dataset type, the evaluation metric measures the distance between the 
learned structure and the ground truth structure. The traditional distance metric is the Structural Hamming 
Distance (SHD)17 in which any difference between variable pairs counts. Generally, SHD increases with the 
number of variables (data dimension), i.e., |V| . Due to the diversity of the employed datasets, we adopt the ratio 
between the SHD and |V| to unify the performance metrics among the various datasets. The minimal ratio that 
an algorithm can achieve (termed as MASHD), measures the algorithm’s accuracy. The lower the MASHD, the 
better the algorithm performs.

Unfortunately, MASHD cannot be employed for the second type of dataset since Gt is unknown. For this type 
of dataset, one popular measurement is KL-divergence17, with the KL-divergence of a DAG G measuring the 
distance between the dataset and the distribution generated by G. Since the CSL algorithms’ outputs are CPDAGs, 
i.e., [ ̂G ], we first enumerate all possible orientations of the undirected edges in CPDAGs, i.e., all G ∈ Ĝ , and select 
the final output as the one with the maximal ratio between the KL-divergence and |V| (MAKL-d). The higher the 
MAKL-d, the better the algorithm performs.

We challenge the proposed method against ten influential CSL algorithms. Six of them are constraint-based: 
pc.stable10, gs11, iamb/iamb.fdr12, fast.iamb13 and inter.iamb14 and two are score-based, employing different 

Figure 3.   The gray part broadly highlights why constraint-based algorithm can produce contradictory results. 
The orange part shows how the CI testing results influence each step of constraint-based algorithms. The blue 
part broadly introduces the processes of constraint-based algorithms. The green part is how we build a self-
correction mechanism to revise the CI testing results and get consistent causal structures.

Table 2.   Position of this work in the literature.

pc.stable gs iamb(.fdr) fast/inter.iamb hc/tabu h2pc/mmhc RPC*

Fully oriented graph × × × × � × �

DK embedded × × × × � � �

Constraint embedded � � � � × � �

Self-correction mechanism × × × × × × �
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searching algorithms: hc15 and tabu16. The remaining two are hybrid algorithms: mmhc17 and h2pc18. All methods 
are implemented employing the bnlearn R package19. Although the hybrid and our proposed RPC* algorithm 
exploit DK, they process DK quite differently, as the hybrid algorithms utilize DK to generate a goodness-of-
fit score function for evaluating causal graphs while DK in RPC* helps to check the correctness of CIs and the 
consistency of causal graphs.

Synthesized data analysis.  Utilizing Bayesian Network Repository29, we employ five structures of dif-
ferent dimensions as benchmarks with their detailed information presented in Table 3a. For each structure, the 
datasets are generated based on the following mechanism:

where fj(·) is a function that is randomly selected from {sin(·), cos(·), arctan(·), abs(·), square(·)} , as these pro-
vide adequate complexity (without being linear) and their domains are R . ηi denotes noise. We apply six noise 
distributions involving different noise types and different noise standard deviation σ(ηi) (see Table 3b). Each 
distribution is related to one dataset, i.e., each structure generates six datasets. In each dataset, the noise distribu-
tion obeys one of the distributions in Table 3b.

We present how each algorithm performs in terms of MASHD for all datasets in Fig. 4a. The x-axis shows the 
performance on the dataset affected by Gaussian noise, and the y-axis shows the performance under Uniform 
noise. Different shapes of markers distinguish different structures, while the size of markers presents the standard 
deviation of the noise. We conclude that in terms of MASHD, our algorithm outperforms all competitors in all 
datasets. Additionally, one general trend is that when the standard deviation of the noise is the same, the Uni-
form noise seems to degrade the performance slighter than the Gaussian noise since most markers lie under the 
dashed diagonal line. However, as the noise standard deviation increases, although the performance of the chal-
lenged algorithms is relatively stable for the Gaussian noise, the performance degrades significantly for Uniform 
noise since big markers mainly lie above the diagonal line. In contrast, small markers mainly lie under the line. 
It should be noted that the suggested RPC* method manages a stable performance regardless of the noise type.

Figure 4b presents the MAKL-d performance on all datasets where only four challenged algorithms gener-
ate meaningful structures. The RPC* algorithm still outperforms the competitors on most datasets, whether in 
terms of MAKL-d or stability since the performance of many algorithms degrades as the noise standard variance 
increases. This highlights the superior of RPC* among different performance metrics.

