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Background: A receptive endometrium is a prerequisite for successful embryo
implantation. Mounting evidence shows that nearly one-third of infertility and
implantation failures are caused by defective endometrial receptivity. This study pooled
218 subjects frommultiple datasets to investigate the association of the immune infiltration
level with reproductive outcome. Additionally, macrophage-endometrium interaction
modules were constructed to explore an accurate and cost-effective approach to
endometrial receptivity assessment.

Methods: Immune-infiltration levels in 4 GEO datasets (n=218) were analyzed and
validated through meta-analysis. Macrophage-endometrium interaction modules were
selected based on the weighted gene co-expression network in GSE58144 and
differentially expressed genes dominated by GSE19834 dataset. Xgboost, random
forests, and regression algorithms were applied to predictive models. Subsequently,
the efficacy of the models was compared and validated in the GSE165004 dataset. Forty
clinical samples (RT-PCR and western blot) were performed for expression and model
validation, and the results were compared to those of endometrial thickness in clinical
pregnancy assessment.

Results: Altered levels of Mfs infiltration were shown to critically influence embryo
implantation. The three selected modules, manifested as macrophage-endometrium
interactions, were enrichment in the immunoreactivity, decidualization, and signaling
functions and pathways. Moreover, hub genes within the modules exerted significant
reproductive prognostic effects. The xgboost algorithm showed the best performance
among the machine learning models, with AUCs of 0.998 (95% CI 0.994-1) and 0.993
(95% CI 0.979-1) in GSE58144 and GSE165004 datasets, respectively. These results
were significantly superior to those of the other two models (random forest and
regression). Similarly, the model was significantly superior to ultrasonography
(endometrial thickness) with a better cost-benefit ratio in the population.
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Conclusion: Successful embryo implantation is associated with infiltration levels of Mfs,
manifested in genetic modules involved in macrophage-endometrium interactions.
Therefore, utilizing the hub genes in these modules can provide a platform for
establishing excellent machine learning models to predict reproductive outcomes in
patients with defective endometrial receptivity.
Keywords: immune infiltration, defective endometrial receptivity, infertility, Xgboost, machine learning
INTRODUCTION

Defective endometrial receptivity (DER) is one of the prominent
contributors to unexplained infertility (UI) and IVF failure. This
disorder continues to frustrate and challenge the field of
reproductive medicine due to several unknown etiology and
few evidence-based diagnostic and treatment strategies.
Emerging evidence indicates that the pregnancy success rate
with assisted reproductive techniques is only 23%-45% for
patients with unexplained infertility (1). In this view, defective
endometrial receptivity is currently becoming a critical theory in
the study of this disease. Estrogen and progesterone prepare the
endometrium for pregnancy. Normal endometrial receptivity
allows embryo attachment, implantation, invasion, and
development of the placenta. However, defective endometrial
receptivity may alter these processes. Research currently is
underway to explore the causes of defective endometrial
receptivity and biomarkers for the evaluation of endometrial
receptivity (2). Some studies suggest an association of defective
endometrial receptivity with uterine stem cell deficiency and
enhanced cellular senescence. Such a correlation is thought to
result in abnormal endometrial preparation for pregnancy,
causing recurrent loss (3, 4). Another study on a gene
microarray of endometrial receptivity defects found a close
association between most of the biological alterations with
immune processes (5).

Sex hormones regulate the interaction between immunocytes
and the endometrium. Dramatic changes in the uterus during
gestation involve immune acceptance of the fetus and placenta to
ensure a successful pregnancy (6). A dramatic change to the relative
proportions of leukocyte subpopulations in utero is the first
histologically detectable maternal immunologic adaptation to the
embryo (7). At the same time, the decidual macrophages manifest
phenotypic plasticity to adapt to the local microenvironment. The
decidual macrophages are characterized by anMf1 (inflammatory)
phenotype in the peri-implantation period (8). However, there
exists a composite of Mf1 (inflammatory) and Mf2 (anti-
inflammatory) decidual macrophages over the placental period,
shifting to predominantMf2 post-placentation, following potential
stimulation by secretory factors (9). Also, subgroups beyond the
scope of conventional phenotyping are present. While decidual
macrophages may help avoid the occurrence of uterine infections
in gestating women, compelling evidence suggests the increased
relevance of endometrium-macrophage crosstalk in supporting
normal placentation, given its contribution to implantation,
placental development, immunoregulation, vascular remodeling,
and tissue homeostasis (10). The matrix produces progesterone,
org 2
prostaglandin E (PGE), and anti-inflammatory cytokines,
including interleukin (IL) 10 and IL-4 (11). Progesterone
potentially stimulates lymphocytes to produce anti-inflammatory
cytokines and decidual dendritic cells (dDCs), which successively
produce IL-10 and chemokine (C-Cmotif) ligand 17 (CCL17) (12).
Immunoregulated dDCs induce the differentiation of T-helper type
2 cells (Th2) into decidual T-cells. Excepting altered immunocyte
populations, studies have also revealed an association of
dysfunctional immunoregulatory mechanisms with infertility and
pregnancy loss. Immune dysregulation is considered among the
most prevalent contributing factors for gestational interruptions in
the peri-implantation period. Some of the vital contributors to
pregnancy loss and infertility include decidual, placental, and fetal
membrane infections (13). The endometrial infection can directly
activate the decidual stroma to elicit either a proinflammatory or
proapoptotic response. This subsequently alters the regional
distribution, phenotype, and function of decidual immunocytes.
Furthermore, the infectionmay impact pregnancy function and cell
types of the tissues. As yet, an understanding of the pathways
leading from infection to preterm labor is elusive despite mounting
reports that innate immune receptors, including Toll-like receptors
and Nod-like receptors may be essential factors (14).

