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This paper proposes amethod usingmultidomain features and support vectormachine (SVM) for classifying normal and abnormal
heart sound recordings. The database was provided by the PhysioNet/CinC Challenge 2016. A total of 515 features are extracted
from nine feature domains, i.e., time interval, frequency spectrum of states, state amplitude, energy, frequency spectrum of
records, cepstrum, cyclostationarity, high-order statistics, and entropy. Correlation analysis is conducted to quantify the feature
discrimination abilities, and the results show that “frequency spectrum of state”, “energy”, and “entropy” are top domains to
contribute effective features. A SVM with radial basis kernel function was trained for signal quality estimation and classification.
The SVM classifier is independently trained and tested bymany groups of top features. It shows the average of sensitivity, specificity,
and overall score are high up to 0.88, 0.87, and 0.88, respectively, when top 400 features are used. This score is competitive to the
best previous scores. The classifier has very good performance with even small number of top features for training and it has stable
output regardless of randomly selected features for training. These simulations demonstrate that the proposed features and SVM
classifier are jointly powerful for classifying heart sound recordings.

1. Introduction

Heart sounds are a series of mechanical vibrations produced
by the interplay between blood flow and heart chambers,
valves, great vessels, etc. [1–3]. Heart sounds provide impor-
tant initial clues in heart disease evaluation for further diag-
nostic examination [4]. Listening to heart sounds plays an
important role in early detection for cardiovascular diseases.
It is practically attractive to develop computer-based heart
sound analysis. Automatic classification of pathology in heart
sounds is one of the hot problems in the past 50 years. But
accurate classification is still an open challenge question. To
the authors’ knowledge, Gerbarg et al. were the first to publish
automatic classification of pathology in heart sounds [5].

Automatic classification of PCG recording in clinical
application typically consists of four steps: preprocessing,
segmentation, feature extraction, and classification. Over the
past decades, features and methods for the classification
have been widely studied. In summary, features may be

wavelet features, time-domain features, frequency domain
features, complexity-based features, and joint time-frequency
domain features. Methods available for classification may
be artificial neural network [6–10], support vector machine
[11, 12], and clustering [13–16]. Unfortunately, comparisons
between previous methods have been hindered by the lack
of standardized database of heart sound recordings collected
from a variety of healthy and pathological conditions. The
organizers of the PhysioNet/CinC Challenge 2016 set up a
large collection of recordings from various research groups in
the world. In the conference, many methods were proposed
for this discrimination purpose, like deep learning methods
[17–19], tensor based methods [20], support vector machine
based methods [21, 22], and others [23–27]. Generally, time
and/or frequency domain features were used in these papers.
The reported top overall scores were 89.2% by [27], 86.2%
by [28], 85.9% by [29], and 85.2% by [30]. In this paper, the
authors extend their previous study [31] and extracted a total
of 515 features for normal/abnormal PCG classification. The
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Figure 1: Flow diagram of the proposed classification.

difference of the proposed method to the existing methods
is that these features are from multidomains, such as time
interval, state amplitude, energy, high-order statistics, cep-
strum, frequency spectrum, cyclostationarity, and entropy.
To the authors’ knowledge, the proposed method in this
paper perhaps uses the most number of features. Correlation
analysis shows the contribution of each feature. A SVM
classifier is used to discriminate abnormal/uncertain/normal
types. Cross validation shows that the proposed features
have excellent generation ability. The mean overall score
based on 20% data training is up to 0.84. It rises to 0.87
based on 50% data training and rises to 0.88 based on 90%
data training. The results demonstrate that the method is
competitive comparison to previous approaches.

2. Methods

2.1. Database. The database used in this paper is provided
by the international competition PhysioNet/CinC Challenge
2016, which can be freely downloaded from the website
[32]. The database includes both PCG recordings of healthy
subjects and pathological patients collected in either clinical
or nonclinical environments. There are a total of 3,153 heart
sound recordings, given as “∗.wav” format, from 764 sub-
jects/patients, lasting from 5 s to 120 s. The recordings were
divided into two classes: normal and abnormal records with
a confirmed cardiac diagnosis. Label “1” was used to present
abnormal (665 recordings) and “-1” to present normal cases
(2488 recordings). A skilled cardiologist was also invited to
evaluate the signal quality for each recording. As he believed
that a recording had good signal quality, it was labeled “1”.
Otherwise, it was labeled “0”.There are 279 recordings which
were labeled as bad signal quality and the rest of 2874 were
labeled as good quality. Details about the database can be
found in [33].