(1)Xi =
∑

j∈Pai

fj(Xj)+ ηi ,

Table 3.   Synthesized dataset generation.

(a) Structures (b) Six adopted noise types

Name Cancer Survey Asia Sachs Child Type\σ(ηi) 0.5 1 2

Node 5 6 8 11 20 Gaussian N(0,0.25) N(0,1) N(0,4)

Edges 4 6 8 17 25 Uniform U(−
√
3

2
 , 
√
3

2
) U(−

√
3 , 
√
3) U(−2

√
3 , 2 

√
3)

Figure 4.   Performance on synthesized datasets.
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Additionally, as there is no DK for the synthesized dataset, the DK is not embedded in the algorithms. How-
ever, even so, RPC* still shows superior performance against challenged algorithms, which confirms the ability of 
RPC* to find true causal structures. For more detailed comparisons results on the synthetic datasets, the detailed 
results of Fig. 4a,b are provided in  “Method”.

Real case analysis.  To analyze how Covid-19 changes the investor’s preference, we explore the causal struc-
ture among the prices of main financial products before and after the outbreak of Covid-19. We select five main 
financial products and collect the related data30: 

1.	 Stocks: DJI (Dow Jones Industrial Average), S&P500 (Standard and Poor’s Composite 500 Index), NASDAQ 
(National Association of Securities Dealers Automated Quotations);

2.	 U.S. Treasury Securities: one-month/one-year/ten-year treasury bond yield;
3.	 Gold: the price of the gold CFD (Contract For Difference) in Intercontinental Exchange;
4.	 Oil: the price of WTI (West Texas Intermediate) crude oil futures;
5.	 Dollar: the U.S. dollar index;

The chosen products are commonly used when analyzing the dynamics of financial markets31–35. All the above 
data were the closing prices collected before the Covid-19 outbreak, i.e., from January 2, 2019, to January 21, 
2020, and after the outbreak, from January 22, 2020, to December 15, 2020. The specific dates are chosen based on 
the following two reasons. January 22, 2020, was the dividing line indicating the outbreak of Covid-19 since it is 
the earliest record of the daily confirmed diagnosis of the U.S. data repository by the Johns Hopkins University36. 
On the other hand, to avoid a possible impact of imbalanced datasets, their sizes before and after the break are 
roughly the same. In the raw data, these variables lie naturally in different ranges. For example, the observations 
of DJI are in the thousands while the treasury bond yields are percentages. Thus to present the trend uniformly, 
for each variable x , its observations are scaled into range [0, 1]:

The scaled stock index, treasury bond yield, and gold price are plotted in Fig. 5a,b. Figure 5a reveals the treas-
ury bond yield and the gold price often act negatively to the stock index while shortly after the Covid-19 out-
break (Fig. 5b), although the treasury bond still presented a negative reaction, the gold price reacted positively. 
Although this superficial observation may not directly reveal how the investment preference changes, it strongly 
suggests different preferences before and after the Covid-19.

Concerning the Covid-19 example, when the algorithm generates the DAGs by exploiting data after the 
Covid-19 outbreak, except checking the DAGs’ consistency, the DK should also be ensured in terms of financial 
products not influencing the daily confirmed diagnosis results. Thus, any DAG containing an arrow pointing at 
“Covid” is meaningless and will not be considered. Additionally, if an algorithm does not generate a meaningful 
DAG, it cannot be named flawless.

Given that the true causal structure of these financial products is unknown, the only quantitative metric to 
evaluate the DAGs is MAKL-d, with the corresponding results presented in Fig. 6a. The x-axis shows the MAKL-
d on the dataset before the Covid-19 outbreak, while the y-axis indicates after the outbreak. If an algorithm 
cannot generate meaningful structures on one of the two periods, the related MAKL-d is recorded as 0, and the 
algorithm will be associated with a star. Algorithms that cannot generate meaningful structures for both periods 
are omitted. Figure 6a highlights that only two algorithms, i.e., the proposed algorithm and mmhc (presented 
by dots), generate meaningful structures on both periods (presented by dots), and the proposed method shows 
the superiority against mmhc.