Considerable evidence suggests a tight correlation of defective
endometrial receptivity with the intrauterine immune
microenvironment. However, the clinical value of such an
association is largely underestimated. Presently, transvaginal
ultrasound (TVUS) is the most common diagnostic test which
measures the endometrium thickness. Despite the high
sensitivity (99%) of TVUS, this method demonstrates an
exceptional specificity, minimal at 3%. Like TVUS, imaging
techniques, hysteroscopy, and endometrial biopsy have the
disadvantage of insufficient accuracy (15). Emerging data
shows that Endometrial Receptivity Array (ERA) guides
clinical practice as it allows for the assessment of endometrial
receptivity status through microarray analysis of 238 genes (16).
However, it tends to necessitate higher lab levels for the detection
and storage of specimens, limiting its popularity.

Herein, gene modules were constructed via weighted gene co-
expression network analysis (WGCNA) to explore the
application of the intrauterine immune microenvironment in
clinical pregnancy prediction (17). The association of gene
modules with integrated traits was evaluated. The predictors
selected in this approach have representative biological
structures and functions, allowing for successive selection of
immune-endometrial interaction modules. Furthermore, this
approach enables “dimensionality reduction” by selecting
representative genes based on correlation coefficients. This
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reduces the number of indicators to be tested, thereby lowering
the cost and difficulty in the establishment. Notably, the platform
for assaying is a critical component that constrains the
applicability of indicators. Each platform has a specific
mechanism for data processing, with varying final
performance. Machine learning models are optimal for
handling such data. They integrate the test data and generate a
comprehensive evaluation model while eliminating the
instability caused by platform differences. Current evidence
shows traditional regression, and random forest as the
commonly applied machine learning models. The xgboost
model, a kind of gradient boosting tree-structured model, has
become a newcomer in machine learning due to its stability and
flexibility. All of these models can integrate the data to emanate
comprehensive evaluation indicators, which improve diagnostic
effectiveness. However, significant differences in their data
requirements and processing cannot be ignored. Random
forest and xgboost models are more stable compared to
traditional machine learning methods in diagnostic
performance for different platforms. However, they pose more
challenges in visualizing the impact of the data on the final
diagnosis due to their “black box” calculations. The present study
compares the pros and cons of the three calculation methods.
Also, to evaluate the unique advantages of macrophage-
endometrium interaction modules for endometrial assessment
and their clinical utility, the calculation methods are compared to
the prevailing ultrasonography using databases and clinical
data, respectively.
METHODS

Datasets and Patient Selection
All datasets were selected from chip microarrays. Four datasets
(GSE58144, GSE71835, GSE92324, GSE165004) containing 107
DER patients and 110 controls were used to perform immune
infiltration analysis, and GSE58144 for macrophage-
endometrium interaction modules selection was applied for a
machine learning predictive model. The GSE19834 dataset has
a three replicate measure dataset telomerase-immortalized
human endometrial stromal cell line (THESC) co-cultured
with macrophages. The dataset is divided into 4 groups:
vehicle-treated control, estradiol + progesterone, control +
macrophage-condit ioned medium, and estradiol +
progesterone + macrophage-conditioned medium, including
the microarrays of THESC and macrophages. The machine
learning predictive model was validated using the GSE165004
dataset which includes 48 DER patients and 24 controls. Details
of the microarrays are outlined in Supplementary Table 1.

Clinical samples were used to validate Mf1/Mf2, mRNA and
protein levels. The Research Ethics Committee of the Beijing
Obstetrics and Gynecology Hospital provided ethical approval
for this study. Experiments were performed (under protocol
number 2017-KY-082-02) following the Helsinki Declaration of
1975 (revised in 2013). Patients eligible for hysteroscopy were
required to sign an informed consent before surgery and follow
Frontiers in Immunology | www.frontiersin.org 3
up for 1 year. Samples from endometrial biopsies were acquired
at Beijing Obstetrics and Gynecology Hospital. The inclusion
criteria: (i) Patients aged less than 45 years; (ii) Patients with sex
hormone levels, including follicle-stimulating hormone,
luteinizing hormone, testosterone, estradiol, and prolactin,
within normal ranges; (iii). Patients without endometriosis,
fibroids, active or a history of pelvic inflammatory disease, or
other medical comorbidities (hyperprolactinemia, thyroid
disease, etc.) after procedures. (iv). Patients are in or
approaching the mid-secretory phase. Before starting the
procedure, we first scraped a small amount of endometrium
using a loop resectoscope without energizing to prevent
cauterization of the specimen tissue and then powered up to
perform the procedure after ensuring enough tissue be taken.
Some patients with poor visual field exposure had their
endometrium collected using electric suction aspiration prior
to the procedure. Study participants in the control group (n=15)
had successful clinical pregnancies, while those in the DER group
(n=25) failed in pregnancy during the follow-up after
procedures. Basic demographic characteristics for each group
are presented in Supplementary Table 2. An overview of the
study design is shown in Figure 1.

Processing of Primary Datasets
The Biobase and limma packages (in R, version 3.6.2) were
employed for pre-processing and normalization of microarray
datasets based on raw data of the Agilent platform after the data
had been converted to log (base 2). The RMA and
normalizeBetweenArrays methods were applied for
background correction and normalization, respectively.
Annotation files for different microarray platforms were
downloaded from the NCBI GEO database (18).

Immune-Infiltration Analysis
Cell-type deconvolution was performed by CIBERSORTx
(http://cibersortx.stanford.edu), an analytical tool developed by
Newman et al. (19). This tool imputes gene expression profiles
and estimates the abundances of immunocyte infiltration levels
in mixed cell populations using gene expression data. The LM22
gene signature matrix for 22 immunocyte types was used.
CIBERSORTx was run with batch correction and 100
permutations. Barplot and vioplot were constructed using the
plot function (in R, version 3.6.2).

