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Abstract: The aim of this study was to explore the protective effects of bioactive compounds from the
fruit of the mulberry tree (Morus alba L.) against cisplatin-induced apoptosis in LLC-PK1 pig kidney
epithelial cells. Morus alba fruit is a well-known edible fruit commonly used in traditional folk medicine.
Chemical investigation of M. alba fruit resulted in the isolation and identification of six phytosterols
(1–6). Their structures were determined as 7-ketositosterol (1), stigmast-4-en-3β-ol-6-one (2), (3β,6α)-
stigmast-4-ene-3,6-diol (3), stigmast-4-ene-3β,6β-diol (4), 7β-hydroxysitosterol 3-O-β-D-glucoside (5),
and 7α-hydroxysitosterol 3-O-β-D-glucoside (6) by analyzing their physical and spectroscopic data as
well as liquid chromatography/mass spectrometry data. All compounds displayed protective effects
against cisplatin-induced LLC-PK1 cell damage, improving cisplatin-induced cytotoxicity to more
than 80% of the control value. Compound 1 displayed the best effect at a relatively low concentration
by inhibiting the percentage of apoptotic cells following cisplatin treatment. Its molecular mechanisms
were identified using Western blot assays. Treatment of LLC-PK1 cells with compound 1 decreased the
upregulated phosphorylation of p38 and c-Jun N-terminal kinase (JNK) following cisplatin treatment.
In addition, compound 1 significantly suppressed cleaved caspase-3 in cisplatin-induced LLC-PK1
cells. Taken together, these findings indicated that cisplatin-induced apoptosis was significantly
inhibited by compound 1 in LLC-PK1 cells, thereby supporting the potential of 7-ketositosterol (1) as
an adjuvant candidate for treating cisplatin-induced nephrotoxicity.

Keywords: mulberry; Morus alba; phytosterols; LLC-PK1; nephrotoxicity; MAPKs

1. Introduction

Cis-diamminedichloroplatinum II (cisplatin) is one of the most common platinum
chemotherapeutic agents used for the treatment of many types of solid tumors [1]. In more
than 30% of patients taking cisplatin, a variety of side effects, including allergic reac-
tions, ototoxicity, myelotoxicity, nephrotoxicity, and gastrotoxicity, have been reported [2].
Of these side effects, nephrotoxicity is a dose-limiting one that makes patients unable to
continue cisplatin treatment [3]. Cisplatin can seriously damage the S3 segment of the
proximal tubules, causing kidney dysfunction [4]. Forced diuresis using mannitol, magne-
sium supplementation, and kidney-protective therapeutic approaches using enzymes and
compounds that can help treat or prevent cisplatin-induced nephrotoxicity was reported [5].
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In addition, the effects of plant extracts and plant-derived natural products on cisplatin-
induced nephrotoxicity were studied [6]. However, the detailed molecular mechanisms
underlying their protective effects remain unclear. In previous studies using kidney cells,
treatment with cisplatin (16–300 µM) induced cell death and activated cellular signaling
pathways, including p53, mitogen-activated protein kinases (MAPKs), and caspases [7,8],
which can be molecular targets for the mechanism of nephroprotection.

The mulberry tree (Morus alba L.), also known as white mulberry, belongs to the family
Moraceae. Morus alba fruit is a well-known edible fruit commonly used in traditional folk
medicine to improve diabetes and eyesight [9]. Its leaves are also consumed as a fodder for
silkworms (Bombyx mori L.) and used in health products such as tea and beverages [10].
In previous studies on M. alba, extracts from its fruit have exhibited pharmacological
activities, including anti-microbial [11], anti-inflammatory [12], anti-obesity [13,14], anti-
cancer [15], and anti-oxidant activities [12,16,17]. Previous phytochemical investigations of
M. alba fruit have reported a variety of bioactive secondary metabolites such as chlorogenic
acid, ferulic acid, protocatechuic acid, apigenin, quercetin, and rutin [18]. In our ongoing
endeavor to find bioactive products from diverse natural resources [19–22], we have carried
out chemical investigations of many natural materials to identify bioactive compounds
exhibiting protective effects against cisplatin-induced nephrotoxicity. As a result, we have
identified several kidney-protective phytochemicals, such as ginsenoside Rb1 from Panax
ginseng [23], ergosterols from the fruiting bodies of the mushroom Pleurotus cornucopiae [24],
and flavonoids from peat moss Sphagnum palustre [25]. Recently, we also identified butyl
pyroglutamate, a renoprotective compound, from M. alba fruit [26]. Its renoprotection
was mediated by inhibition of MAPK protein expression and cleaved caspase-3 protein
expression [26].