(2)xscaledi =
xi −min{x}

max{x} −min{x}
, ∀i.

Figure 5.   Changes on stock, securities and gold before and after the outbreak of Covid-19.
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Figure 6b,c compare the structures affording the highest MAKL-d before and after the outbreak of Covid-19, 
with different products being plotted in different colors. Although more than one DAG may share the highest 
MAKL-d, for example, before the Covid-19 outbreak, two DAGs have the highest MAKL-d, in these two DAGs, 
only one edge is oriented in opposite directions, i.e., the edge between one year and one month, plotted as dashed 
in Fig. 6b.

The causal structure with the highest MAKL-d has the highest probability of revealing the price fluctuation 
propagation chain between the main financial products, i.e., the HP for investment. Before the outbreak, the only 
source is the Ten-year treasury bond, indicating its high priority during investment37. Note that, such priority 
does not mean the yield will decrease or increase. It merely infers that the price fluctuation of this product is the 
cause of price fluctuations of other products, thus reflecting this product is considered for investment before 
investing in other products. Besides the Ten-year treasury bond, the dollar is of the second-highest priority. Both 
facts suggest the strong confidence of investors in the U.S. economy38. Then the price fluctuation propagation 
chain continues with the short-term treasury bond, oil/stock. This coincides with the fact that the value change 
of the dollar will affect the stock indexes since dollars are needed to purchase stocks39. Finally, gold acts as the 
safe haven since the value of gold lies in preservation rather than investment35,40. Overall, this chain (i.e., the HP 
for investment) shows a positive attitude of investors toward the economy.

However, the pandemic changes this investment attitude and the price fluctuation propagation chain. After 
the outbreak of Covid-19, the directly affected products are the treasury bonds, which is consistent with the 
statement that the Covid-19 has increased the persistence degree of bonds41. No matter before or after the 
outbreak, treasury bonds are the source of the price fluctuation propagation chain, supporting their role as 
an anchor for global asset prices42. Then the yield fluctuation is passed to the price of gold rather than dollar/
stock. In other words, after the outbreak, investments consider investing in gold before investing in dollar/stock, 
which is the opposite of before the outbreak. The same circumstance also happened in the euro-area where the 
flight to safety phenomenon43 moved financial agents away from the more risky assets and towards the safer 
investment-grade segment44. This observation shows the significant change in the investment subconscious due 
to the negative attitude of investors towards the economy. This subconscious change is also supported by a poll 
released by Gallup Wednesday, which shows 67% of Americans believe economic conditions are getting worse 
in the country45. Similarly, the same statement was delivered by the researchers of the Reserve Bank of India46. 
The alignment between the interpretation of the causal structure and expert experience strongly suggests the 
effectiveness of RPC*.

Considering distinguishing the effect of the regulatory directives from HP shifts, the analysis comes from 
two aspects. For the long-term regulatory, such as new legislation, if data is collected in the short time following 
the emergency that results in the HP shift, as in our case, it should not affect the learned causal structure. For 
the quick-acting short-term regulatory directives, such as the circuit breaker, on the one hand, they are often 
pre-known, and thus their effects are always foreseeable when the regulation directives are triggered. However, 

Figure 6.   Influence of Covid-19 on causal structures between financial products.
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the extreme market condition is a reflection of sudden HP shifts, which is not foreseeable due to the limited 
knowledge of the emergency. Therefore, although the regulation can affect the market, it can be considered as 
the effects of sudden HP shift on the market. On the other hand, the short-term regulatory may affect market 
conditions for only a short period, and hence cannot influence the statistical relation between market variables.

Discussion
This work focuses on adopting CSL for exploring HP in a high-noise environment. In such an environment, 
traditional algorithms fail as they rely on hypothesis testing, of which the statistical errors make the outcome 
lose stability and explainability. Spurred by that, we creatively propose a self-correction mechanism combined 
with a consistency test to correct the wrong hypothesis testing result and guarantee the explainability of the 
learned structure even in a high-noise environment. We challenge our method against several state-of-the-art 
algorithms on various datasets and demonstrate the superiority of our algorithm on both synthetic and real data.

