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ABSTRACT

Over 14 common single nucleotide polymorphisms (SNP) have been consistently 
identified from genome-wide association studies (GWAS) as associated with glioma 
risk in European background. The extent to which and how these genetic variants 
can improve the prediction of glioma risk has was not been investigated. In this 
study, we employed three independent case-control datasets in Chinese populations, 
tested GWAS signals in dataset1, validated association results in dataset2, developed 
prediction models in dataset2 for the consistently replicated SNPs, refined the 
consistently replicated SNPs in dataset3 and developed tailored models for Chinese 
populations. For model construction, we aggregated the contribution of multiple SNPs 
into genetic risk scores (count GRS and weighed GRS) or predicted risks from logistic 
regression analyses (PRFLR).

In dataset2, the area under receiver operating characteristic curves (AUC) of 
the 5 consistently replicated SNPs by PRFLR(SNPs) was 0.615, higher than those 
of all GRSs(ranging from 0.607 to 0.611, all P>0.05). The AUC of genetic profile 
significantly exceeded that of family history (fmc) alone (AUC=0.535, all P<0.001). 
The best model in our study comprised “PRURA +fmc” (AUC=0.646) in dataset3. 
Further model assessment analyses provided additional evidence.

This study indicates that genetic markers have potential value for risk prediction 
of glioma.

INTRODUCTION

Gioma makes up 80% of all malignant brain tumors 
in adults [1]. Genetic predisposition to glioma is well 
known in the settings of rare familial tumor syndromes [2]. 
To date, five GWAS reports have been published and have 
led to the discovery of about 14 SNPs in 7 chromosome 

regions associated with glioma risk for individuals of 
European descent [3-7]. Encouragingly, these independent 
GWAS have identified several susceptibility SNPs in 
common with one another. For example, Rajaraman 
et al. successfully replicated 8 signals reported in another 
GWAS in Caucasian populations, with all associations in 
the same direction as reported in the original study [7]. Our 
group replicated 5 of these association signals in 20q13.33, 
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11q23.3 and 5p15.33 within a Chinese population [8]. 
This consistency across studies highlights the robustness 
of GWAS design and promises to unlock the underlying 
genetic architecture of glioma by identifying loci that may 
play a role in the etiology of glioma. Although each of the 
variants is only moderately associated with glioma risk 
(each with an 18% to 60% increase in the relative odds 
ratio per risk allele), the alleles collectively have a strong 
dose-dependent effect [8].

The success of GWAS has greatly facilitated risk 
prediction by providing ever-increasing disease risk-
associated single nucleotide polymorphism (SNPs), 
most of which were well validated and replicated by 
independent studies [9, 10]. These advances comprise 
a vital step toward realizing the goals of personalized 
medicine. Several of the resultant genetic prediction 
models have been developed, validated and evaluated 
across a large spectrum of diseases [11-20]. However, in 
the context of glioma, it remains unclear as to whether the 
combination of SNP genotypes and family history provide 
added benefit in risk prediction. To address these issues, 
we have employed three relatively large case-control 
datasets, genotyping all glioma risk-associated SNPs 
identified from GWAS in dataset1 and 2 and testing their 
associations with glioma risk. Then for those consistently 
replicated SNPs (associations in the same direction and 
both P values < 0.05), we assessed predictive performance 
using three different methods for estimating the combined 
value of genetic variants. For more specific tailored 
prediction in Chinese population, we genotyped SNPs 
in larger regions surrounding the consistently replicated 
SNPs in a larger region and evaluated prediction 
performance of the combination of all independent risk-
associated loci across the susceptible regions in dataset3. 
Finally, we examined the calibration and discrimination 
features of the genetic models using Hosmer-lemeshow 
“goodness-of-fit” tests (H-L test) and AUCs. To gain 
further insight into the value added by incorporation 
of genetic information into risk prediction models, we 
employed continuous Net reclassification improvement 
(cNRI) and Integrated discrimination improvement (IDI) 
analyses.

RESULTS

Characteristics of the subjects within each of the 
three datasets, along with histologic subtypes of cases 
are shown in Supplementary Table 1. Cases and controls 
were adequately well-matched in terms of age and 
sex in dataset2 and 3 (All P >0.05), with no significant 
differences in the distribution of smoking status between 
cases and controls (All P >0.05).

A Positive family history of cancer (fmc) 
was defined as having a first-degree relative with a 
pathological diagnosis of cancer. Cases were more likely 
than controls to report fmc. Among clinical variables, 

only fmc demonstrated an association with glioma 
risk in univariate analysis in dataset2 and 3 (OR =1.63, 
95%CI=1.24-2.15, P= 0.001 and OR=1.47 95%CI=1.13-
1.91, P= 0.004, respectively for dataset2 and 3) and was 
therefore used to build a baseline risk model for glioma 
(Supplementary Table 2). No significant differences were 
observed between subjects excluded from the study due to 
data missing and those included. This suggests that bias 
has not been introduced into the following data analysis 
as a result of exclusion of missing data (data not shown).