2.2. Flow Diagram of the ProposedMethod. Theflow diagram
of the proposed method to classify PCG recordings is shown
in Figure 1. Each step will be described in the following
subsections.

2.3. Preprocessing. Each PCG recording is high-pass filtered
with a cut-off frequency of 10Hz to remove baseline drift.The

spike removal algorithm is applied to the filtered recording
[34].Then, the recording is normalized to zeromean and unit
standard deviation.

2.4. Heart Sound Segmentation by Springer’s Algorithm.
Springer’s hidden semi-Markov model (HSMM) segmenta-
tion method [35] is used to segment a PCG recording into
four states, i.e., S1, systole, S2, and diastole. Figure 2 shows an
example of this segmentation. Hence, the following signals
can be defined and further used for feature extraction. 𝑥(𝑛)
is a digital PCG recording where 𝑛 is the discrete time
index. 𝑠1𝑖(𝑛) and 𝑠2𝑖(𝑛) are S1 and S2 signals occurring in
the ith cardiac cycle, respectively. 𝑠𝑦𝑠𝑖(𝑛) and 𝑑𝑖𝑎𝑖(𝑛) are
the signals of systolic interval and diastole interval in the
ith cardiac cycle, respectively. 𝑐𝑖(𝑛) is the signal of the ith
cardiac cycle. Hence, 𝑐𝑖(𝑛) consists of the digital sequence of
[𝑠1𝑖(𝑛)𝑠𝑦𝑠𝑖(𝑛)𝑠2𝑖(𝑛)𝑑𝑖𝑎𝑖(𝑛)].

2.5. Features Extracted in Multidomains

2.5.1. Time-Domain Features (20 Features). After the segmen-
tation operation, a PCG recording is divided into many states
in the order of S1, systole, S2, and diastole. The time interval
of each state can be measured by the time difference between
the beginning and the end. The cardiac cycle period can
be measured by the time difference between the beginnings
of two adjacent S1s. Since the intervals have physiological
meanings in view point of heart physiology, Liu et al. [33]
proposed 16 features from the intervals as shown in Table 1.
Another 4 features from time-domain intervals are added in
this paper.

2.5.2. Frequency Domain Features for States (77×4=308 Fea-
tures). Frequency spectrum is estimated for the S1 state of
each cardiac cycle using a Gaussian window and discrete
Fourier transform.Themean frequency spectrum over cycles
can be further computed. The spectrum magnitudes from 30
Hz to 790 Hz with 10 Hz interval are taken as features. The
maximum frequency 790 Hz is considered to adapt possible
murmurs. So, 77 features for S1 state are obtained. Similar
operation is done to S2, systole, and diastole state. So, the
total number of features obtained from frequency domain for
states is 77 features × 4 = 308 features.
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Table 1: Summary of time-domain features.

Feature index Feature name Physical meaning
1 m RR mean value of RR intervals
2 sd RR standard deviation (SD) of RR intervals
3 m IntS1 mean value of S1 intervals
4 sd IntS1 SD of S1 intervals
5 m IntS2 mean value of S2 intervals
6 sd IntS2 SD of S2 intervals
7 m IntSys mean value of systolic intervals
8 sd IntSys SD of systolic intervals
9 m IntDia mean value of diastolic intervals
10 sd IntDia SD of diastolic intervals
11 m Ratio SysRR mean value of the ratio of systolic interval to RR interval of each heart beat
12 sd Ratio SysRR SD of the ratio of systolic interval to RR interval of each heart beat
13 m Ratio DiaRR mean value of the ratio of diastolic interval to RR interval of each heart beat
14 sd Ratio DiaRR SD of the ratio of diastolic interval to RR interval of each heart beat
15 m Ratio SysDia mean value of the ratio of systolic to diastolic interval of each heart beat
16 sd Ratio SysDia SD of the ratio of systolic to diastolic interval of each heart beat
17 m Ratio S1RR∗ mean value of the ratio of S1 interval to RR interval of each heart beat
18 sd Ratio S1RR∗ SD of the ratio of S1 interval to RR interval of each heart beat
19 m Ratio S2RR∗ mean value of the ratio of S2 interval to RR interval of each heart beat
20 sd Ratio S2RR∗ SD of the ratio of S2 interval to RR interval of each heart beat
Note: ∗means the new added features in this study.
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Figure 2: Illustration of the HSMM segmentation.