Macrophage-Endometrium Interaction
Modules Establishment
The network module was established via the WGCNA package
(in the R environment, version 3.6.2) in the GSE58144 dataset
(20). Data were filtered to select for modules associated with Mfs
alterations as described below. Through Pearson correlation
analysis, all genes were ranked according to their association
with Mf1/Mf2. Correlations between genes and Mf1/Mf2 were
established at a cut-off of p ≤ 0.05. By definition, module genes
are highly connected (i.e., module genes tend to exhibit relatively
high connectivity). A power of b=10 was selected according to
scale-free topology criteria (R2 = 0.85). In WGCNA, a soft
threshold parameter, beta, of the power function was applied
May 2022 | Volume 13 | Article 842607
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to ensure the best approximation of scale-free topology by the
co-expression network (adjacency matrix). The weight threshold
of the co-expression network was set to 0.03 to ensure that genes
in the analyzed network are sufficiently correlated. The prcomp
function (in R, version 3.6.2) was used for principle component
analysis (PCA) and visualization of the modules.

Enrichment Analysis of
Functional Categories
The STRING v11.5 online tool (https://string-db.org/) was
employed for functional enrichment analysis of the gene module
that exhibited the highest association with endometriosis,
identified post WGCNA analysis. For the enrichment analysis,
Gene Ontology (GO) terms were used to evaluate functional
categories and Kyoto Encyclopedia of Genes and Genomes
Frontiers in Immunology | www.frontiersin.org 4
(KEGG) pathways for genes associated with the module.
Subsequently, Redundancy within lists of GO terms was reduced
by the REVIGO algorithm, in which a simple clustering procedure
with a concept similar to the hierarchical (agglomerative)
clustering methods such as the neighbor-joining approach was
performed (21). The GSE19834 dataset was used for differentially
expressed genes (P<0.05) (DEGs) analysis and Gene-set
enrichment analysis (GSEA) via “limma” and “ClusterProfiler”
(22) packages in R. The Broad Molecular Signature Database
(MSigDB v7.0) dataset in the KEGG (c2.cp.kegg.v7.0.symbols)
were used as this database summarizes and presents specifically
well-defined biological states and pathway processes. To estimate
statistical significance, the GSEA program was run with 1,000
permutations. All genes were ranked based on the correlations
between the selected genes and other genes.
FIGURE 1 | Schematic presentation of the study design. DER, defective endometrial receptivity.
May 2022 | Volume 13 | Article 842607

https://string-db.org/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Endometrial Receptivity Prognostic Model
Quantitative Real-Time PCR
Analysis (qRT-PCR)
Total RNA was extracted from each sample with RNAiso Plus kit
(Takara Bio Inc., Shiga, Japan) and quantified using a
NanoDrop™ One Spectrophotometer (Thermo Fisher
Scientific Inc., Massachusetts, USA). cDNA was synthesized
from 1 mg of total RNA per sample using the First-Strand
cDNA Synthesis SuperMix Kit (AT301-3, EasyScript, China).
The primers used in this study were designed by Sangon Biotech
Co., Ltd. Shanghai, China. The primer sequences are shown in
Supplementary Table 3. PCRs were performed in a LightCycler
480 PCR System (Roche, Germany) according to the
recommendation of the manufacturer of SYBR Premix Ex
TaqTM II (RR820A, Takara). The following PCR conditions
were used: 95°C for 30 seconds for initial denaturation, followed
by 35 cycles of 5 seconds at 95°C and 34 seconds at 60°C. The
measurements were repeated three times, and the relative
quantification was performed by the comparative CT (2^-
DDCT) method.

Western Blot
Western blot analysis was performed as previously described.
Equal amounts of a sample protein (50 mg) were electrophoresed
onto an SDS-PAGE gel. After that, samples were transferred onto
a nitrocellulose membrane. The membrane was blocked for 2 h at
room temperature and incubated overnight at 4°C with the
following primary antibodies: anti-MARF1 (1:500, proteintech,
China), anti-dUTPase (DUT) (1:10,000, Abcam, USA), anti-
RPS9 (1:500, proteintech, China), anti-b-Actin (1:10,000,
ABclonal, China). Subsequently, appropriate secondary
antibodies (1:5000, ABclonal, China) were incubated with the
membrane for 1 h at room temperature. Blot bands were
visualized with the ECL reagent (Western blotting Luminol
Reagent, Santa Cruz Biotechnology, cat# sc-2048, USA). The
measurements were repeated three times, and bands were
selected to perform densitometry quantification using Image J
software (Version 1.50b).

Machine Learning Models Establishment
and Statistics
Xgboost and Random Forest models were implemented via the
Python package xgboost and Scikit-learn, respectively. The
representative genes in each module were calculated with
weights to verify their applicability in the machine learning
model. The model are explained by Python package SHAP.
The two models, including hub genes, were run in the
GSE165004 dataset for verification. The splitting of the
training and test sets was performed by the train_test_split
package (in Python, version 3.8.8). Furthermore, the number
of risk points corresponding to each weighted covariate used to
construct the nomogram (23) in both GSE58144 and GSE165004
datasets were summed to calculate the diagnostic index. To test
the efficacy of the predictive model, Z tests were used to
determine the significance of the area under the receiver
operating characteristic (ROC) curve (AUC) using the pROC
package in R (version 3.6.2). The predictive values of hub genes
Frontiers in Immunology | www.frontiersin.org 5
and the machine learning model were evaluated based on
sensitivity, specificity, Youden index (YI), positive predictive
value (PPV), and negative predictive value (NPV).

A decision curve is valuable for the clinical model application
evaluation by displaying the standardized net benefits estimates
according to the probability threshold that classifies observations
as “high risk”. The clinical impact curve is an alternative
representation for the decision curve output. Herein, decision
and clinical impact curves were generated using the
DecisionCurve package in R, version 3.6.2 (24).