To extend our previous studies, we further investigated an ethanol extract of M. alba
fruit to identify potential renoprotective compounds in the present study. Phytochemical
analysis of the M. alba fruit extract led to the isolation of six phytosterols (1–6). Their
structures were determined by detailed analyses of their nuclear magnetic resonance
(NMR) spectroscopic and physical data as well as mass spectrometry (MS) data from
liquid chromatography (LC)/MS analyses. Herein, we report the isolation and structural
characterization of these six compounds along with their protective effects against cisplatin-
induced cell death and their underlying mechanism of action in LLC-PK1 cells.

2. Materials and Methods
2.1. General Experimental Procedures

Optical rotations were measured using a Jasco P-1020 polarimeter (Jasco, Easton,
MD, USA). Infrared (IR) spectra were recorded using a Bruker IFS-66/S FT-IR spectrometer
(Bruker, Karlsruhe, Germany). Electrospray ionization (ESI) mass spectra were recorded
using a Waters Micromass Q-Tof Ultima ESI-TOF mass spectrometer (Waters, New York,
NY, USA). Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker
AVANCE III 700 NMR spectrometer operating at 700 MHz (1H) and 175 MHz (13C) (Bruker,
Karlsruhe, Germany) with chemical shifts reported in parts per million (δ). Preparative
HPLC used a Waters 1525 Binary HPLC pump with a Waters 996 Photodiode Array De-
tector (Waters Corporation, Milford, CT, USA). Semi-preparative HPLC was performed
using a Shimadzu Prominence HPLC System with SPD-20A/20AV Series Prominence
HPLC UV-Vis Detectors (Shimadzu, Tokyo, Japan). Silica gel 60 (Merck, 70–230 mesh and
230–400 mesh) and RP-C18 silica gel (Merck, 40–63 µm) were used for column chromatog-
raphy. Merck precoated silica gel F254 plates and RP-18 F254s plates (Merck, Darmstadt,
Germany) were used for thin layer chromatography (TLC). Spots were detected on TLC
under UV light or by heating after spraying with anisaldehyde-sulfuric acid.

2.2. Plant Material, Extraction, and Isolation

Fruit from M. alba was collected in China in January 2014. A voucher specimen
(MA 1414) of the material was identified by one of the authors (K.H. Kim) and placed in
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the herbarium of the School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Dried
M. alba fruit was processed using 70% aqueous ethanol and then evaporated in vacuo to ob-
tain a crude brownish ethanol extract (1.4 kg). The ethanol extract was solvent-partitioned
with hexane, CH2Cl2, EtOAc, and butanol three times to obtain four main fractions yielding
27.8, 85.3, 32.9, and 138.8 g, respectively. The methylene chloride (CH2Cl2)-soluble fraction
was subjected to open silica gel column (230–400 mesh) chromatography and fractionated
using a gradient solvent system of CH2Cl2–MeOH (50:1–1:1) to produce five fractions (A–E).
Fraction B (2.3 g) was further fractionated by open RP-C18 silica gel column (230–400 mesh)
chromatography using a gradient solvent system of methanol–water (MeOH-H2O) (7:3–1:0)
to produce 11 subfractions (B1–B11). Four subfractions (B91–B94) were acquired from sub-
fraction B9 (398 mg) using a silica gel column (230–400 mesh) with a gradient solvent
system of dichloromethane–methanol (CH2Cl2–MeOH) (50:1–1:1). Subfraction B91 (25 mg)
was injected onto semi-preparative reversed-phase HPLC using 91% aqueous MeOH to
obtain compounds 1 (6.0 mg, tR = 42.0 min) and 2 (7.2 mg, tR = 47.0 min). Subfraction B93
(38 mg) was separated utilizing semi-preparative reversed-phase HPLC eluted with 92%
aqueous MeOH to obtain compounds 3 (4.0 mg, tR = 51.5 min) and 4 (6.7 mg, tR = 53.0 min).
Fraction C (1.8 g) was fractionated using a silica gel column (230–400 mesh) and eluted
with a gradient solvent system of CH2Cl2–MeOH (100:1–1:1) to obtain seven subfractions
(C1–C7). Three subfractions (C71–C73) were acquired from subfraction C7 (330 mg) using
a silica gel column (230–400 mesh) with a gradient solvent system of CH2Cl2–MeOH
(30:1–1:1). Compounds 5 (6.3 mg, tR = 32.5 min) and 6 (3.1 mg, tR = 52.5 min) were purified
from subfraction C72 (120 mg) using semi-preparative reversed-phase HPLC eluted with
85% aqueous MeOH.