2.5.3. Normalized Amplitude Features (12 Features). Previous
physiological findings in amplitude of heart sound [1–3] dis-
closed that the amplitude is related to heart hemodynamics.
So, it is reasonable to extract features from amplitude of heart
sounds. To eliminate the difference between subjects and
records, no absolute amplitude is considered. Relative ratios
of amplitude between states are extracted as given in Table 2.

2.5.4. Energy-Domain Features (47 Features). The features in
energy domain consist of two parts: the energy ratio of a

band-pass signal to the original one and the energy ratio of
one state to another.

For the first part, various frequency bands are considered
with initial value of 10 Hz and increment bandwidth of 30
Hz; i.e., the 27 frequency bands are [10 40] Hz, [40 70] Hz,
[70 100]Hz, . . ., and [790 820]Hz, respectively.Theprevious
studies disclosed that murmurs’ frequency is hardly higher
than 800 Hz. In order to reflect murmurs’ properties, the
maximum frequency considered in this domain is 820 Hz. In
this paper, each band-pass filter is designed by a five-order
Butterworth filter. The output of the ith filter is y𝑖:

y𝑖 = filter (b𝑖, a𝑖, x) , 𝑖 = 1, . . . , 27, (1)

where b𝑖 (numerator) and a𝑖 (denominator) are the Butter-
worth IIR filter coefficient vectors. Hence, the energy ratio is
defined as

𝑅𝑎𝑡𝑖𝑜 𝑏𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦𝑖 =
∑ y𝑖


2

∑ |x|2
, 𝑖 = 1, . . . , 27. (2)

It is known that a normal heart sound signal generally has a
frequency band blow 200 Hz. However, the frequency band
may extend to 800 Hz if it contains murmurs. So, the energy
ratio reflects signal energy distribution along frequency band.
These features are helpful to discriminate a PCG records with
murmurs or not.
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Table 2: Summary of normalized amplitude features.

Feature index Feature name Physical meaning

1 m Amp SysS1 mean value of the ratio of the mean absolute amplitude during systole to that during
S1 in each heart beat

2 sd Amp SysS1 SD of m Amp SysS1

3 m Amp DiaS2 mean value of the ratio of the mean absolute amplitude during diastole to that
during S2 in each heart beat

4 sd Amp DiaS2 SD of m Amp DiaS2

5 m Amp S1S2 mean value of the ratio of the mean absolute amplitude during S1 to that during S2
in each heart beat

6 sd Amp S1S2 SD of m Amp S1S2

7 m Amp S1Dia mean value of the ratio of the mean absolute amplitude during S1 to that during
diastole in each heart beat

8 sd Amp S1Dia SD of m Amp S1Dia

9 m Amp SysDia mean value of the ratio of the mean absolute amplitude during systole to that during
diastole in each heart beat

10 sd Amp SysDia SD of m Amp SysDia

11 m Amp S2Sys mean value of the ratio of the mean absolute amplitude during S2 to that during
systole in each heart beat

12 sd Amp S2Sys SD of m Amp S2Sys

For the second part, the relative energy ratio is investi-
gated between any two states, resulting in another 20 features.
The energy ratio of S1 to the cycle period is defined as

𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 =
∑𝑛

𝑠1𝑖 (𝑛)

2

∑𝑛
𝑐𝑖 (𝑛)


2
,

𝑖 = 1, . . . , 𝑁,

(3)

where N is the number of cycles in a PCG recording and
𝑛 is the discrete time index. The authors consider aver-
age of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 and standard deviation of
𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 as two features. Similarly, another
18 features can be obtained from the averages and the
standard deviations.The 47 proposed features in this domain
are listed in Table 3.

2.5.5. Spectrum-Domain for Records Features (27 Features).
As is mentioned in Section 2.5.4, the frequency band is
divided into 27 bands with start from 10 Hz to 30 Hz
increment. Fast Fourier transform is performed for every
record. The ratio of spectrum magnitude sum in a band to
spectrummagnitude sum in whole band is taken as a feature.
So, 27 features can be produced for a record. These features
can discriminate murmurs because murmurs generally have
higher frequency than those of normal heart sounds.