Cell proportions and single gene expression levels between
the two groups were compared by the Wilcox test. Normally
distributed continuous variables were analyzed using the
Students t-test (in R, version 3.6.2). When the proportion of
missing data is less than 10%, missing values were imputed using
multiple imputation (mice package in R, version 3.6.2).
RESULTS

Impact of Immune Infiltration Levels on
Endometrial Receptivity
Immune infiltration levels of 22 immunocytes in endometrial
mixed tissue samples from the four datasets were determined
by the CIBERSORTx platform (Figure 2A). In the immune cell
infiltration analysis of DER versus control for each dataset
(Figure 2B), the Mf1/Mf2 maintained a consistent trend,
showing a decrease in the ratio between Mf1 and Mf2 in the
DER group. In addition, in the further meta-analysis, Mf1/
Mf2 exhibited significant differences between the two groups in
both the fixed and random effects models [-0.28 (95%CI -0.56-
0)] (Figure 2C). Results demonstrated the infiltration variation
of macrophages in different phenotypes is crucial for successful
embryo implantation.

Macrophage-Endometrium Interaction
Modules Biofunction
Mfs related genes were clustered into different groups, referred to
as modules. As described previous, the GSE58144 gene set
comprised seven different gene modules with high topological
overlap. The average genetic significance of a particular module
was considered module significance (MS). Consistent with our
previous study (22), three modules (red, blue, and turquoise)
exhibited moderate correlations with Mf1/Mf2, that is, -0.42
(p=3×10-6), -0.35 (p=10-4), and 0.32 (p=5×10-4), respectively
(Figure 3A). The integrated molecular profiles of the
aforementioned modules were visualized using three-
dimensional maps generated by the dimension reduction
technique PCA. In Supplementary Figure 1, genes were grossly
divided into symmetrical three subgroups by the modules
depending on their relative up-regulation and down-regulation
by references. This demonstrated that genes are characterized by
unique profiles based on Mf1/Mf2 related modules.

The changes of endometrial stromal cells and macrophages
after co-culture were evaluated in GSE19834 as a reference for
modules biofunction. The interaction of endometrial stromal cells
May 2022 | Volume 13 | Article 842607
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andmacrophages can be reflected in the DEGs before and after the
co-culture of the two. Afterward, the DEGs were intersected with
genes within each of the modules. According to the proportion of
the intersection genes within the module, we identified a high
proportion of genes contributing to alterations in macrophages
and endometrial cells after intercellular effects in all three modules,
indicating that these are highly involved in constructing the
macrophage-endometrium interaction microenvironment
(Figure 3B). Subsequent enrichment analysis of genes within
the module and the REVIGO visualization revealed that the
biological functions of the red module were mainly enriched in
Frontiers in Immunology | www.frontiersin.org 6
processes of stress response and differentiation of immunocytes,
including antigen processing and presentation, regulation of
hematopoietic stem cell differentiation, response to abiotic
stimulus, actin polymerization-dependent cell motility, among
others. Regarding the blue module, genes were mainly enriched
in cellular oxidative stress and cell cycle, such as iron ion transport,
response to oxygen levels, cell cycle, were enriched. Regarding the
turquoise module, genes were mainly enriched in macrophage-
endometrium interactions, for example, cell-cell signaling, cellular
response to endogenous stimulus, maintenance of location
(Figure 3C). Additionally, the protein-protein interaction (PPI)
A

B

C

FIGURE 2 | Immune infiltration analysis and Mf1/Mf2 balance. (A) Bar plots of 22 immunocytes in endometrial mixed tissue samples, including four datasets with
218 subjects. (B) Violin plots for immune cells in the DER and control groups. Purple color represents the control group while yellow represents the DER group.
(C) Meta-analysis of four datasets for Mf1/Mf2. DER, defective endometrial receptivity; CON, control.
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A

C

D

B

FIGURE 3 | Mf1/Mf2-related WGCNA and module enrichment analyses. (A) Heatmap showing the average genetic significance of each particular module across
clinical traits. (B) Percentage of GSE19834 DEGs within the modules. Percentages within modules are, from left to right, 40.9%, 47.0%, and 14.0% (red), 42.9%,
44.3%, and 13.7% (blue), 41.7%, 49.1%, 11.1% (turquoise), respectively. Ho-Ma-En=Endometrial cells in estradiol progesterone macrophage medium, Ma-
En=Endometrial cells in macrophage conditioned medium, En-Ma=Macrophages in endometrial cell medium. (C) REVIGO plot of the red, blue, and turquoise
modules (left to right). The scatterplot shows the cluster representatives in a two-dimensional space obtained by applying multidimensional scaling to the semantic
similarities matrix of GO terms. (D) Protein-protein interaction (PPI) network of representative genes in each module. Each module has 30 representative genes
selected according to their “degree”.
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network of representative genes contained within the three
modules, based on their primary function, was shown in
Figure 3D. Genes are ranked in order of their weighted node-
degree in the combined network.