Detailed information about selected SNPs and 
their associations with glioma risk across dataset1 and 
2 are presented in Supplementary Table 3. Two SNPs in 
EGFR were not available in dataset2. Eight SNPs were 
significantly associated with glioma risk in dataset1 
(P<0.05). Of these eight SNPs, six were consistently 
replicated in dataset2 (rs2736100 at 5p15.33; rs2157719 
and rs1412829 at 9p21.3; rs498872 at 11q23.3; rs6010620 
and rs4809324 at 20q13.33), all of which were common in 
Chinese population (risk allele frequencies 0.111-0.688). 
Among these, rs1412829 was removed from subsequent 
analyses for two reasons. First, it is in complete linkage 
disequilibrium (LD) with rs2157719 (pairwise r2 = 1 in 
Chinese population). Second, association strength of 
rs1412829 with glioma risk was more significant than 
that of rs2157719 (9.23E-03 vs. 0.025). Rs4809324 was 
also removed because it failed to survive in a multivariate 
logistic regression analysis, due to dependency with 
rs6010620 (pairwise r2 = 0.334 in Chinese population). 
The remaining four SNPs were used for model 
construction in dataset2. Rs1077236 at 8q24.21 was 
also included in the model given its potential for robust 
association with glioma risk in Chinese populations 
(Table 1). Detailed information of the 42 SNPs selected 
in dataset3, and their associations with glioma risk from 
univariate regression analysis are shown in Supplementary 
Table 4. Twenty of these were significantly associated with 
glioma risk, but ten were removed from further analyses 
due to LD (pairwise r2 ≥ 0.35) and less significances 
(relatively lager P values). Ten selected SNPs were then 
pooled in a multivariate logistic regression analysis using 
a backward likelihood ratio method [21, 22]. Three were 
filtered out and seven (rs2853677 and rs2735948 at 
5p15.33; rs6589664, rs494560 and rs17748 at11q23.3; 
rs3761121 and rs1058319 at 20q13.33) retained for model 
construction in dataset3, all of which were common (risk 
allele frequencies 0.146-0.746, Table 2). The number of 
risk allele counts was normally distributed among cases 
and controls and was skewed to the right for cases in 
both datasets. Higher mean counts were seen in the cases 
group (4.05±1.40 vs. 3.54±1.37, P= 8.95E-14 in dataset2; 
4.14±1.60 vs. 3.52±1.59, P = 3.87E-17 in dataset3, 
respectively, Figure 1A and 1B).

Associations between glioma risk and genetic 
risk score derived from three different methods, cGRS, 
wGRS1 and wGRS2 (count Genetic Risk Score, weight 
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Genetic Risk Score1 and weight Genetic Risk Score2, 
respectively) are shown in Table 3 for dataset2. For 
cGRS, we first classified subjects into six groups based 
on the number of risk alleles they harbored (≤1, 2, 3, 
4, 5, and ≥6 number of risk alleles) and calculated the 
corresponding odds ratios (OR) and 95% confidence 
intervals (CI) relative to the first group. As is shown in 
Table 3, glioma risk increases with increasing of risk allele 
counts (P for trend=2.73E-12). Subjects carrying ≥6 of the 
risk alleles (14.8% of cases and 8.78% of controls) had 
a 2.13-fold (95%CI=1.79-5.49, P=6.62E-05) increased 
risk of developing glioma compared with those carrying 
≤1 of the risk alleles (6.00% of cases and 3.03% of 

controls). For evaluating the risk of wGRS1 and wGRS2, 
we classified subjects into four equally-sized groups 
by quartiles determined from controls. Compared with 
individuals who were in the lowest quartile, those in 
the highest quartile had a 1.77-fold (95%CI=2.10-3.65, 
P=7.67E-13) increased risk of glioma for wGRS1 and 
1.78-fold (95%CI=2.10-2.65, P= 6.25E-13) increased risk 
for wGRS2. Similar and consistent results were observed 
for the seven independent SNPs in dataset3 (Table 4). 
Notably, subjects carrying ≥7 risk alleles (6.96% of cases 
and 3.32% of controls) had a 4.09-fold (95%CI=2.88-
8.99, P=2.07E-08) increased risk for developing glioma 
compared with those carrying ≤1 risk alleles (3.85% of 

Table 1: Five consistently replicated SNPs for model development in dataset2

SNP CHR. Nearest gene Region Location on
Chromosomea

Non-
risk Risk

Dataset1 Dataset2
Risk allele 
frequency OR 

(95%CI)b
P  

valueb

Risk allele 
frequency OR 

(95% 
CI)b

P 
valueb

Cases Controls Cases Controls

rs2736100 5 TERT Intron 1339516 T G 0.479 0.413 1.30(1.17-
1.46)

3.96E-
06 0.482 0.418

1.29 
(1.13-
1.49)

2.69E-
04

rs1077236 8 CCDC26 Intergenic 130709683 A C 0.698 0.677 1.10(0.95-
1.28) 0.219 0.725 0.688

1.20 
(1.03-
1.39)

0.021

rs2157719 9 CCDKN2A/B Intron 22023366 T C 0.140 0.113 1.28(1.08-
1.51)

4.19E-
03 0.141 0.111

1.32 
(1.07-
1.62)

9.23E-
03

rs498872 11 PHLDB1 UTR-5 117982577 A G 0.303 0.272 1.23(1.08-
1.39)

1.19E-
03 0.349 0.285

1.35 
(1.16-
1.56)

7.81E-
05

rs6010620 20 RTEL1 Intron 61780283 T C 0.304 0.266 1.21(1.07-
1.37)

2.39E-
03 0.330 0.267

1.35 
(1.16-
1.57)

9.25E-
05

a, based on NCBI Build 36; b, Odds ratios (ORs), 95% confidence interval (95%CI) and P values were calculated from 
univariate logistic regression analyses based on additive model.

Table 2: Seven independent SNPs for model development in dataset3

SNP CHR Nearest 
gene Region Location on

Chromosomea
Non-
risk Risk

Risk allele frequency
OR (95%CI)b P valueb

Cases Controls

rs2853677 5 TERT Intron 1287194 T C 0.449 0.375 1.36(1.20-1.55) 2.70E-06

rs2735948 5 TERT Intergenic 1299213 C T 0.170 0.146 1.20(1.01-1.42) 0.044

rs6589664 11 TMEM25 Exon 117910014 G A 0.310 0.271 1.21(1.05-1.39) 6.80E-03

rs494560 11 PHLDB1 Intron 118026759 A G 0.801 0.746 0.73(1.18-1.60) 4.04E-05

rs17748 11 PHLDB1 UTR-3 118033634 C T 0.327 0.263 1.36(1.18-1.56) 1.57E-05

rs3761121 20 ZGPAT Intron 62342695 A G 0.269 0.202 1.45(1.25-1.69) 9.85E-07

rs1058319 20 SLC2A4RG UTR-3 62374389 T C 0.354 0.256 1.59(1.39-1.83) 4.76E-11

a, based on NCBI Build 36; b, ORs, 95%CI and P values were calculated from univariate logistic regression analysis based 
on additive model.
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cases and 9.85% of controls). We estimated interaction 
between each SNP pair in dataset2 and 3. Except for one 
probably spurious association (P = 0.031 for rs2735948 
and rs376112 in dataset3, false discovery rate adjusted 
P = 0.413), the results demonstrated no evidence of 
interaction between any of the SNP pairs for both datasets 
(Supplementary Tables 5 and 6).