2.5.6. Cepstrum-Domain Features (13 Features × 5 = 65
Features). The cepstrum of a PCG recording is calculated
and the first 13 cepstral coefficients are taken as features [36].
Additionally, all S1 states from a PCG recording are joined
together to create a new digital sequence.Then, the cepstrum
can be calculated and the first 13 cepstral coefficients are taken
as features. Similarly, the sameoperation is done to S2, systole,
and diastole states. So, another 13 features × 3 = 39 features

are obtained. The cepstrum of a signal 𝑝(𝑛) is computed as
follows:

𝑃 (𝑘) = 𝐷𝐹𝑇 [𝑝 (𝑛)] , (4)

�̂� (𝑘) = log [𝑃 (𝑘)] , (5)

𝑝 (𝑛) = 𝐼𝐷𝐹𝑇 [�̂� (𝑘)] , (6)

where the operator DFT[.] is the discrete Fourier transform,
IDFT[.] is the inverseDFT, log[.] is the natural logarithm, and
|.| is the absolute operation. It is known that the cepstrum
coefficient decays quickly. So, it is reasonable to select the first
13 coefficients as features. The cepstrum-domain features are
listed in Table 4.

2.5.7. Cyclostationary Features (4 Features). (1) m cyclosta-
tionarity 1 is mean value of the degree of cyclostationarity.
The definition of “degree of cyclostationarity” can be found
in [37].This feature indicates the degree of a signal repetition.
It will be infinite if the events which occurred in heart beating
were exactly periodic. However, it will be a small number if
the events are randomly alike. Let us assume 𝛾(𝛼) is the cycle
frequency spectral density (CFSD) of a heart sound signal at
cycle frequency𝛼, as shown in Figure 3.This feature is defined
as

𝑑 (𝜂) =
𝛾 (𝜂)

∫𝛽
0
𝛾 (𝛼) d𝛼

, (7)

where 𝛽 is the maximum cycle frequency considered and
𝜂 is the basic cycle frequency indicated by the main peak
location of 𝛾(𝛼). A heart sound signal is equally divided
into subsequences. The feature can be estimated for each
subsequence; then themean value and standard deviation can
be obtained.
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Table 3: Summary of energy-domain features.

Feature index Feature name Physical meaning
1-27 𝑅𝑎𝑡𝑖𝑜 𝑏𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦𝑖 Ratio of a given band energy to the total energy
28 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒
29 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒
30 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒
31 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒
32 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒
33 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒
34 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒
35 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒
36 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2
37 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2
38 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠
39 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠
40 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎
41 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎
42 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠
43 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠
44 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎
45 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎
46 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠
47 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠

Table 4: Summary of cepstrum-domain features.

Feature index Feature name Physical meaning
1-13 Cepstrum coefficients Cepstrum coefficients of a PCG recording
14-26 Cepstrum coefficients Cepstrum coefficients of jointed S1 state
27-39 Cepstrum coefficients Cepstrum coefficients of jointed systolic state
40-52 Cepstrum coefficients Cepstrum coefficients of jointed S2 state
53-65 Cepstrum coefficients Cepstrum coefficients of jointed diastole state
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Figure 3: An example of cycle frequency spectral density. (a) A subsequence of a PCG recording and (b) cycle frequency spectral density of
the subsequence.

(2) sd cyclostationarity 1 is SD of the degree of cyclosta-
tionarity.

(3) m cyclostationarity 2 is mean value of the sharpness
measure. The definition of this indicator is the sharpness of
the peak of cycle frequency spectral density. It is

peak sharpness =
max (𝛾 (𝛼))

median (𝛾 (𝛼))
. (8)

The operators max(.) and median(.) are the maximum and
median magnitude of the cycle frequency spectral density.
It is obvious that the sharper the peak is, the greater the
feature is. Similarly, the feature can be calculated for each
subsequence of the heart sound signal and then get the mean
value and SD.

(4) sd cyclostationarity 2 is SD of the sharpness measure.
The four features are listed in Table 5.
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Table 5: Summary of cyclostationary features.

Feature index Feature name Physical Meaning
1 m cyclostationarity 1 mean value of the degree of cyclostationarity
2 sd cyclostationarity 1 SD of the degree of cyclostationarity
3 m cyclostationarity 2 mean value of the sharpness measure
4 sd cyclostationarity 2 SD of the sharpness measure

Table 6: Summary of high-order statistics features.