Representative Genes and
KEGG Pathways
The “dimensionality reduction” was achieved by representative
genes from three modules owing to the node-degree weight rank
in the network and high consistency in expression among genes
within the modules (P membership in modules <0.05). According to the
enrichment biofunctions in string database, the representatives of
the red module were macrophage-related genes (IL1R2, PSMA2,
IFNGR1, ITCH, and CYBA), ribosome-related genes (RPS9,
RPL3, and RPL21), and spliceosome-related genes (SNRNP40
and SRSF3). Representatives of the blue module were cell cycle-
related genes (CDKN2C, CCND2, TP53INP1, and CDK4),
oxidative stress-related genes (NOX4 and CRYGD), immune
signaling-related genes (IFI27L2, LRRFIP2 and DUT), iron
transport-related genes (FTH1). Representatives of the turquoise
module were cell-cell signaling-related genes (CCR5, MARF1,
PSMD8, and NAPB), cell cycle-related genes (CREBBP, PSMC4,
PSMC3, DCTN3, BTN2A2, and RAD21). Furthermore, the
Wilcox test revealed a significant association of RPS9, DUT,
CDKN2C and MARF1 genes with infertility in the red, blue,
and turquoise modules (Figure 4A). Furthermore, we explored the
effect of hub genes on clinical pregnancy through Kaplan-Meier
cumulative risk curves. Results demonstrated that RPS9, DUT,
and MARF1 significantly improved the embryo implantation
outcome for patients (Figure 4B). A two-way interactions
analysis was performed to investigate further the effects of
macrophages in combination with hormones on the three hub
genes. Results suggested that macrophages significantly influenced
the three hub genes (PRPS9 = 1.74×10-5, PDUT = 0.0206, PMARF1 =
0.000187) without the significant interacting effects of hormones
(PRPS9 = 0.15, PDUT = 0.41, PMARF1 = 0.593) (Figure 4C).
Following single gene GSEA of the three hub genes in the
GSE19834 dataset, along with the enrichment of genes within
modules, results revealed the intersection of significant pathways
as shown in Figure 4D: ribosome, splicesome, and toll-like
receptor signaling (RPS9); cell cycle and ribosome (DUT); cell
cycle and cytokine receptor interaction (MARF1).

Construction and Validation of Machine
Learning Models
Machine learning algorithms (xgboost, random forest, and
regression) were used to evaluate the predictive power of
modules for defective endometrial receptivity. First, the weights
of the genes within modules were evaluated separately for three
machine learning methods. RPS9, DUT, and MARF1 showed
high weights in three models. In the xgboost, random forest and
the regression model, the three factors contributed similarly to
the terminal outcome (Figures 5A–C). These findings
demonstrate that the aforementioned genes hold great
application prospects for model establishment.
Frontiers in Immunology | www.frontiersin.org 8
In addition, three machine learning models, xgboost, random
forest, and regression, were constructed for three genes in the
GSE58144 dataset. After that, we plotted the diagnostic
performance of the models in predicting embryo implantation
outcomes with ROC (Figure 5D). The analysis demonstrated that
AUCs of the three models were 0.998 (95% CI 0.994-1), 0.831 (95%
CI 0.755-0.908) and 0.720 (95%CI 0.635-0.815), respectively.
Meanwhile, the xgboost algorithm was significantly better
compared to the other two in predicting embryo implantation
outcomes (P=1.45×10-5 and 4.92×10-9).

Furthermore, the predictive model was validated in the
GSE165004 dataset. The aforementioned hub genes were
incorporated into machine learning models. Results showed
that the expression levels of the three hub genes were
significantly different between the two groups (Figure 6A),
consistent with our previous research (22). According to
ROCs, the xgboost model demonstrated superior diagnostic
performance to the other two in the GSE165004 dataset. As
such, the AUC of the xgboost model was 0.993 (95% CI 0.979-1),
significantly better compared to that of the random forest and
regression model (p=0.01647, and 0.0102) (Figure 6B).

According to the DCA of three prediction models, the net
benefit for the xgboost model [0.343 (95%CI 0.321- 0.35)] was
more prominent over the traditional regression model and random
forest model [0.233 (95%CI 0.16-0.299) and 0.248 (95%CI 0.175-
0.306), respectively] (Figure 6C). The findings demonstrate that the
xgboost model is significant superior to the random forest model.

Results of sensitivity, specificity, YI, PPV, and NPV of the
xgboost model were 100 (95% CI 85.8 - 100), 97.92 (95% CI 88.9 -
99.9), 0.9792, 96.0 (95% CI 77.5 - 99.4), and 100, respectively,
superior to those of the other two models (Figure 6D).
Clinical Benefits From Machine
Learning Model
The altered mRNA expression levels of RPS9, DUT, and MARF1
were verified in endometrial tissues. Results showed that the
expression of all three genes (P=0.0094, 0.0293, and 0.0189) in
DER patients was downregulated significantly compared to the
controls (Figure 7A). In addition, the relative protein levels of the
three were determined by Western blotting analysis (P=0.0103,
0.0411, and 0.0239) Figure 7B. We further analyzed MARF1 and
found that the bands were mainly localized between 50-70 kDa
(Supplementary Figure 3). Consistent with the previously
reported LMKB, which is the human orthologue of MARF1 (25).

To verify the clinical efficacy of three hub genes for endometrial
receptivity assessment, xgboost models were established based on
the mRNA expression of 40 subjects. The models were compared to
the commonly used ultrasonographic assessment for endometrial
thickness. According to the ROC results, with the qPCR method,
the model achieved a high detection level with an AUC of 0.925
(95% CI 0.823-1), significantly better than ultrasonography
[AUC=0.594 (95% CI 0.403-0.785), P=0.003]. On the other hand,
the sensitivity and specificity of ultrasonography were 86.67 (95%
CI 59.5 - 98.3) and 34.78 (95%CI 16.4 - 57.3), respectively, when the
cut-off value of >0.7 was applied; these results were inferior to the
May 2022 | Volume 13 | Article 842607
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A B

C D

FIGURE 4 | Representatives of the modules, and expression and functions of hub genes. (A) Heatmap of modules genes between DER vs. CON. In the
classification column, red represents infertilities, whereas blue represents controls. (B) Cumulative risk curves of pregnant status analysis for hub genes. Log-rank
p = 0.005 (RPS9), 0.044 (DUT), and 0.044 (MARF1) denotes the significance of hub genes. (C) Main effects and two-way interactions of hub genes. (D) GSEA plot
of upregulated and downregulated KEGG pathways related to changes in hub gene expression levels. CON, control; DER, defective endometrial receptivity.
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xgboost model [sensitivity 100.00 (95% CI 78.2 - 100.0); specificity
92.00 (95% CI 74.0 - 99.0)] (Figure 7C).