We first assessed the overall performance of risk 
prediction models using AUC statistics. As shown in 
Table 5 and Figure 2, the ability of fmc to discriminate 
cases from controls was 0.535 (95% CI=0.515-0.554). 
This performance was only slightly better than random 
classification in dataset2. The AUCs for wGRS1 and 
wGRS2 were almost identical, with 0.610 for wGRS1 
and 0.611 for wGRS2 (P = 1.00, Table 6). These were 
both slightly higher than that of cGRS (AUC = 0.607), 
though these differences were not statistically significant 
(both P = 0.766). The AUC for PRFLR(SNPs) was 0.615. 
This was higher than all GRSs, though once again, the 
differences were not statistically significant (all P > 
0.05). When we combined fmc and genetic information 
within one risk model, AUCs increased correspondingly. 
The higher AUC of the GRS and fmc combination was 
observed for wGRS1+fmc (0.623), wGRS2+fmc (0.621) 
and cGRS+fmc (0.620). The highest AUC observed was 
for PRFLR(SNPs+fmc)(0.625). This, however, was not 
significantly different compared with AUCs for models 
incorporating genetic information alone (all P > 0.05).

To generate tailored risk models for the Chinese 
population and possibly validation the findings in 
dataset2, we also calculated corresponding AUCs and P 
values for pairwise comparisons in dataset3 (Table 5 and 
Figure 2). The AUC estimates for fmc, cGRS, wGRS1, 
wGRS2, cGRS+fmc, wGRS1+fmc and wGRS2+fmc were 
roughly equivalent to those from dataset2, suggesting 

that these values were stable with no evidence of model 
overfitting. In contrast, AUCs of PRFLR(SNPs) and 
PRFLR(SNPs+fmc) were remarkably larger than those 
of dataset2 (0.635 versus 0.615 and 0.646 versus 0.625). 
In fact, PRFLR(SNPs) outperformed any type of GRS for 
risk prediction in this dataset (all P ≤ 1.91E-03, Table 6).

Hosmer-lemeshow “goodness-of-fit” tests for 
model calibration are presented in Table 5. Models of 
wGRS2 showed borderline significance (P = 0.049), 
indicating that this model might not be well-calibrated. 
The remaining models were well-calibrated (P > 0.05). 
Calibration plots are provided in Supplementary Figure 3 
for direct inspection. Therefore, wGRS2 was removed and 
wGRS1 was used in subsequent analysis in dataset2 for 
simplicity. We also explored the calibration of models in 
dataset3 (Table 5 and Supplementary Figure 4) and found 
all models to be well-calibrated (all P > 0.05) with the 
exception of wGRS2+fmc (P = 0.016) which was removed 
from further analyses in dataset3.

To further assess the potential value of genetic 
information in predicting glioma risk, we employed 
cNRI, which compares the shifts in reclassified 
categories by observed outcome and IDI analysis, 
which integrates net reclassification over all possible 
cut-offs for the probability of the outcome. As shown 
in Table 7, genetic information of any kind was 
superior to fmc and the improvement in percentage 
of correctly assigned subjects ranged from 28.2% for 
cGRS to 31.0% for PRFLR(SNPs) (all P < 0.0001). The 
differences in average predicted risks between cases 
and controls increased by 2.6% for cGRS, 2.7% for 
wGRS1 and 2.8% for PRFLR(SNPs) (all P < 0.0001). 
When added genetic information to baseline model, the 
updated models significantly improved cNRI (0.388 
for cGRS+fmc, 0.342 for wGRS1+fmc and 0.336 

Figure 1: Frequency distribution of number of risk alleles in glioma cases and controls in dataset2 and 3.
Footnotes: Five SNPs included in dataset 2: rs2736100 at 5p15.33, rs2157719 at 9p21.3, rs498872 at 11q23.3, rs6010620 at 
20q13.33, rs1077236 at 8q24.21. Seven SNPs included in dataset3:rs2853677 and rs2735948 at 5p15.33, rs6589664, rs494560 and rs17748 
at11q23.3, rs3761121 and rs1058319 at 20q13.33.
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for PRFLR(SNPs+fmc)) over fmc (all P < 0.0001). 
The IDI ranged from 3.4% for cGRS+fmc, 3.6% for 
wGRS1+fmc to 3.7% for PRFLR(SNPs+fmc) (all P 
< 0.0001). Llikewise, fmc also added reclassification 
benefit to genetic information: all cNRIs = 14.2% for 
cGRS, wGRS1 and PRFLR(SNPs), (all P = 0.0004). 
These results suggested fmc and genetic variants are 
independent risk factors for glioma and that genetic 
score does not capture the entirety of the information 
contained in fmc. wGRS1 also had significantly higher 
cNRI and IDI values over cGRS (P = 0.0385 for cNRI 
and P = 0.0380 for IDI) indicating that wGRS1 was 
superior to cGRS in the context of dataset2. These 
trends were validated in dataset3, where genetic 
information and fmc each added additional information 
for risk prediction (all P ≤ 0.0089), with the former 
having a significantly larger contribution to risk 
prediction than the latter (cNRI from 27.1% to 40.8% 
for genetic information over fmc all P < 0.0001; and 
cNRI = 9.8% for fmc over genetic information, all P 
= 0.0071). Incremental yield was also observed in IDI. 
Notably, the cNRI and IDI of PRFLR(SNPs) over fmc 
were higher compared with those of wGRS1 and cGRS 

(40.8% vs. 33.2% and 20.7% for cNRI; 5.8% vs. 3.4% 
and 3.4% for IDI). Adding PRFLR(SNPs) to baseline 
models yielded the great incremental value in cNRI 
(42%) and IDI (6.1%), suggesting that predicted risks 
from logistic regression analyses were more suitable for 
risk prediction in dataset3 than genetic risk score.