Feature index Feature name Physical Meaning
1 m S1 skewness mean value of the skewness of S1
2 sd S1 skewness SD of the skewness of S1
3 m S1 kurtosis mean value of the kurtosis of S1
4 sd S1 kurtosis SD of the kurtosis of S1
5 m S2 skewness mean value of the skewness of S2
6 sd S2 skewness SD of the skewness of S2
7 m S2 kurtosis mean value of the kurtosis of S2
8 sd S2 kurtosis SD of the kurtosis of S2
9 m sys skewness mean value of the skewness of systole
10 sd sys skewness SD of the skewness of systole
11 m sys kurtosis mean value of the kurtosis of systole
12 sd sys kurtosis SD of the kurtosis of systole
13 m dia skewness mean value of the skewness of diastole
14 sd dia skewness SD of the skewness of diastole
15 m dia kurtosis mean value of the kurtosis of diastole
16 sd dia kurtosis SD of the kurtosis of diastole

2.5.8. High-Order Statistics Features (16 Features). In proba-
bility theory and statistics, skewness is ameasure of the asym-
metry of the probability distribution of real-valued random
numbers about its mean. It is a three-order statistics. Kurtosis
is a measure of “tailedness” of the probability distribution of
real-valued random numbers. It is a four-order statistics. The
skewness and kurtosis of each state are considered here.There
are sixteen related features, as listed in Table 6.

2.5.9. Entropy Features (16 Features). Sample entropy (Sam-
pEn) and fuzzy measure entropy (FuzzyMEn) have the
ability to measure the complexity of a random sequence
[38, 39]. Sample entropy and fuzzy measure entropy are
both computed to measure the complexity of every state
segmented by Springer’s algorithm. Then, the average and
standard deviation are used as the features. The detailed
algorithm to calculate sample entropy and fuzzy measure
entropy can be found in [38, 39]. So, 16 features in entropy
are listed in Table 7.

2.5.10. Summary. This paper considers 515 features in nine
domains. They are listed in Table 8 for reference. To the
authors’ knowledge, the features extracted from entropy and
cyclostationarity are new for heart sound classification. On
the other hand, the combination of the features in the nine

domains is novel for this classification. Seldomprevious study
has considered so many features simultaneously.

2.6. SVM-Based Model for Signal Quality Estimation and
Classification. The signal quality classification is typically
two-category classification problem in this study. The SVM-
based model has yielded excellent results in many two-class
classification situations. Given a training sample set {x𝑖, 𝑦𝑖},
𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾, where x𝑖 is the feature vector x𝑖 ∈ 𝑅𝑑, 𝑦𝑖
is the label. So, SVM-based model is applicable for both
signal quality estimation and classification. For the quality
estimation, the label is 𝑦𝑖 ∈ {1, 0}, which means good quality
and bad quality. For the classification, the label is 𝑦𝑖 ∈
{1, −1}, which means abnormal and normal cases. The aim of
SVM classifier is to develop optimal hyperplane between two
classes besides distinguishing them. The optimal hyperplane
can also be constructed by calculating the following optimiza-
tion problem.

min 𝜙 (w) = 1
2
(w𝑇w) + 𝐶

𝐾

∑
𝑖=1

𝜉𝑖

subject to 𝑦𝑖 ((w
𝑇𝜑 (x𝑖)) + 𝑏) ≥ 1, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾.

(9)

Here 𝜉𝑖 is a relaxation variable and 𝜉𝑖 ≥ 0,𝐶 is a penalty factor,
and w is the coefficient vector. 𝜑(x𝑖) is introduced to get a
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Table 7: Summary of entropy features.

Feature index Feature name Physical meaning
1 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆1 Mean value of SampEn of S1 state
2 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆1 SD value of SampEn of S1 state
3 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆2 Mean value of SampEn of S2 state
4 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆2 SD value of SampEn of S2 state
5 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑠𝑦𝑠 Mean value of SampEn of systolic state
6 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑠𝑦𝑠 SD value of SampEn of systolic state
7 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑑𝑖𝑎 Mean value of SampEn of diastolic state
8 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑑𝑖𝑎 SD value of SampEn of diastolic state
9 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆1 Mean value of FuzzyMEn of S1 state
10 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆1 SD value of FuzzyMEn of S1 state
11 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆2 Mean value of FuzzyMEn of S2 state
12 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆2 SD value of FuzzyMEn of S2 state
13 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑠𝑦𝑠 Mean value of FuzzyMEn of systolic state
14 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑠𝑦𝑠 SD value of FuzzyMEn of systolic state
15 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑑𝑖𝑎 Mean value of FuzzyMEn of diastolic state
16 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑑𝑖𝑎 SD value of FuzzyMEn of diastolic state

Table 8: Summary of the proposed features.