Clinical impact curve (CIC) analysis was performed to
evaluate the clinical applicability of the xgboost model and
ultrasonography (Figure 7D). Results of CIC analysis
demonstrated that the xgboost model had a superior overall
net benefit within the broad and practical ranges of threshold
probabilities and impacted patient outcomes. The findings
Frontiers in Immunology | www.frontiersin.org 10
provide evidence that the xgboost model possesses significant
predictive value and is superior to ultrasonography.
DISCUSSION

Altered immune microenvironment in the uterine cavity is not
only an essential aspect of endometrial receptivity, but also
A

B

C D

FIGURE 5 | Construction of machine learning model for clinical pregnancy prediction. (A) SHAP values of each feature for random forests in modules. Each
point represents a sample, and the figure shows the impact of features on the model’s outcome. (B) The weight matrix of hub genes in the xgboost model. Each
column represents the weight of each feature to the model outcome in one permutation. (C) The predictive values of DUT, RPS9, MARF1, and the risk model
were established based on logistic regression and visualized by a nomogram. (D) ROCs for machine learning models.
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crucial for successful implantation (26). However, application of
immune-related factors is limited by the current research
limitations and lack of effective clinical indicators. In the
present study, we explored changes in levels of immune
infiltration by pooling multiple datasets from 218 patients and
detected macrophages, one of the predominantly altered
immunocytes. Subsequently, we established macrophage-
endometrium interaction modules and focused on their
functions. Based on these, we establish corresponding machine
learning algorithms models for clinically predicting pregnancy.

MФs play an essential role in pregnancy, where apart from
participating in the decidua as a primary antigen-presenting cell,
they also actively regulate early pregnancy trophoblast invasion,
Frontiers in Immunology | www.frontiersin.org 11
as well as tissue and vascular remodelling. Physiological events in
the female reproductive system are inflammatory processes. MФs
play a crucial role in initiation and progression inflammation, a
phenomenon that occurs throughout all phases of the menstrual
cycle and is scattered throughout the endometrium (27).
Endometrial MФs increase during the early secretory phase,
and continue to rise into the late secretory phase of the
menstrual cycle with the distribution of sex hormones (estrogen
and progesterone). Previous studies have also shown that
estrogen and progesterone subtly regulate interactions between
decidual immunocytes, endometrial cells, epithelial cells, and
stromal cells (28). Physiological estrogen levels induce M-Ф
proliferation and its positive and negative regulation of the
A

B

D

C

FIGURE 6 | The clinical pregnancy prediction ability of the reference and machine learning models for in the external validation dataset. (A) mRNA expression of hub
genes in GSE165004. (B) Receiver-operating-characteristics (ROC) curves. The corresponding value of the area under the receiver-operating-characteristics curve
(AUC) for each model is shown in the table below. (C) Decision curve analysis. The X-axis represents the threshold probability for positive pressure ventilation
outcome; Y-axis represents the net benefit. The net benefit of all machine learning models was larger over the range of clinical threshold compared to the reference
model. (D) Sensitivity, specificity, Youden index, positive predictive value (PPV), and negative predictive value (NPV) of models.
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production of CCL2, the M-Ф chemokine (29, 30). Elevated levels
of pro-inflammatory cytokines, such as IL-6, leukaemia inhibitory
factor (LIF), and tumor necrosis factor-alpha, in the
endometrium, are features of early implantation. In addition,
Frontiers in Immunology | www.frontiersin.org 12
MФs and dendritic cells (DCs) have been shown to play an
essential role in decidualization and implantation, where they
regulate tissue remodelling and vascularization by producing a
series of cytokines, chemokines, and enzymes. Furthermore, these
A

B

D

C

FIGURE 7 | Hub genes and clinical validation and benefit analysis of the model. (A) Validation of mRNA expression of hub genes in DER (n=25) and control (n=15)
groups. (B) Western blotting result of MARF1, DUT, and RPS9, normalized by b-actin (triplicates in each group). Bar graphs represent the ratio of densities of the
respective protein bands and b-actin. Densitometric quantification graphs of blots are available in Supplementary Figure 2. (C) ROC of xgboost and ultrasound
results of endometrial thickness. The corresponding value of the AUC for each method are presented in the table. (D) Clinical impact curve (CIC) of the xgboost
model and endometrial thickness. The red curve (number of high-risk individuals) denotes the number of people classified as positive (high risk) by the model at each
threshold probability; the blue curve (number of high-risk individuals with outcomes) denotes the number of true positives at each threshold probability.
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molecules target the luminal epithelium and subsequently
promote acquisition of endometrial receptivity. LIF, which is
derived from MФs, regulates the structure of surface
polysaccharides in epithelial cells during this process, thereby
making the endometrium receptive (31). These processes
were reflected in the three modules of the present study, which
represented alterations in macrophages, endometrium, and cells
cross-conductivity during mid-secretory endometrial receptivity.

Representative red module genes, as previously described,
include genes related to macrophage, ribosome, and spliceosome.
The module is mainly enriched in immunocytes’ stress response
and differentiation progress, such as, antigen processing and
presentation, regulation of hematopoietic stem cell
differentiation, response to abiotic stimulus, and actin
polymerization−dependent cell motility, among others.
Changes in the intrauterine microenvironment can
dramatically alter macrophage infiltration and polarization.
Toll-like receptors (TLRs) are membrane-bound receptors that
are expressed in innate immunocytes. TLR-mediated pathogen
recognition stimulates rapid activation of innate immunity by
eliciting production of pro-inflammatory cytokines and
upregulation of costimulatory molecules. Furthermore,
ribosomes are essential targets for epigenetic regulation in
macrophages, and have been implicated in expression of long
non-coding RNAs, regulatory mRNAs, and microRNAs.
Notably, alterations in this pathway critical for macrophage
infiltration and polarization alterations. Selective splicing (AS)
of mRNA participates in regulation of immunocyte
differentiation and activation, potentially regulating innate
immune responses in macrophages. In fact, this process is
inseparable from the spliceosome signaling pathway via
regulating activation of the NF-kB signaling pathway (32).
Overall, these evidences indicate that the red module is closely
correlated with macrophage infiltration and polarization in
the endometrium.