This work can be extended in many directions. For example, employing the adjacency matrix for batch 
operation may relieve the computational issue in our algorithm. In addition, our algorithm has many important 
application domains, such as user profile, pattern recognition, and policy evaluation.

This work is inherited from the constraint-based algorithm, where the basic assumption is that all concerned 
variables are observational, i.e., there is no latent structure. Specifically, latent structure analysis is another 
mainstream research in CSL47,48. However, since the latent structure is not in the scope of this work, there is 
no guarantee that the proposed algorithm is complete when the latent variables exist. Besides, scalability is one 
common concern for constraint-based algorithms. We emphasize that there are many important areas, such as 
biology, and financial markets, where the number of concerned variables is relatively small, and it is worthwhile 
to figure out the consistent causal structure regardless of the computational efforts.

Methods
Algorithm framework. 

Many constraint-based algorithms like Grow-Shrink49 and Interleaved Incremental Association50 are inherited 
from the Peter and Clark (PC*) algorithm22, which contains three main steps, as shown by the blue part in Fig. 3, 
Skeleton finding, V-structure orientation and Non-v-structure orientation. These steps are affected by different 
components of accepted CI hypotheses separately, as the orange part in Fig. 3 shows. Specifically, 

a)	 Skeleton finding: The skeleton of a DAG is the undirected graph obtained by replacing all directed arrows 
with undirected edges. Take the DAG ‘Rain→ Wet ← Sprinkler’ as an example; the skeleton is ‘Rain-Wet-
Sprinkler’. Thus, the Skeleton finding determines whether there are edges between variable pairs based on 
the independence of the accepted CI hypothesis. The procedure Skeleton finding is shown in lines 2-5 in 
Algorithm 1.

b)	 V-structure orientation: A v-structure is a sub-structure of a DAG comprising three variables Xi → Xj ← Xk 
where Xi and Xk are not adjacent. ‘Rain→ Wet ← Sprinkler’ is a v-structure. The V-structure orientation 
determines the v-structures based on the separation set. The procedure V-structure orientation is illustrated 
in lines 6-9
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c)	 Non-v-structure orientation: Non-v-structures are oriented based on the rules (lines 11-16) which are proven 
to make the output complete20. The procedure Non-v-structure orientation is indicated in lines 10-18.

Note that, in "Skeleton finding", only the independence matters. For example, let Z be the actual separation set 
for a variable pair (Xi ,Xj) , but the CI hypothesis Xi ⊥ Xj|Z

′ is accepted. Then edge (Xi ,Xj) is deleted, and Z′ is 
recorded as the separation set for (Xi ,Xj) . In this case, the separation set is incorrect, but the output skeleton 
can still be correct.

Based on the above analysis, we propose an algorithm termed as Robust PC* (RPC*), which is illustrated 
by the blue part and the green part of Fig. 3. RPC* starts with generating an accepted CI hypothesis set, CI in 
"Skeleton finding". Then the two processes, “Skeleton adjusting” and "Separation set adjusting" are used to adjust 
the independence and the separation sets in CI respectively. Generally, if CI is consistent, the algorithm outputs 
consistent CPDAGs. Otherwise, assuming the skeleton is right, i.e., the independence is correct, the separation 
sets are adjusted until consistent CPDAGs are found. The skeleton is adjusted if no consistent CPDAGs can be 
found (Condition 2). This process terminates if the iterations reach a threshold (Condition 1). Specifically, RPC* 
considers all possible causes for inconsistent structures and embeds the corresponding adjustments. Thus, RPC* 
is complete. The detailed algorithm design is shown in the next subsections.

Self‑correction CSL.  Skeleton finding.  As stated earlier, it is risky to determine whether to accept a CI 
hypothesis solely relying on a single p value. Hence, to improve the resistance against noise, we propose a com-
pound score that measures the probability of a CI hypothesis to be true. Given a CI hypothesis Xi ⊥ Xj|Z and pt 
denoting the tth calculation of p value, the score of the CI hypothesis S(Xi ,Xj|Z) is

where I(·) is the indicator function, T is the total number of p value calculations, and α is a predefined threshold. 
Setting the value of T is a trade-off between stability and efficiency. The traditional way that employs a single p 
value is a special case of S(Xi ,Xj|Z) with T = 1 and α > 1.