2.3. Cell Culture and Cell Viability Assay

LLC-PK1 cells and kidney epithelial cells from pigs were purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). These cells were grown at 37 ◦C in
a humidified atmosphere incubator with 5% CO2 in air using Dulbecco’s modified eagle
medium (ATCC) supplemented with 1% penicillin/streptomycin, 10% fetal bovine serum
(Invitrogen, Grand Island, NY, USA), and 4 mM l-glutamine. These cells were seeded into
96-well culture plates at a density of 1 × 104 cells/mL. After 24 h, cells were pretreated with
2.5, 5, 10, 25, and 50 µM of test samples for 2 h at 37 ◦C. Next, 25 µM cisplatin was added
to cells. After incubation for 24 h at 37 ◦C, cell viability was measured using an EZ-Cytox
assay kit (Daeillab Service, Seoul, South Korea) according to the method described in a
previous study [26].

2.4. Image-Based Cytometric Assay

Annexin V Alexa Fluor 488 staining was performed to determine the percentage of
apoptotic cells. Briefly, cells were seeded in six-well plates at a density of 4 × 105 cells/mL.
After 24 h, cells were pretreated with 2.5 and 5 µM compound 1 for 2 h at 37 ◦C. Next,
25 µM cisplatin was added to cells. After incubation for 24 h at 37 ◦C, cells were stained
with Annexin V Alexa Fluor 488 (Invitrogen, Temecula, CA, USA). The percentage of
apoptotic cells was analyzed using a Tali image-based cytometer (Invitrogen, Temecula,
CA, USA) according to the method described in a previous study [26].

2.5. Western Blotting Analysis

Cells were seeded into six-well plates at a density of 4 × 105 cells/mL. After 24 h, cells
were pretreated with 2.5 and 5 µM compound 1 for 2 h at 37 ◦C. Next, 25 µM cisplatin
was added to cells. After incubation for 24 h at 37 ◦C, Western blot analysis was per-
formed according to a previously described method [26]. The same amount of protein was
transferred to Immobilon-P (PVDF) transfer membranes (Millipore, Bedford, MA, USA)
from a precast 4–15% Mini-PROTEAN TGX gel (Bio-Rad, Hercules, CA, USA). The mem-
branes were then incubated with primary antibodies and secondary antibodies. Primary
and secondary antibodies were purchased from Cell Signaling Technology, Inc. (Beverly,
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MA, USA). The primary antibodies used in this study were phospho-p38 (1:1000 dilu-
tion), p38 (1:1000 dilution), phospho-JNK (1:1000 dilution), JNK (1:1000 dilution), cleaved
caspase-3 (1:1000 dilution), and GAPDH (1:1000 dilution).

2.6. Statistical Analysis

All data, including cell viability, percentage of apoptotic cells, and protein expression,
are presented as average value and standard deviation (SD). All assays were performed in
triplicate and repeated at least thrice. In this study, only a small number of repetitions for
each cell experiment were included. Thus, a non-parametric analysis method was adopted
for the statistical analysis. The Kruskal–Wallis test was used for the statistical analysis
of each variable. The SPSS statistical package (IBM SPSS Statistics version 21, Boston,
MA, USA) was used for all analyses. Statistical significance was considered at p < 0.05.

3. Results
3.1. Isolation and Identification of Compounds

Dried and pulverized M. alba fruit was extracted with 70% ethanol three times at
room temperature. Aqueous ethanol was evaporated in vacuo to obtain the ethanol extract.
To discover bioactive compounds, we performed solvent partitioning on the ethanol
extract using hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol
(n-BuOH). Repetitive fractionation and purification of open column chromatography and
semi-preparative high-performance liquid chromatography (HPLC) on the CH2Cl2-soluble
fraction led to the isolation of six phytosterols (1–6) (Figure 1). The structures of these
isolated compounds (Figure 1) were elucidated as 7-ketositosterol (1) [27], stigmast-4-
en-3β-ol-6-one (2) [28], (3β,6α)-stigmast-4-ene-3,6-diol (3) [29], stig-mast-4-ene-3β,6β-diol
(4) [30], 7β-hydroxysitosterol 3-O-β-D-glucoside (5) [31], and 7α-hydroxysitosterol 3-O-β-D-
glucoside (6) [31] by analyzing their physical and NMR spectroscopic data (Figures S1–S12)
compared with those reported in previous studies and data from LC/MS analysis.