DISCUSSION

In this three-stage designed study in a large Chinese 
population, five of the 15 SNPs identified in previous 
GWAS studies of European descent were reproducibly 
associated with glioma risk in dataset1 and 2. These SNPs 
were evaluated for predictive values by incorporating 
into a single statistic using different methods (i.e. 
cGRS, wGRS1, wGRS2 and PRFLR). We found genetic 
information to be an independent predictor of glioma risk 
and found it to add appreciable predictive value to baseline 
models toward classification of cases and controls. PRFLR 
captured most of the genetic information and outperformed 
GRSs in risk prediction, although the increase in AUC 
was modest compared with those of GRSs (AUC = 0.625 

Table 3: Association between the cumulative effect of 5 independent SNPs and glioma risk in dataset2

Risk prediction models
Cases (%) Controls (%)

OR(95%CI) P value Trend P value
743 900

counts Genetic Risk Score (cGRS)

0-1 24(3.23) 54(6.00) 1.00(reference)

2 77(10.36) 142(15.78) 1.22(0.70-2.13) 0.482

3 146(19.65) 275(30.56) 1.20(0.71-2.01) 0.504

4 220(29.61) 215(23.89) 2.30(1.37-3.86) 0.002

5 166(22.34) 135(15.00) 2.77(1.63-4.71) 1.76E-04

≥6 110(14.80) 79(8.78) 3.13(1.79-5.49) 6.62E-05 2.73E-12

weighed Genetic Risk Score (wGRS)1

0(<Q25) 120(16.15) 259( 28.78) 1.00(reference)

1(Q25~Q50) 107(14.40) 198(22.00) 1.17(0.85-1.61) 0.345

2(Q50~Q75) 229(30.82) 219(24.33) 2.26(1.70-3.00) 2.14E-08

3(≥Q75) 287(38.63) 224(24.89) 2.77(2.10-3.65) 7.67E-13 3.63E-15

weighed Genetic Risk Score (wGRS)2

0(<Q25) 120(16.15) 259(28.78) 1.00(reference)

1(Q25~Q50) 107(14.40) 199(22.11) 1.16(0.84-1.60) 0.361

2(Q50~Q75) 226(30.42) 219(24.33) 2.24(1.68-2.98) 3.12E-08

3(≥Q75) 287(39.03) 223(24.78) 2.78(2.10-3.70) 6.25E-13 3.13E-15
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vs. 0.620 and 0.623). Dataset3 was used to both validate 
findings and establish models tailored for the Chinese 
population. Here, PRFLR+fmc served as the best model 
(AUC = 0.646). The potential benefit of adding genetic 
markers to risk models was further assessed by cNRI and 
IDI. Substantial and significant increases in cNRI and 
IDI were observed through the incorporation of genetic 
information (cNRI = 33.6% and 42.0%, IDI = 3.7% and 
6.1% for PRFLR in dataset2 and dataset3, respectively). 
Of note, models were well-calibrated within these datasets.

Consistent with previously published reports, 
epidemiologic variables, such as cigarette smoking, 
were not associated with glioma risk in univariate 
logistic regression [23-25]. In fact, unlike many other 
types of cancer, epidemiologic and clinical parameters 
(i.e. cigarette smoking, alcohol consumption) have not 
been implicated as risk factors for glioma. During study 
recruitment, cases and controls were prospectively paired 
by age and sex. As a result, associations between age/
sex and glioma risk were not observed in dataset2 and 
3. Only family history was included in the baseline risk 
model. The interpretation of genetic variants is similar to 
that of family history. Genetic variants, however, contain 
more information and perform better (AUC = 0.615, 

0.635 for PRFLR in dataset 2 and3, respectively). They 
are also independent risk factors for glioma, individually 
adding additional value to risk prediction (combined AUC 
= 0.625, 0.646 in dataset2 and3, respectively). These 
findings are in-line with those of Jostins and et al. [26], 
suggesting that both fmc and SNPs identified from GWAS 
captured only a subset of the genetic underpinnings of 
glioma. The reminder of the genetic determinants still 
remain unknown. A proportion of these may have been 
missed in our study due to our restrictive definition of a 
positive family history-having at least one first-degree 
relative with glioma. This metric provides only a crude 
estimate of familial risk and provides limited information 
about more nuanced family history.

Genetic variants as predictors have four advantages 
over clinical predictors: 1) they remain unchanged 
throughout one’s life, 2) they can be measured easily and 
accurately using a noninvasive saliva sample in a cost-
effective manner, 3) they can be combined and used 
together in one prediction model, and 4) they can predict 
life-long risk while clinical factors only predict risk at a 
single time point [20, 26].