Nevertheless, to characterize an initial CI , an additional predefined threshold β is required, which accepts the 
hypothesis and adds it into CI when the score is above β . It should be noted that accurately setting β is unneces-
sary, as the process to correct the CI is elaborated in “Separation set adjusting”.

Consistency test.  A structure Ĝ is said to be consistent if and only if (iff) Ĝ satisfies a) no edge will be oriented in 
opposite directions, b) Ĝ does not contain any directed cycle, c) all v-structures in Ĝ are oriented in V-structure 
orientation and Non-v-structures orientation will not introduce new v-structures, and d) Ĝ does not conflict with 
DK. Set CI is consistent iff it introduces a consistent CPDAG. Figures 7a,b and 8 present the cases violating the 
consistency condition (a), (b) and (c), respectively. It is worth noting that the consistency test is not redundant 
since the inconsistency occurs (as addressed in Fig. 1f) due to the wrongly accepted/rejected CI hypotheses. A 
common deficiency of several constraint-based algorithms is that they do not precisely evaluate consistency. 
Instead, they randomly choose one direction when the first condition is violated.

Separation set adjusting.  In this process, we assume that CI introduces the correct skeleton (V,E) while the 
separation sets of some accepted CI hypotheses are wrong. Specifically, we first introduce the separation sets 
that should be adjusted and how to adjust them. A detailed explanation is given in Algorithm 2 at the end of this 
subsection.

A simplistic approach to find the correct separation set for each accepted CI hypothesis is to test all pos-
sible separation sets and select the one with the highest score. However, this strategy is rather time-consuming, 

(3)S(Xi ,Xj|Z):=

T∑

t=1

I(pt > α)+

∑T
t=1 pt

T
,

Figure 7.   Cases violating the consistency conditions. Suppose that the accepted CI hypotheses set is 
{X1 ⊥ X4,X2 ⊥ X3,X2 ⊥ X4|{X1,X3}} . The introduced skeleton is shown in (a), where X1 → X3 ← X4 
forms a v-structure based on the first CI hypothesis, and X2 → X1 ← X3 forms another v-structure based on 
the second CI hypothesis. Edge X1 − X3 is oriented in the opposite directions. (b) A new v-structure, where 
CI is {X3 ⊥ X4,X2 ⊥ X3,X2 ⊥ X4|{X1,X3}} . In its skeleton, X2 → X1 ← X3 and X3 → X1 ← X4 form two 
v-structures. Thus, there should be an additional v-structure X2 → X1 ← X4 . However, this v-structure cannot 
be produced in the v-structure orientation.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5051  | https://doi.org/10.1038/s41598-022-08879-6

www.nature.com/scientificreports/

involving many unnecessary CI tests, as during the V-structure orientation process, not all accepted CI hypotheses 
are essential for determining the directions. For example, the skeleton of Fig. 2b highlights that regardless of the 
exact separation set of (X1,X5) , it does not affect the procedure V-structure orientation since X1,X5 cannot con-
stitute any v-structure. What matters are the v-structures. Hence, the non-connected variable pairs with common 
neighbors require greater attention since these pairs can construct v-structures. Therefore, all possible separation 
sets should be considered for these variable pairs. Mathematically, the following CI hypotheses should be tested:

where N(·) is the neighbor variables set and P(·) is the power set.

Additionally, if any CI hypothesis conflicts with DK, the related variable pairs also require greater attention. 
For example, one DK is that generally, the spread of the virus will not be directly affected by the stock market. 
Thus, if the accepted CI hypothesis leads to a directed edge “stock price → daily confirmed diagnosis of Covid-
19”, it will be considered a false CI hypothesis. All other possible separation sets should be tested.