Index Domain Num. of features Motivation
1 Time interval 20 The time interval of each state has physiological meaning based on heart physiology.
2 Frequency spectrum of state 308 To reflect the frequency spectrum within state.
3 State amplitude 12 The amplitude is related to the heart hemodynamics.
4 Energy 47 To reflect energy distribution with respect to frequency band
5 Frequency spectrum of records 27 To reflect frequency spectrum within records
6 Cepstrum 65 To reflect the acoustic properties.
7 Cyclostationary 4 To reflect the degree of signal repetition.
8 High-order statistics 16 To reflect the skewness and kurtosis of each signal state.
9 Entropy 16 To reflect the PCG signal inherent complexity.
Total -- 515 --

nonlinear support vectormachine.Theoptimization problem
can be equally transformed into

max 𝐿 (𝛼) =
𝐾

∑
𝑖=1

𝛼𝑖 −
1
2

𝐾

∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜅 (x𝑖, x𝑗)

subject to
𝐾

∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾

(10)

where 𝜅(x𝑖, 𝑦𝑖) is a kernel function. The authors use RBF
kernel function in this paper. And the parameter sigma is
empirically set as 14. The discussions about the selection of
kernel function and the influence of sigma are given in the
Section 4.3.

2.7. Scoring. Theoverall score is computed based on the num-
ber of records classified as normal, uncertain, or abnormal, in
each of the reference categories. These numbers are denoted
by𝑁𝑛𝑘,𝑁𝑞𝑘,𝑁𝑎𝑘, 𝐴𝑛𝑘, 𝐴𝑞𝑘, and 𝐴𝑎𝑘 in Table 9.

Weights for the various categories are defined as follows
(based on the distribution of the complete test set):

𝑤𝑎1 =
𝑐𝑙𝑒𝑎𝑛 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

, (11)

𝑤𝑎2 =
𝑛𝑜𝑖𝑠𝑦 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

. (12)

𝑤𝑛1 =
𝑐𝑙𝑒𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

, (13)

𝑤𝑛2 =
𝑛𝑜𝑖𝑠𝑦 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

. (14)

The modified sensitivity and specificity are defined as (based
on a subset of the test set)

𝑆𝑒 = 𝑤𝑎1
𝐴𝑎1

𝐴𝑎1 + 𝐴𝑞1 + 𝐴𝑛1
+ 𝑤𝑎2

𝐴𝑎2 + 𝐴𝑞2
𝐴𝑎2 + 𝐴𝑞2 + 𝐴𝑛2

, (15)
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Table 9: Variables to evaluate the classification.

Classification Results
Normal (-1) Uncertain (0) Abnormal (1)

Reference label

Normal, clean 𝑁𝑛1 𝑁𝑞1 𝑁𝑎1
Normal, noisy 𝑁𝑛2 𝑁𝑞2 𝑁𝑎2
Abnormal, clean 𝐴𝑛1 𝐴𝑞1 𝐴𝑎1
Abnormal, noisy 𝐴𝑛2 𝐴𝑞2 𝐴𝑎2

Table 10: Summary of the correlation coefficients.

No. Feature domain Max. absolute CC Physical meaning
1 Time interval 0.286 sd IntSys
2 State amplitude -0.159 sd Amp S2Sys
3 Energy 0.345 Standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒
4 High-order statistics 0.185 sd S1 kurtosis
5 Cepstrum 0.216 The seventh cepstrum coefficient of S2 state
6 Frequency spectrum of state 0.417 Spectrum value of 30 Hz of S2 state
7 cyclostationarity -0.240 Sharpness of the peak of cycle frequency spectral density
8 Entropy -0.374 Average value of sample entropy of diastolic state
9 Frequency spectrum of records -0.272 Ratio of spectrum magnitude sum in [90 120]Hz

𝑆𝑝 = 𝑤𝑛1
𝑁𝑛1

𝑁𝑎1 + 𝑁𝑞1 + 𝑁𝑛1

+ 𝑤𝑛2
𝑁𝑛2 + 𝑁𝑞2

𝑁𝑎2 + 𝑁𝑞2 + 𝑁𝑛2
.