Three methods were used to generate a combined 
statistic for genetic variants in risk assessment. One, 

Table 4: Association between the cumulative effect of the 7 independent SNPs and glioma risk in dataset3

Risk prediction models
Cases (%) Controls (%)

OR(95%CI) P value Trend P value
934 995

counts Genetic Risk Score (cGRS)

0-1 36 (3.85) 93(9.35) 1.00(reference)

2 114 (12.21) 182(18.29) 1.62(1.03-2.54) 0.036

3 192 (20.56) 232(23.32) 2.14(1.39-3.29) 0.001

4 207 (22.16) 221(22.21) 2.42(1.58-3.72) 5.39E-05

5 198(21.20) 157(15.78) 3.26(2.10-5.05) 1.26E-07

6 122(13.06) 77(7.74) 4.09(2.54-6.61) 8.06E-09

≥7 65(6.96) 33(3.32) 5.09(2.88-8.99) 2.07E-08 2.58E-12

weighed Genetic Risk Score (wGRS)1

0(<Q25) 133(14.24) 250(25.13) 1.00(reference)

1(Q25~Q50) 191(20.45) 252(25.33) 1.43(1.07-1.89) 0.014

2(Q50~Q75) 267(28.59) 257(25.83) 1.95(1.49-2.56) 1.33E-06

3(≥Q75) 343 (36.72) 235(23.62) 2.74(2.09-3.59) 1.55E-13 2.85E-13

weighed Genetic Risk Score (wGRS)2

0(<Q25) 130(13.92) 250(25.13) 1.00(reference)

1(Q25~Q50) 192 (20.56) 249(25.03) 1.48(1.12-1.97) 0.006

2(Q50~Q75) 262(28.05) 251(25.23) 2.00(1.53-2.64) 6.01E-07

3(≥Q75) 350 (37.47) 244(24.52) 2.76(2.11-3.61) 1.08E-13 3.08E-13
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Table 5: Prediction performance of genetic risk score and family history for glioma risk

Datasets No. of subjects AUC(95%CI)a H-L testb P value

Dataset2

fmc 1453 0.535(0.515-0.554) 1.000

cGRS 1643 0.607(0.581-0.644) 0.386

wGRS1 1643 0.610(0.583-0.638) 0.111

wGRS2 1643 0.611(0.584-0.639) 0.049

PRFLR(SNPs) 1453 0.615(0.586-0.644) 0.051

cGRS+fmc 1453 0.620(0.591-0.649) 0.816

wGRS1+fmc 1453 0.623(0.595-0.652) 0.334

wGRS2+fmc 1453 0.621(0.592-0.650) 0.117

PRFLR(SNPs+fmc) 1453 0.625(0.596-0.653) 0.250

Dataset3

fmc 1718 0.526(0.508-0.543) 1.000

cGRS 1921 0.605(0.580-0.629) 0.997

wGRS1 1921 0.607(0.582-0.632) 0.880

wGRS2 1921 0.608(0.583-0.633) 0.113

PRFLR (SNPs) 1718 0.635(0.610-0.660) 0.927

cGRS+fmc 1718 0.611(0.585-0.637) 0.743

wGRS1+fmc 1718 0.611(0.585-0.638) 0.154

wGRS2+fmc 1718 0.609(0.583-0.636) 0.016

PRFLR(SNPs+fmc) 1718 0.646(0.619-0.672) 0.393

AUC: the area under operating characteristic curves; fmc: family history of caner; cGRS: count genetic risk score; wGRS: 
weighed genetic risk score; PRFLR: predicted risks from logistic regression analysis; a, 2000 bootstrap replicates; b, 
Hosmer-Lemeshow “goodness-of-fit” test for model calibration.

Figure 2: Receiver operating characteristic curve plots in dataset2 and 3.
Footnotes: fmc: family history of caner; cGRS: count genetic risk score; wGRS: weighed genetic risk score; PRFLR: predicted 
risks from logistic regression analysis.
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PRFLR, was simply based on predicted risks from logistic 
regression analysis. The other two, cGRS and wGRS were 
based on the concept of genetic risk score. We used two 
different methods of estimation as proposed by Meigs et 
al and Lin et al [11, 27]. We found cGRS and wGRS to 
have comparable discrimination ability in our study, a 
result that is discordant with findings from other studies 
[27-31]. We also found, PRFLR to outperform GRSs. 
These findings were further assisted by model assessment 
strategies (cNRI and IDI). Importantly, the results were 
validated by dataset3. GRSs are hypothesis based that 
effects are additive both within and between SNPs, while 
PRFLR is free from such assumption. As indicated by 
the definition, PRFLR uses predicted risks directly from 
logistic regression, while cGRS treats each SNP equally 
and uses count risk alleles of all SNPs and wGRS weighs 
each SNP by the genotypic OR and next, adds or multiplies 
the weighed genotypic risk together. cGRS is an extreme 
form of wGRS, both methods are hypothesis dependent 
and needs further manipulation of the data comparing with 

PRFLR, which might lead to loss of information and thus 
AUC losses.

To the best of our knowledge, this study is among 
the first to comprehensively explore the value of genetic 
information for risk prediction in glioma. It is worthy of 
mention that this is based on a three-stage design in a 
relatively large population. Such a design greatly reduces 
false positive findings and the possibility of overfitting and 
increases reliability. In addition, we didn’t carry the five 
SNPs straight into dataset3. In contrast, we interrogated 
the initial regions where association signals lie for 
comprehensive characterizing susceptible features of 
glioma and 7 independent SNPs were therefore harvested 
and used for risk prediction.

Overall, we began with a model based on 
consistently replicated SNPs identified from Caucasian 
GWAS and ended with a tailored model of SNPs identified 
to be associated with glioma risk well across the regions of 
initial signals in a Chinese population.