After testing all possible CI hypotheses of these suspicious variable pairs, the algorithm adjusts their sepa-
ration sets. k CI hypotheses with the highest scores are considered for each suspicious variable pair to attain 
robustness to noise. These CI hypotheses are denoted as:

where rank(·) refers to the score ranking of all CI hypotheses tested and parameter k is a predefined threshold. All 
tested separation sets for Xi − Xj are recorded into a set TSij . Notice that some separation sets are just identical 
for V-structure orientation. Considering the skeleton of Fig. 2b as an example, both CI hypotheses X2 ⊥ X5|{X3} 
and X2 ⊥ X5|{X1,X3} do not result in any v-structure, while both X2 ⊥ X5 and X2 ⊥ X5|{X1} produce the same 

(4)Xi⊥Xj|Z,Xi − Xj /∈ E,N(Xi)∩N(Xj) �=∅,Z∈P(N(Xi))∪P(N(Xj)),

(5)CIij:={Xi⊥Xj|Z, rank(S(Xi ,Xj|Z))≤k},

Figure 8.   Early termination: considering this figure as an example, in the V-structure orientation process, 
the CI hypothesis X3 ⊥ X5|X6 will form a v-structure X5 → X4 ← X3 . Thus we record (X4,X5) for X5 → X4 
and (X3,X4) for X3 → X4 . Following the same idea, we record (X5,X6) for X6 → X5 since X2 ⊥ X6|X4 . Then 
the rules process orients X4 → X6 , otherwise a new v-structure X3 → X4 ← X6 will be produced. Then we 
record (X3,X4) for X4 → X6 since the orientation of (X3,X4) is the reason to orient X4 → X6 . Now a cycle 
X6 → X5 → X4 → X6 is detected. (X4,X5), (X4,X5), (X5,X6) are reported since they are the evidence path of 
the cycle’s edges. The most recorded pair is (X4,X5) , and the related CI hypotheses are X2 ⊥ X4|{X1,X6} and 
X3 ⊥ X5|X6 . These will not form v-structures by decorating the former one as X2 ⊥ X4|{X1,X5,X6} and the 
latter one as X3 ⊥ X5|{X4,X6}.
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v-structure X2 → X3 ← X5 . Thus, only a subset of CIij denoted as CCIij (compact CIij ) must be enumerated since 
its members produce different v-structures. The details are shown in line 4 to line 11 in Algorithm 2.

The next step is for each Xi − Xj /∈ E , choosing a CI hypothesis from CCIij to construct a consistent CI 
hypothesis set CI′ . If all candidate CI hypothesis sets are enumerated, the algorithm stops when the first consist-
ent CPDAG is delivered, and the output contains only one CPDAG. However, the output variety affords robust-
ness to higher noise levels. To guarantee the output variety, one method is to iteratively replace L CI hypotheses 
with the lowest scores in CI and record all consistent CPDAGs where L is an integer increasing from 1.

Remark: Although in "Skeleton finding", the initial CI hypothesis set CI is generated by a predefined param-
eter β , the strategy seems inflexible. The inflexibility vanishes in Separation set adjusting. There is a chance that 
no fixed threshold can produce the final accepted CI hypothesis since the CI hypothesis with a lower score can 
be accepted while the one with a higher score can be rejected. For example, even if S(Xi ,Xj|Z) > S(Xi ,Xj|Z

′) , 
it is still possible that only Xi ⊥ Xj|Z

′ is accepted since it contributes to making up a consistent CI hypothesis 
set while the other does not.

Skeleton adjusting. 

If no consistent CI hypothesis set can be found in the above process, i.e., condition 2 in Fig. 3, the remaining 
possibility is that the skeleton (V,E) , introduced by CI is wrong. For each wrongly processed edge, the edge can 
be mistakenly deleted or preserved. For the mistakenly preserved case, suppose Xi − Xj is the edge that has the 
highest score in E . Mathematically, if

then Xi − Xj has the highest probability to be wrongly preserved. If edge Xi − Xj is deleted, the scores of CI 
hypotheses originating from other variable pairs will change since Xi and Xj are no longer neighbors, and thus 
TSab should be updated accordingly:

(6)max
Z∈TSij

S(Xi ,Xj|Z) = max
Xa−Xb∈E

max
Z∈TSab

S(Xa,Xb|Z),
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where N′(·) is the new neighbor set after deleting the edge Xi − Xj . This iterative process deleting edges by sat-
isfying Eq. (6) is followed by updating the recorded separation set based on Eq. (7) until a variable pair presents 
a significant score decline. Mathematically,

Then the Separation set adjusting process is applied to find consistent CI hypothesis sets based on the new skele-
ton. The concept of the wrongly preserved situation is presented in Algorithm 3. As for the wrongly deleted situa-
tion, the main idea is to add edges iteratively. The main logic of the wrongly deleted case is shown in Algorithm 4.