3.2. Compounds Isolated from M. alba Fruit Inhibit Cisplatin-Induced Death of LLC-PK1 Cells

Cisplatin-induced LLC-PK1 cell death was used to examine the renoprotective effects
of compounds isolated from M. alba fruit. Treatment of LLC-PK1 cells with 25 µM cisplatin
for 24 h caused a 62.58% ± 0.47% reduction in cell viability compared with untreated
controls (Figure 2A). All compounds displayed protective effects against cisplatin-induced
damage in LLC-PK1 cells. The LLC-PK1 cell viability reduced by 25 µM cisplatin increased
to 84.4% ± 4.33% and 99.09% ± 4.25% after co-treatment with compound 1 at 2.5 µM and
5 µM, respectively (Figure 2A). The LLC-PK1 cell viability reduced by 25 µM cisplatin
increased to 86.68% ± 2.37%, 88.28% ± 3.24%, and 91.82% ± 1.11% after co-treatment
with compound 2 at 10, 25, and 50 µM, respectively (Figure 2B). The LLC-PK1 cell via-
bility reduced by 25 µM cisplatin increased to 89.15% ± 2.71% and 96.71% ± 0.31% after
co-treatment with compound 3 at 5 and 10 µM, respectively (Figure 2C). The LLC-PK1
cell viability reduced by 25 µM cisplatin increased to 86.31% ± 0.73%, 87.59% ± 1.12%,
and 90.85% ± 1.22% after co-treatment with compound 4 at 10, 25, and 50 µM, respec-
tively (Figure 2D). The LLC-PK1 cell viability reduced by 25 µM cisplatin increased to
74.71% ± 2.92%, 85.25% ± 2.31%, and 85.63% ± 2.69% after co-treatment with compound
5 at 2.5, 5, and 10 µM, respectively (Figure 2E). The LLC-PK1 cell viability reduced by
25 µM cisplatin increased to 86.12% ± 1.21%, 89.68% ± 2.67%, and 92.47% ± 4.02% after
co-treatment with compound 6 at 10, 25, and 50 µM, respectively (Figure 2F). The best
protective effect on LLC-PK1 cells exposed to 25 µM cisplatin was observed for treatment
with 5 µM of compound 1. Therefore, compound 1 was selected for subsequent analysis.
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stigmast-4-ene-3,6-diol (3), (D) stig-mast-4-ene-3β,6β-diol (4), (E) 7β-hydroxysitosterol 3-O-β-D-
glucoside (5), and (F) 7α-hydroxysitosterol 3-O-β-D-glucoside (6) on LLC-PK1 cells exposed to 25 µM
of cisplatin for 24 h by MTT assay. Control cells were treated with vehicle only (mean ± SD of
n = 3 replicates, * p < 0.05 compared with the control).

3.3. Compound 1 Inhibits Cisplatin-Induced Apoptosis in LLC-PK1 Cells

We evaluated the effects of compound 1 on cisplatin-induced apoptotic cell death
using Annexin V Alexa Fluor 488 staining. As shown in Figure 3A, apoptotic cells were
stained with Annexin V Alexa Fluor 488 (green fluorescence). The percentage of apoptotic
cells was increased by 25 µM cisplatin from 2.13% ± 0.19% to 46.41% ± 3.21%, whereas
it was decreased by 13.74% ± 1.31% and 4.86% ± 0.49% when cells were pretreated with
10 µM and 25 µM of compound 1, respectively (Figure 3B).
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3.4. Compound 1 Inhibits Expression Levels of p38, JNK, and Cleaved Caspase-3 in
Cisplatin-Treated LLC-PK1 Cells