Concerns have been raised that substantial gains in 
risk prediction performance may not result in a substantial 

Table 6: Comparisons of AUC pairs in dataset2 and 3

Datasets cGRS wGRS1 wGRS2 PRFLR(SNPs) cGRS+fmc wGRS1+fmc wGRS2+fmc PRFLR(SNPs+fmc)

Dataset2

fmc 5.30E-
06

8.59E-
06

8.85E-
06 8.63E-06 5.34E-09 5.77E-10 3.22E-10 2.44E-10

cGRS 0.766 0.766 0.738 0.421 0.191 0.392 0.150

wGRS1 1.000 0.738 0.421 0.191 0.392 0.150

wGRS2 0.512 0.413 0.190 0.385 0.150

PRFLR(SNPs) 0.423 0.201 0.396 0.141

cGRS+fmc 0.270 0.739 0.212

wGRS1+fmc 0.340 0.507

wGRS2+fmc 0.224

Dataset3

fmc 4.91E-
07

3.52E-
07

2.78E-
07 2.85E-13 3.10E-10 2.73E-10 4.69E-11 2.20E-16

cGRS 0.501 0.391 3.11E-04 0.229 0.309 0.583 9.07E-05

wGRS1 0.484 1.91E-03 0.554 0.381 0.747 4.37E-04

wGRS2 1.90E-03 0.656 0.497 0.84 4.20E-04

PRFLR(SNPs) 1.71E-03 3.52E-03 2.81E-03 0.280

cGRS+fmc 0.863 0.769 2.33E-04

wGRS1+fmc 0.451 6.38E-04

wGRS2+fmc 2.90E-04

Results are denoted by P values of differences in AUC pairs; P values in each cell denotes comparison of AUC in 
corresponding row over that of the corresponding column; Bootstrap method proposed by Delong and his colleagues was 
used to calculated P values; AUC: the area under operating characteristic curves; fmc: family history of caner; cGRS: count 
genetic risk score; wGRS: weighed genetic risk score; PRFLR: predicted risks from logistic regression analysis.
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Table 7: Comparisons of cNRI and IDI in dataset2 and 3

Datasets
cGRS wGRS1 PRFLR (SNPs)

cNRI 95%CI IDI 95%CI cNRI 95%CI IDI 95%CI cNRI 95%CI IDI 95%CI

Dataset2

fmc 0.282(0.180-
0.385)

0.026(0.015-
0.036)

0.291(0.189-
0.394)

0.027(0.016-
0.038) 0.310(0.208-0.413) 0.028(0.017-0.039)

cGRS 0.046(-0.058-
0.150)

0.002(1e-04-
0.003)

0.096(-0.008-
0.200) 0.003(1e-04-0.006)

wGRS1 0.086(-0.011-
0.183) 0.001(-6e-04-0.003)

PRFLR(SNPs)

cGRS+fmc

wGRS1+fmc

Dataset3

fmc 0.271(0.176-
0.366)

0.034(0.025-
0.044)

0.332(0.2371-
0.427)

0.034(0.025-
0.044) 0.408(0.314-0.502) 0.058(0.046-0.070)

cGRS 0.007(-0.089-
0.102)

1e-04(-0.002-
0.003) 0.196(0.102-0.290) 0.023(0.016-0.031)

wGRS1 0.197(0.103-0.290) 0.023(0.016-0.030)

PRFLR(SNPs)

cGRS+fmc

wGRS1+fmc

cGRS+fmc wGRS1+fmc PRFLR 
(SNPs+fmc)

cNRI 95%CI IDI 95%CI cNRI 95%CI IDI 95%CI cNRI 95%CI IDI 95%CI

0.388(0.287-
0.488)

0.034(0.025-
0.044)

0.342(0.239-
0.444)

0.036(0.026-
0.046) 0.336(0.234-0.438) 0.037(0.027-0.047)

0.142(0.063-
0.221)

0.009(0.004-
0.014)

0.168(0.077-
0.259)

0.010(0.005-
0.016) 0.154(0.056-0.253) 0.012(0.006-0.017)

0.077(-0.013-
0.167)

0.007(0.002-
0.012)

0.142(0.063-
0.221)

0.009(0.004-
0.014) 0.180(0.083-0.276) 0.010(0.005-0.015)

-0.095(-0.198-
0.008)

-0.006(-0.012-
-5e-4)

-0.151(-0.233-
-0.070)

-0.008(-0.013-
-0.002) 0.142(0.063-0.221) 0.009(0.004-0.014)

0.040(-0.064-
0.143)

0.002(-1e-04-
0.003)

0.093(-0.011-
0.197) 0.003(0-0.005)

0.079(-0.016-
0.175) 0.001(-6e-04-0.003)

0.310(0.215-
0.404)

0.038(0.029-
0.047)

0.325(0.230-
0.419)

0.038(0.029-
0.047) 0.420(0.325-0.514) 0.061(0.050-0.073)

0.098(0.027-
0.168)

0.004(7e-04-
0.007)

0.047(-0.048-
0.141)

0.004(-2e-04-
0.008) 0.236(0.143-0.330) 0.027(0.019-0.035)

0.098(0.027-
0.168)

0.004(6e-04-
0.007)

0.098(0.027-
0.168)

0.004(6e-04-
0.007) 0.230(0.136-0.323) 0.027(0.019-0.035)

(Continued )
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increase in AUC given that AUC does not contain 
information about the predicted risks [15, 32]. To address 
this issue, we also explored the added value of genetic 
variants to baseline model by NRI and IDI. These two 
measures offer incremental information over the AUC 
statistic. Because no established risk cut-offs exist for 
glioma at the moment, we chose continuous NRI for NRI 
estimation. The improvement in risk prediction afforded 
by genetic information was confirmed with more detailed 
characterization and comparison between performances of 
models incorporating genetic variants and family history. 
The matter of model calibration was addressed by H-L 
goodness-of-fit.

This study was based on findings from GWAS. 
Numerous studies have been carried out to explore 
susceptibility of glioma. These have largely featured 
candidate gene/pathway design and have implicated at 
least 61 SNPs thus far [33]. Attempts to validate these 
associations have yielded variable results and few genetic 
risk factors have been consistently replicated (except for 
those located in EGFR, CDKN2A and TP53). In contrast, 
SNPs identified from GWAS have been convincingly 
reproduced by multiple studies. We therefore began with 
SNPs identified from GWAS for this study, hoping to 
strength the validity of risk prediction.