Blue representative genes included cell cycle, oxidative stress, and
iron transport related genes. Generally, these genes play key roles in
regulating biological processes, such as iron ion transport, response
to oxygen levels, cell cycle focus on cellular oxidative stress and the
cell cycle. On the other hand, the pathways regulating these
functions include cell cycle, cytokine receptor interaction, and
oxidative phosphorylation. Numerous studies have described the
effect of iron ion metabolism and oxidative phosphorylation on
endometrial cell biological functions. Notably, oxidative stress and
iron ion overload commonly coordinate in the inflammatory
response and metabolic abnormalities to affect the normal cycle
and function of endometrial cells. Previous studies have shown that
both ferrous and ferric ions can induce intracellular ROS formation
via Fenton reactions, thereby causing formation of highly toxic
hydroxyradicals, followed by accumulation of an oxidizing
environment (33), which significantly affects regulation of the cell
cycle. Previous studies have considered the hub gene, dUTpase, an
essential enzyme that regulates nucleotide metabolism. Currently,
several evidences have revealed its regulatory ability on
immunocytes via the exosomal form. For example, Ariza et al.
(34) demonstrated that dUTPase might mediate regulation of the
Frontiers in Immunology | www.frontiersin.org 13
cellular microenvironment via an intercellular signaling molecule
that controls the innate immunity of human primary monocyte-
derived macrophages through exosomal activation of Toll-like
receptor (TLR)2, thereby leading to NF-kB activation and
production of pro-inflammatory cytokines. Similarly, we also
demonstrated the importance of ribosomes in endometrial
receptivity within this module, which play key roles in
macrophage and endometrial regulation. For example, Silvia
Pé rez-Debén et al. (35) evaluated endometrial receptivity-related
pathways and found that the ribosomal pathway was the most
relevant factor for endometrial fertility. The aforementioned
mechanisms are all manifested by the interaction between
macrophages and endometrium.

Representatives in the turquoise module included cell-cell
signaling, cell cycle related genes. These genes were functionally
aligned with their gene modules and were highly enriched in
biological processes that hinge on macrophage-endometrium
interaction, such as cell−cell signaling, cellular response to
endogenous stimulus, and maintenance of location, among
others. In this module, the hub gene MARF1 is a P-body
component thereof is a cellular structure that regulates
cytoplasmic mRNA stability. In Bloch et al. (25), Limkain B
(LMKB) is the human orthologue of MARF1, where the Ge-1-
LMKB complex is located between 50 and 75 kDa. Interestingly,
in this study, we found that the MARF1 bands showed high
brightness shadows between 50-70 kDa (Supplementary
Figure 3), similar to the mentioned study. This implicates that
LMKB may be predominantly expressed in the human
endometrium, which is an RNA-binding domain-containing
protein that interacts with core-decapping proteins, suggesting
that LMKB may also regulate mRNA stability (25). LMKB
appears to have different functions in various cell types, that
maintain the stability of the mRNA after transcription and may
be associated with inflammatory response suppression. In
addition, LMKB is expressed in human immunocytes where it
plays a role in cellular response to type I interferon.
Simultaneously, LMKB may be a relatively common target for
cytoplasmic structures reacting with human autoantibodies,
which has antigenic identity with MHC-I and is distributed in
discrete cytoplasms, thus regulates activation of immunocyte-
associated pathways (Figure 8A).

Next, we correlated DEGs under the interaction between
endometrial stromal cells and macrophages in the GSE19834
with genes within the module with the aim of further validateing
the enrichment functions of the three modules. When combined
with results from enrichment analysis of genes and PCA within
the modules, it was evident that the red, turquoise, and blue
represents three independent aspects of macrophage-
endometrial interaction function. In addition, interaction
analysis of the hub genes demonstrated that the significant
changes in the three genes due to macrophages did not interact
with sex hormones, thus were suitable for incorporation into
immune-based prediction models.

Although immunocyte infiltration and polarization play
important roles in pregnancy, only a handful are available for
reproductive prognosis. Notably, Diao et al. (26) developed an
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endometrial immunocyte-based score obtained encouraging results.
Nevertheless, subjectivity of cell counts by immunohistochemistry
and difficulty in standardization represent significant challenges for
clinical application of the developed model. Moreover, immunocyte
infiltration dynamics have been associated with some systematic
errors. Therefore, in the present study, we anchored on immune-
related factors as objective clinical predictors of pregnancy. Instead
of the traditional dimension reduction, we adopted the WGCNA
approach for selection of representative hub genes via, which has
been shown to effectively reduce the number of indicators to be
tested, making it accessible for clinical application. To overcome
shortcomings associated with machine learning models without a
clear interpretation of indicators, we first calculated the effect of
Frontiers in Immunology | www.frontiersin.org 14
three hub genes on reproductive prognosis under time
accumulation by cumulative curves. We found that all three had a
positive effect on amelioration of reproductive prognosis. In
contrast, results from the xgboost used for subsequent model
building based on both GSE58144 and GSE165004 datasets,
revealed excellent diagnostic efficacy, significantly better than
random forest and regression. We validated the model in clinical
samples to affirm its clinical application. Previous studies have
shown that ultrasonography, the most commonly used assessment
method, guarantees a sensitivity of 99% and a specificity of 3% for
endometrial thickness (>7mm) (15). In comparison, our model had
a sensitivity of 86.67 (95% CI 59.5 - 98.3) and a specificity of 34.78
(95%CI 16.4 - 57.3). Variation in the results can be explained by the
A

B

FIGURE 8 | (A) A hypothesis on the mechanism of macrophage-endometrium interaction modules regulation on endometrial receptivity and (B) a scenario for
clinical application of the defective endometrial receptivity prediction model. ART, Assisted reproductive technology.
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relatively higher proportion of infertilities in our study than in
previous. Compared to ultrasonography, xgboost models based on
the macrophage-endometrial module improved the predictive
efficacy significantly. Moreover, considering the clinical impact
curve, it was evident that our xgboost model provides better
clinical benefits than conventional ultrasonography. Furthermore,
we used qRT-PCR to validate gene expression, and found that this
cost-effective and universal technique can also befit clinical
pregnancy prediction, owing to the possibility of real-time
detection which enables timely investigation of clinical guidance
of embryo implantation timing.