We also evaluated the possible molecular mechanisms of compound 1, focusing on p38,
JNK, and cleaved caspase-3 using a Western blot analysis. Treatment with 25 µM cisplatin
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increased the expression levels of phosphorylated p38, phosphorylated JNK, and cleaved
caspase-3. However, the expression levels of all these proteins in LLC-PK1 cells were
decreased by treatment with 2.5 and 5 µM compound 1 in a dose-dependent manner
(Figure 4A). Bar graphs show the expression levels of phosphorylated p38, phosphorylated
JNK, and cleaved caspase-3 normalized to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Figure 4B–D).
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Figure 4. Protective effects of compound 1 on apoptosis of LLC-PK1 cells exposed to 25 µM cisplatin
for 24 h as assessed by a Western blot analysis. (A) Expression levels of phospho-p38 (p-p38),
p38, phospho-c-Jun N-terminal kinase(p-JNK), JNK, and cleaved caspase-3. (B–D) Each bar graph
represents densitometric quantification of Western blot bands. Control cells were treated with vehicle
only (mean ± SD of n = 3 replicates, * p < 0.05 compared with the control).

4. Discussion

Many drugs, including antifungal agents, anti-retroviral drugs, aminoglycoside an-
tibiotics, and anticancer drugs, are known to cause nephrotoxicity [32]. Various assays
have been used to assess the protective effects of plant extracts and plant-derived nat-
ural products against drug-induced cytotoxicity in kidney cells. The primary assay to
identify an effective substance is based on measurement of cell viability. In the present
study, we identified cell-protective compounds from M. alba fruit using the EZ-Cytox assay
to measure the metabolic activities of cells in the presence of cisplatin. All compounds
displayed protective effects against cisplatin-induced LLC-PK1 cell damage, improving
cisplatin-induced cytotoxicity to more than 80% of the control value. Compound 1 dis-
played the best effect at a relatively low concentration. The LLC-PK1 cell viability that was
reduced by 25 µM cisplatin to 60% increased to nearly 100% after co-treatment with 5 µM
compound 1. In our previous study, 10 µM butyl pyroglutamate isolated from M. alba fruit
improved the cell viability by 83%, which was more effective than N-acetylcysteine [33].
N-acetylcysteine has been used as a positive control in cisplatin-induced renal toxicity
studies [34,35].

Oxidative stress, apoptosis, and inflammation are three major mechanisms underly-
ing cisplatin-induced cytotoxicity. Among these, the most well-known mechanism is the
apoptosis pathway [35]. It is known that cisplatin-induced apoptotic cell death in renal
tubular cells is associated with both mitochondrial-mediated and death-receptor-mediated
pathways [36]. Both these pathways ultimately induce apoptosis through caspase-3 ac-
tivation [37]. Additionally, it has been shown that JNK and p38 regulate tumor necrosis
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factor-α (TNF-α), which plays an important role in cisplatin-induced apoptosis [38,39].
In the present study, compound 1 had a protective effect against apoptotic cell death.
This result is consistent with the improved cell viability of compound-1-treated cells.
The protective effect of compound 1 on LLC-PK1 cells might be partly due to inhibition
of apoptosis by cisplatin. In addition, treatment with cisplatin increased the expression
levels of phosphorylated p38, phosphorylated JNK, and cleaved caspase-3, whereas these
expression levels were decreased in a dose-dependent manner by treatment of LLC-PK1
cells with compound 1. These observations indicated that compound 1 inhibited apoptosis
through the inhibition of phosphorylated JNK and p38 as well as the inhibition of the
expression level of cleaved caspase-3 (Figure 5). Therefore, the anti-apoptotic effect might
be responsible for the protective effect of compound 1 against cisplatin-induced cell death.
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5. Conclusions

In summary, as part of an ongoing research project to discover bioactive natural
products [40–45], we identified renoprotective phytosterols from the fruit of the mulberry
tree (M. alba) that ameliorated cisplatin-induced cytotoxicity. All compounds displayed
protective effects against cisplatin-induced damage in LLC-PK1 cells. Compound 1 dis-
played the best effect at a relatively low concentration. In addition, we demonstrated that
compound 1 blocked cisplatin-induced LLC-PK1 cell apoptosis by inhibiting expression
levels of phosphorylated p38, phosphorylated JNK, and cleaved caspase-3. However,
additional detailed mechanisms responsible for the renoprotective effects of compound 1
need to be studied to support the potential of 7-ketositosterol (1) as an adjuvant candidate
for treating cisplatin-induced nephrotoxicity.
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