There are several limitations in our study. First, 
one SNP in EGFR (rs2252586) which was associated 
with glioma in dataset1 was not available in dataset2. 
Therefore, its association could not be validated and this 
SNP was not included in prediction models in dataset2. 
Additional genotype data for EGFR was also unavailable 
in dataset3. Moreover, rs78378222 in the polyadenylation 
site of TP53 identified by fine-mapping studies in 
Caucasian populations to be associated glioma risk [34, 
35]. Another common SNP rs1920116 located in intron 
region of TERC, were first identified to be associated 
glioma risk by Walsh et al in 2014 in Caucasian population 
[36] and then replicated in a Chinese population by Wang 

et al in 2015 [37]. However, these findings published after 
the implementation of our study, therefore rs78378222 
and rs1920116 were not included in our study either. This 
omission may affect the estimates of AUC statistics, cNRI 
and IDI of the final models. Second, GWAS that underpin 
our study were all based on Caucasian populations. It is 
possible that other SNPs in these regions or novel regions 
may be important in Chinese population. We overcome 
the former issue in dataset3 of our study, which evaluates 
SNPs perfectly cover the regions where association signals 
lie. For the latter, no GWAS in Chinese populations has 
been reported till now and the issue was not able to address 
in this study. Third, AUC in the best scenario in our study 
was 0.646, far from potential consideration of clinical 
utility (AUC ≥ 0.8). Indeed, the underlying architecture of 
genetic susceptibility to glioma may not include as large a 
proportion of common variants as has been seen for other 
cancers to date. Furthermore, it is possible that the addition 
of yet unidentified rare risk alleles with large effects could 
improve discrimination. One such SNP, rs55705857 
at 8q24.21 was identified through imputation effort 
combined with next generation sequencing in Caucasian 
population [38, 39]. After all, risk model prediction is not 
a diagnostic tool but rather provides an estimate of the 
likelihood of developing disease in the future. Fourth, 
exposure to therapeutic doses or high-dose radiation is 
the most firmly established environmental risk factor for 
the development of glioma [40]. In our three datasets, 
only 41 cases and 17 controls reported professional 
exposure to ionizing radiation, far from sufficient for 
statistical analysis. Our study was therefore ill-equipped 
to quantify the role of ionizing radiation in risk prediction 
of glioma. This, unfortunately, may substantially diminish 
the clinical relevance of the model we report. Last but 
not least, glioma is heterogeneous, encompassing a wide 
spectrum of subtypes (astrocytoma, oligodendroglioma, 
mixed oliogoastrocytoma, and ependymoma) [41]. 
Studies have suggested different subgroups of glioma 

Datasets
cGRS wGRS1 PRFLR (SNPs)

cNRI 95%CI IDI 95%CI cNRI 95%CI IDI 95%CI cNRI 95%CI IDI 95%CI

0.161(0.066-
0.257)

0.020(0.012-
0.027)

0.130(0.034-
0.226)

0.020(0.012-
0.027) 0.098(0.027-0.168) 0.004(6e-04-0.006)

0.004(-0.091-
0.010)

0(-0.003-
0.003) 0.197(0.103-0.290) 0.023(0.016-0.030)

0.199(0.105-0.293) 0.023(0.016-0.030)

AUC: the area under operating characteristic curves; fmc: family history of caner; cGRS: count genetic risk score; wGRS: 
weighed genetic risk score; PRFLR: predicted risks from logistic regression analysis; cNRI: continuous net reclassification 
improvement; IDI: integrated discriminant index analysis. Statistics in each cell denotes comparison of variables in 
corresponding row over that of the corresponding column. Point estimation and 95%CIs were based on 2000 replicates of 
bootstrapping.
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may represent distinct pathological entities. For example, 
genetic variants specific to each of the subtypes have also 
been found in multiple studies [25, 42-44]. Therefore, it 
is better to build risk prediction models respectively for 
each subtype based on their unique susceptible features. 
Finally, the conclusions of this study may be influenced by 
the prevalence of the disease under study, as AUC statistic 
does not incorporate disease incidence as a parameter.

SUBJECTS AND METHODS

Study population

This study consists of three case-control 
datasets. Flow diagrams of the enrollment of the study 
populations are presented in Supplementary Figure 1. 
Detailed flowchart of the study design is presented in 
Supplementary Figure 2. Demographic characteristics and 
clinical features of each study population are presented 
Supplementary Table 1. Overall, all subjects were 
genetically unrelated ethnic Han Chinese. Case subjects 
were newly diagnosed and pathologically confirmed 
gliomas patients from the Department of Neurosurgery at 
Huashan Hospital and Changzheng Hospital (Shanghai, 
China). These patients were recruited consecutively into 
each of the study dataset without restrictions on age, 
gender and histology. Those who had self-reported cancer 
history other than glioma, previous cancers, metastasized 
cancer from other organs, spinal gliomas, and previous 
radiotherapy or chemotherapy were excluded. In total, 
992, 976 and 983 eligible cases each provided an informed 
consent and were enrolled for dataset1 [45, 46], 2 [8] and 
3 [47-49], respectively.

Cancer-free controls were selected from visitors 
undergoing routine physical examination and trauma 
patients at the emergency medical center. For dataset2 
and 3, 1057 and 1024 controls were enrolled at the same 
hospitals during the same time periods as case enrollment. 
Dataset1 consisted of two parts: 1008 from four districts 
and counties of Shanghai, described elsewhere [50], and 
1245 from communities of Nanjing surrounding areas 
which were primary used for lung cancer GWAS [51]. 
All controls had no known central nervous system-related 
diseases, self-reported history of any cancer or history of 
radiotherapy/chemotherapy at the time of recruitment.