Despite the aforementioned advantages, this study also had
limitations. Firstly, the 40 samples used for qRT-PCR validation to
explore the clinical replicability of the model was small. In future,
prospective studies using larger sample sizes are needed to validate
our findings. Secondly, this was a one-center study. Therefore,
further studies based on multiple centers are needed to affirm the
predictive value and applicability of our model to other
populations. Thirdly, although we cross-corroborated the related
pathways of modules and hub genes by multiple datasets, we did
not validate these findings using laboratory experiments. In short,
based on our results, the consistency of validation, as analysed by
different methods and datasets, was mutually confirmed.

Many infertility patients often suffer from fibroids, uterine
adhesions, polyps, and endometriosis. These patients are
recommended to try expectant management (spontaneous
pregnancy) after the procedure without indications for assisted
reproduction, which may lead many patients to miss the optimal
window for conception by age or disease recurrence. Evaluation of
endometrial receptivity intra- or post-operatively may be a
preferable clinical indicator for these patients. As shown in
Figure 8B, patients combined with defective endometrial
receptivity can consider aggressive postoperative treatment such
as assisted reproductive technology (ART). In contrast, for patients
with normal endometrial receptivity, the attempt of spontaneous
pregnancy is feasible.

In summary, exploring macrophage-endometrium interactions
from a gene module perspective is a novel approach to investigate
the mechanism underlying embryo implantation. Representative
biological processes (immunocytes’ stress response and
differentiation progress, cell−cell signaling, cellular oxidative
stress and the cell cycle) and relevant pathways (ribosome,
spliceosome, toll-like receptor signaling pathway, cell cycle, and
cytokine receptor interaction) are essential components of
endometrial receptivity. Furthermore, xgboost machine learning
models could be an optimum approach for implementing
macrophage-endometrium interaction module for clinical
prediction of pregnancy-related complications, such as in
patients with defective endometrial receptivity. Overall, this may
contribute to a cost-effective and rapid ART timing assessment.
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35. Pérez-Debén S, Bellver J, Alamá P, Salsano S, Quiñonero A, Sebastian-Leon P,
et al. Itraq Comparison of Proteomic Profiles of Endometrial Receptivity.
J Proteomics (2019) 203:103381. doi: 10.1016/j.jprot.2019.103381

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Duan, Wang, Wu and Li. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
May 2022 | Volume 13 | Article 842607

https://doi.org/10.1002/stem.2222
https://doi.org/10.1016/j.fertnstert.2010.04.063
https://doi.org/10.1007/s00005-019-00552-7
https://doi.org/10.1016/j.jri.2009.06.262
https://doi.org/10.1111/aji.12477
https://doi.org/10.3389/fimmu.2017.00120
https://doi.org/10.1111/aji.12336
https://doi.org/10.1111/j.1600-065X.2006.00436.x
https://doi.org/10.1182/blood-2009-11-252940
https://doi.org/10.4049/jimmunol.1000289
https://doi.org/10.1016/j.jri.2010.12.003
https://doi.org/10.1093/humupd/dmy044
https://doi.org/10.1016/j.fertnstert.2013.05.004
https://doi.org/10.1016/j.fertnstert.2013.05.004
https://doi.org/10.1016/j.rbmo.2020.10.005
https://doi.org/10.1016/j.rbmo.2020.10.005
https://doi.org/10.1093/nar/gku1130
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.3390/vaccines10020139
https://doi.org/10.1016/j.jcmg.2017.03.018
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1371/journal.pone.0094784
https://doi.org/10.1016/j.placenta.2020.07.025
https://doi.org/10.1016/j.placenta.2020.07.025
https://doi.org/10.1016/j.intimp.2011.04.024
https://doi.org/10.1093/humupd/6.1.16
https://doi.org/10.1002/jcb.10607
https://doi.org/10.1095/biolreprod.103.024794
https://doi.org/10.3389/fimmu.2015.00053
https://doi.org/10.3389/fimmu.2015.00053
https://doi.org/10.1038/s41385-019-0184-y
https://doi.org/10.1016/j.fertnstert.2014.10.046
https://doi.org/10.1371/journal.pone.0069827
https://doi.org/10.1371/journal.pone.0069827
https://doi.org/10.1016/j.jprot.2019.103381
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Gradient Boosting Machine Learning Model for Defective Endometrial Receptivity Prediction by Macrophage-Endometrium Interaction Modules
	Introduction
	Methods
	Datasets and Patient Selection
	Processing of Primary Datasets
	Immune-Infiltration Analysis
	Macrophage-Endometrium Interaction Modules Establishment
	Enrichment Analysis of Functional Categories
	Quantitative Real-Time PCR Analysis (qRT-PCR)
	Western Blot
	Machine Learning Models Establishment and Statistics

	Results
	Impact of Immune Infiltration Levels on Endometrial Receptivity
	Macrophage-Endometrium Interaction Modules Biofunction
	Representative Genes and KEGG Pathways
	Construction and Validation of Machine Learning Models
	Clinical Benefits From Machine Learning Model

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