(16)

The overall score is then the average of these two values:

Overall score =
(𝑆𝑒 + 𝑆𝑝)

2
. (17)

3. Results

3.1. Correlation Analysis between the Features and the Target
Label. In this paper, a total of 515 features are extracted from
a single recording. A question arises about how to evaluate
the contribution of a feature for classification. To answer
the question, correlation analysis is performed between the
features and the target label. The correlation coefficients are
plotted in the nine domains in Figure 4. The statistics of
the coefficients are listed in Table 10. The top coefficient is
0.417 which is from “frequency spectrum of state” at 30 Hz
of S2 state. This feature is called “top feature”. The statistics
of top features are listed in Table 11. It is shown that 4 in the
top 10 features are from “frequency spectrum of state”. So,
this domain is ranked the first. Both “energy” and “entropy”
contribute 3 in top 10. But “energy” contributes 12 in top
100 which is greater than “entropy” who contributes 8 in top
100. Therefore, “energy” is ranked the 2nd and “entropy” is
ranked the 3rd. Following similar logics, the nine domains
are ranked as shown in Table 11. It concludes that the domain
“frequency spectrum of state” contributes themost. “Energy”
and “entropy” are the second and third place to contribute.

3.2. Signal Quality Estimation by SVM. The SVM model
in (9) is used to discriminate signal quality. The reference

labels for clean and noisy PCG recordings are “1” and “0”,
respectively. The input to the model is the proposed 515
features.The performance is tested by various input, as shown
in Table 12. Firstly, 10% of randomly selected data are used
for training and the other 90% of data are used for testing
without any overlap. Then the percent of train data increases
by 10% and repeats. The performance summary for signal
quality estimation is listed in Table 12. The manual reference
indicates that there are 2874 clean recordings and 279 noisy
recordings. So, the numbers of the two quality groups have
great unbalance which has bad effect on network training.
It is shown that the performance for good signal quality has
excellent sensitivity from 96% to 98% no matter how much
the percent of data for training varies from 10% to 90%.
However, the performance for bad signal quality is poor. The
specificity is around 50%; even the training data varies from
10% to 90%. Fortunately, this performance has little influence
on the final classification, shown in the next subsection.

3.3. Classification of Normal/Abnormal by SVM. The classifi-
cation of normal/abnormal is carried out by the SVM model
as given in (9). The 515-feature vector is used as input to the
SVMnetwork and the label is used as output.The SVMmodel
is firstly trained by a part of data and then tested by the other.
To test the generation ability of the model, it is widely tested
in following two cases.

Case 1. All data (3153 recordings) are used to train the model
and all data (3153 recordings) are to test the model. So, the
training data and the testing data are fully overlapped.

Case 2. 10% of the normal recordings and 10% of the abnor-
mal recordings are randomly selected to train the model, and
the other 90% are to test the model. The training data and
the testing data are exclusively nonoverlapped. This program
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Table 11: Rank order of the nine domains based on contribution.

Rank order Feature domain (Total
num. of features)

Num. of top 10
features

Num. of top 100
features

Num. of top 200
features

Num. of top 300
features

1 Frequency spectrum
of state (308) 4 39 115 183

2 Energy (47) 3 12 16 24
3 Entropy (16) 3 8 10 11
4 Cepstrum (65) 0 14 28 40
5 Time interval (20) 0 14 17 17

6 Frequency spectrum
of records (27) 0 5 5 10

7 High-order statistics
(16) 0 4 4 7

8 Cyclostationarity (4) 0 2 3 4
9 State amplitude (12) 0 2 2 4
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Figure 4: Correlation coefficient (CC) between features and the target label. (a) Time interval, (b) state amplitude, (c) energy, (d) high-order
statistics, (e) cepstrum, (f) frequency spectrum of state, (g) cyclostationarity, (h) entropy, and (i) frequency spectrum of records.
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Table 12: Performance of signal quality classification.