Early termination.  It is possible that for a variable pair (Xi ,Xj) , no true CI hypothesis can obtain the first k high-
est scores among all tested CI hypotheses. However, just enlarging k is inefficient, and thus, an early termination 
process should be conducted when necessary. The main idea is to record the directions that always conflict with 
others and make them indirected edges. Specifically, we record the variable pairs that constitute the evidence 
path to orient its direction for each directed edge. Only variable pairs concerning a v-structure can be recorded. 
When some conflicts are detected, the most recorded variable pair, i.e., the one that always conflicts with others, 
lose the ability to form a v-structure. A detailed example is provided in Fig. 8.

Our experiment finds that T = 10 , α = 0.01 and β = 10 can most clearly distinguish the true and the false 
CI hypotheses. Additionally, the k in Eq. (5) is set as 8.

Evaluation metrics.  Consider two graphs defined on the same variable set V , (V,E) and (V,E′) , the SHD 
of these two graphs is defined as follows:

where dE(e) denotes the direction of edge e in structure E (including the directionless). This means any difference 
between variable pairs counts for measuring the distance.

Generally, SHD increases with the number of variables (data dimension), i.e., |V| . Due to the diversity of the 
employed datasets, we unify the performance metrics among the various datasets by utilizing the average SHD 
defined as follows:

The ¯SHD is a scalar change concerning different dataset dimensions and does not discriminate between the 
algorithms.

Since the direct outputs of RPC* are CPDAGs, i.e., [Ĝ] , to straightforwardly compare the algorithms’ perfor-
mance, we measure the minimal ¯SHD between the learned CPDAGs and the CPDAG that the ground truth Gt 
belonging to, Ĝt (termed as minimal ¯SHD , or MASHD in short). The lower the MASHD, the better the algorithm 
performs.

Unfortunately, MASHD cannot be employed for the second type of dataset since Gt is unknown. For this type 
of dataset, one popular measurement is KL-divergence17. The KL-divergence of a DAG G measures the distance 
between the dataset and the distribution generated by G:

(7)TS
′
ab:={Z ∈ TSab|Z ∈ P(N′(a)) ∪ P(N′(b))},∀a �= b,

(8)∃Xa,Xb, rank

(
max

Z∈TS′ab

S(Xa,Xb|Z)

)
> k.

(9)SHD
(
(V,E), (V,E′)

)
:=|(E ∪ E

′)− (E′ ∩ E)| +
∑

e∈E∩E′

I(dE(e) �= dE′(e)).

(10)¯SHD
(
(V,E), (V,E′)

)
:=

SHD
(
(V,E), (V,E′)

)

|V|
.

(11)MASHD:=min
Ĝ

¯SHD(Ĝ, Ĝt).
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where H(·) is the entropy, and MI(Xi ,Pai) is the mutual information between variable Xi and the parent variables 
of Xi in G, Pai . Since the entropy does not depend on the DAG, we only compute the mutual information. The 
higher the mutual information, the better G performs. Since the outputs of the CSL algorithms are CPDAGs, 
i.e., [ ̂G ], we first enumerate all possible orientations of the undirected edges in CPDAGs, i.e., enumerate all 
G ∈ Ĝ , and select the final output as the one with the maximal average KL-divergence (MAKL-d). The higher 
the MAKL-d, the better the algorithm performs.

Extended performance evaluation.  The detailed performance evaluation in Fig.  4a are illustrated in 
Table 4. Besides, we measure the MASHD between the DAG of the ground truth and the structure learned by 
algorithms. Since not all algorithms guarantee generating consistent DAGs on all datasets, we only challenge 
our method against four comparable algorithms. Figure 9 illustrates the performance of all 11 algorithms on all 
datasets while detailed results are provided in Table 5, with all results rounded to two decimal places and the best 
performance is in bold type.

(12)KL(G) =

|V|∑

i=1

H(Xi)−H(X)−

|V|∑

i=1,Pai �=∅

MI(Xi ,Pai),

(13)MAKL-d:=max
G∈Ĝ

KL(G)

|V|
.

Figure 9.   MASHD of DAGs.
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Table 4.   MASHD of CPDAGs. Significant values are in bold.