Controls of dataset2 and 3 were frequency matched 
to case subjects according to age (within 5 years), sex and 
geographic origins, while controls differed from cases by 
demographic data (mainly gender and age) in dataset1. 
Therefore, due to 1) the relatively poor quality of the 
epidemiological information in controls, 2) relatively 
larger sample size, 3) consistent frequencies of selected 
SNPs between Nanjing and Shanghai subsets (data not 
shown), dataset1 was only used for identifying significant 

associations between SNPs and glioma risk and serves as 
a spur to introduce dataset2 and 3 for model development.

Each subject was interviewed face-to-face by 
trained personnel using a questionnaire, which we have 
described previously [52]. After the interview, each subject 
provided 3–5 mL venous blood. This study were approved 
by School of Life Sciences of Fudan University Ethics 
Board. All experiments were carried out in accordance 
with approved guidelines of School of Life Sciences of 
Fudan University (Shanghai, China).

SNP selection, genotyping and quality controls

15 previously identified SNPs3-5,7, representing 6 
distinct loci, were selected for dataset1 and 2. In dataset3, 
for the consistently replicated SNPs in both dataset1 and 2, 
we extended the chromosome regions where these signals 
lie and selected tag SNPs in Chinese population according 
to HapMap database (http://www.hapmap.org/, phase III 
Aug 10, on NCBI B36 assembly, dbSNP b132; population: 
Han Chinese in Beijing, China). That is, for SNP selection 
in dataset3, those 6 targeted chromosome region at 
least covered the complete LD where those consistently 
replicated SNPs lie. Haploview program 4.2 was used for 
the selection on basis of pairwise LD r2 threshold of 0.8 
and minor-allele frequency (MAF) ≥0.05. Within these 
well encompassed regions, 42 SNPs were chosen for 
dataset3, including 14 at 5p15.33, 15 at 11q23.3 and 13 
at 20q13.33. Genotyping was performed by MassARRAY 
iPLEX system (Sequenom, Inc.).

Samples were removed if their genotype rate was 
<95%. SNPs were excluded if they had: (i) call rate <95%; 
(ii) MAF <0.05; or (iii) P<0.01 for Hardy-Weinberg 
Equilibrium test among controls. Moreover, individuals 
were removed from multivariate logistic analysis and 
model development if they missed any one of the 
genotypes.

Statistical analyses

Selection of clinical variables and SNPs for model 
development

Associations between SNPs, clinical variables and 
risk of glioma were estimated by computing ORs and 
their 95% CIs using a univariate logistic regression model. 
Log-additive model was used to derive genotype relative 
risks from the allelic OR. The first series of models were 
built on dataset2. Only SNPs that showed consistently 
significant association with glioma risk in both dataset1 
and 2 were qualified for model development. The second 
series of models were constructed on dataset3. To ensure 
the independent effect of each SNPs, we only selected 
SNPs if they had (i) P<0.05 for association with glioma 
risk; (ii) pairwise r2<0.35; (iii) remained in a multivariate 
logistic regression model using backward likelihood ratio 
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method. Fmc was also included in model development for 
its independency association with glioma risk.
Risk model development

There were three approaches for incorporating 
SNPs into a risk prediction model. The first approach 
simply used predicted risks from logistic regression 
analysis (PRFLR). The other two were based on genetic 
risk score (GRS): a simple risk allele count method 
(count GRS, cGRS) where the number of risk alleles 
were summed for each individual and a weighted method 
based on the effect sizes (genotypic OR) (weighted 
GRS, wGRS) [11, 27, 28, 30]. For wGRS, there were 
two different methods to model. One (wGRS1) was 
generated according to following equation: wGRS1 
= w1×SNP1+w2×SNP2+. . .+ wk×SNPk, where SNPi 
denoted the number of risk alleles for the specific 
SNPs(SNPi=0,1,2), wi was the appropriate weight of 
each SNP, in our study, wi equaled to the allelic ORi, 
and k was the number of SNPs used [27]. The other 
(wGRS2) was generated by multiplying risks of the 
genotypic OR of each individual SNP. Briefly, for each 
of the three genotypes at each SNP, we converted the 
genotype relative risk to the risk relative to the average 
risk of population. Then the overall risk relative to the 
population was derived by multiplying the risks relative 
to the population of all SNPs [28, 29]. The formula was: 
wGRS2= SNP1 × SNP2 ×. . .× SNPk, where SNPk was 
overall risk for the kth SNP. All three GRS approaches 
were based on the assumptions that no interaction 
existed among SNPs and that they each had independent 
effects [53]. We tested interactions for each pair of SNPs 
by including both main effects and an interaction term 
(a product of two main effects) in a logistic regression 
analysis [54]. Finally, PRFLR, cGRS and wGRS were 
used to construct receiver-operating characteristic 
(ROC) and AUC in dataset2 and 3. To ensure reliability 
of data, we excluded subjects from model development 
if they had missing information on any of the predictors.
Assessment of the performances of risk models

The differences in AUC between two models was 
tested by DeLong’s test [55]. The H-L test was used 
as a calibration statistic to examine the goodness of fit 
of the models [56]. Calibration quantifies how closely 
the predicted probabilities of an event match the actual 
experience. Two thousand replicates of bootstrap were 
carried out as internal validation of models to adjust 
for potential overfitting. Furthermore, continuous NRI 
(cNRI) and IDI were used to calculate the incremental 
value added of genetic information to the prediction of 
glioma risk [57, 58]. cNRI does not require any discrete 
risk categories and relies on the proportions of cases 
correctly assigned a higher probability and controls 
correctly assigned a lower probability by an updated 
model compared with the initial model. IDI equaling 

x% means that the difference in average predicted 
risks between cases and controls increased by x% in 
the updated model. cNRI and IDI were estimated and 
tested for significance using methods proposed by 
Pencina et al [57]. All P values were two-sided, and P 
values < 0.05 were considered statistically significant. 
All statistical analyses were done in R version 3.0.1 (R 
Foundation for Statistical Computing, Vienna, Austria) 
using ROCR, rms, Hmisc, epitools and PredictABEL 
packages [59, 60].
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