Structure Noise

Algorithms

RPC* pc.stable gs iamb fast.iamb inter. iamb iamb. fdr hc tabu mmhc h2pc

Cancer

N(0,0.25) 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.40 0.80 0.40 0.40

N(0,1) 0.20 1.00 0.80 0.80 0.80 0.80 0.80 0.60 1.00 0.60 0.60

N(0,4) 0.20 1.20 1.20 1.20 1.20 1.20 1.00 1.20 1.20 1.20 1.20

U(−
√
3

2
 , 
√
3

2
) 0.20 1.00 1.00 1.00 1.00 1.00 1.00 0.40 0.40 0.40 0.40

U(−
√
3 , 
√
3) 0.20 1.00 1.20 1.20 1.20 1.20 0.80 0.80 1.20 0.80 0.80

U(−2
√
3 , 2 

√
3) 0.20 1.00 1.00 1.00 1.00 1.00 1.00 0.40 0.40 0.40 0.40

Survey

N(0,0.25) 0.83 1.17 1.50 1.50 1.50 1.50 1.33 1.33 1.00 1.17 1.17

N(0,1) 0.00 1.67 1.67 1.67 1.67 1.67 1.67 0.67 0.67 0.67 0.67

N(0,4) 0.17 1.33 1.33 1.33 1.33 1.33 1.17 1.00 1.00 1.00 1.00

U(−
√
3

2
 , 
√
3

2
) 0.00 1.17 1.17 1.17 1.17 1.17 1.17 1.00 1.00 0.83 0.83

U(−
√
3 , 
√
3) 0.00 1.00 1.17 1.17 1.17 1.17 1.17 0.67 0.67 0.67 0.67

U(−2
√
3 , 2 

√
3) 0.83 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67

Asia

N(0,0.25) 0.00 1.13 0.88 0.88 0.88 0.88 0.75 1.00 1.00 0.63 0.70

N(0,1) 0.00 0.63 0.38 0.38 0.38 0.38 0.50 0.63 0.63 0.63 0.63

N(0,4) 0.00 0.75 0.88 0.88 0.88 0.88 1.00 0.50 0.88 0.50 0.50

U(−
√
3

2
 , 
√
3

2
) 0.00 1.13 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

U(−
√
3 , 
√
3) 0.00 0.75 0.88 0.88 0.88 0.88 0.88 0.63 0.75 0.63 0.63

U(−2
√
3 , 2 

√
3) 0.38 0.75 1.13 1.13 1.13 1.13 1.13 0.88 1.00 0.88 0.88

Sachs

N(0,0.25) 0.00 1.82 1.91 1.91 1.91 1.91 2.00 2.45 2.45 2.00 2.00

N(0,1) 0.09 1.82 1.64 1.64 1.64 1.64 1.64 2.18 2.00 1.73 1.73

N(0,4) 0.91 1.82 1.73 1.73 1.73 1.73 1.73 2.00 1.91 1.82 1.91

U(−
√
3

2
 , 
√
3

2
) 1.00 1.91 2.00 2.00 2.00 2.00 1.82 2.18 2.18 1.91 2.00

U(−
√
3 , 
√
3) 0.82 1.82 1.91 1.91 2.00 1.91 1.91 2.00 2.00 1.91 1.91

U(−2
√
3 , 2 

√
3) 1.18 1.73 1.64 1.64 1.64 1.64 1.64 1.91 1.91 1.91 1.91

Child

N(0,0.25) 0.15 1.50 2.00 1.90 2.00 1.90 1.95 3.15 3.15 1.55 1.60

N(0,1) 0.55 1.70 1.65 1.65 1.70 1.65 1.70 2.45 2.50 1.55 1.55

N(0,4) 0.60 1.60 1.45 1.45 1.65 1.45 1.70 1.60 1.65 1.45 1.45

U(−
√
3

2
 , 
√
3

2
) 0.00 1.20 0.90 0.90 0.90 0.90 1.05 1.45 1.40 1.25 1.20

U(−
√
3 , 
√
3) 0.50 1.60 1.50 1.55 1.55 1.55 1.35 2.05 2.05 1.45 1.45

U(−2
√
3 , 2 

√
3) 0.60 1.65 1.55 1.55 1.55 1.55 1.60 1.75 1.90 1.55 1.55
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