Percent data to
train

Percent data to
test

Estimation results for
Reference, clean

Estimation results for
Reference, noisy Sensitivity Specificity

Clean Noisy Clean Noisy
10% 90% 2421 166 104 146 0.96 0.47
20% 80% 2143 154 75 149 0.97 0.49
30% 70% 1869 143 59 136 0.97 0.49
40% 60% 1601 125 44 122 0.97 0.49
50% 50% 1332 104 36 104 0.97 0.50
60% 40% 1064 84 28 84 0.97 0.50
70% 30% 799 63 19 64 0.97 0.50
80% 20% 530 44 12 45 0.98 0.50
90% 10% 265 21 6 22 0.98 0.50

Table 13: Performance of the classification.

Case Percent of data
to train

Percent of data
to test Repeat times

Training and
test data
division

Sensitivity Specificity Overall score

Case 1 100% 100% 1 No 0.99 0.91 0.95

Case 2

10% 90% 200 Yes 0.68±0.06 0.87±0.03 0.77±0.02
20% 80% 200 Yes 0.76±0.05 0.86±0.02 0.81±0.02
30% 70% 200 Yes 0.80±0.04 0.87±0.02 0.83±0.02
40% 60% 200 Yes 0.82±0.04 0.87±0.01 0.85±0.02
50% 50% 200 Yes 0.84±0.03 0.87±0.01 0.85±0.01
60% 40% 200 Yes 0.85±0.04 0.87±0.01 0.86±0.01
70% 30% 200 Yes 0.86±0.04 0.87±0.01 0.87±0.02
80% 20% 200 Yes 0.87±0.04 0.87±0.02 0.87±0.02
90% 10% 200 Yes 0.88±0.04 0.87±0.02 0.88±0.02

Note: the number is presented as mean±SD.

independently repeats 200 times to evaluate the stability.
Sensitivity and specificity are calculated in “mean±SD” to
indicate the classification performance. Then, the percent
of training data increases by 10%, the percent of test data
decreases by 10%, and the evaluation process is repeated until
the percent of training data reaches 90%.

The performance of the proposed classification is listed
in Table 13. The overall score of Case 1 is up to 0.95. It proves
that the proposed features are effective for this classification.
In Case 2, it can be found that, with the increasing percent
of data for training, both sensitivity and specificity increase.
The standard deviation is not greater than 0.02. So, the score
variation is very small; even the classifier independently runs
200 times. This simulation proves that the proposed features
and the model have excellent generation ability and stability
and are effective in discriminating the PCG recordings.

4. Discussions

4.1. Effect of the Number of Top Features. This paper pro-
poses 515 features from multidomains. However, correlation
analysis shows that each feature has different degree of

correlationwith the target label.The performancewill change
with the number of selected features. To evaluate the effect
of selected features, the authors conduct simulations under
condition of varying the top number of features. The mean
overall score changing with respect to the number of top
features is illustrated in Figure 5, where Figure 5(a) shows
the performance with top 1 to top 5 features, Figure 5(b) is
with top 10 to top 50 features, and Figure 5(c) is with top 100
to top 515 features. It can be seen that there are two factors
to influence SVM classifier’s generalization ability. One is the
percent of data for training; the other is the number of top
features. An overall look shows that both the two factors have
positive effect on the classification performance. Roughly
speaking, if any one of them increases, the performance
will get improvement. However, it is not always true. A
closer look at Figure 5(a) indicates the performance has
little change as the percent increases. But the performance
gets much improvement as the percent increases, shown in
Figures 5(b) and 5(c), where the number of top features is
much greater than that in Figure 5(a). A careful look at
Figure 5(c) discloses that the case that all the features (515)
are involved does not result in the best performance. It can
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Figure 5: Classification performance with respect to the number of top features and percent of data for training. (a) Overall scores obtained
by top 1, top 2, top 3, top 4, and top 5 features. (b) Overall scores obtained by top 10, top 20, top 30, top 40, and top 50 features. (c) Overall
scores obtained by top 100, top 200, top 300, top 400, and top 515 features.

be found that there is an “edge effect” on the selection of top
feature number. That is, much improvement can be obtained
via increasing top feature number as the number is small.
However, the improvement becomes little when the number
is up to some degree. The best performance is obtained with
top 400 features in this paper.The performance will get worse
if the number continues to increase.

The proposed classification has very good performance
even if the number of features is small. For example, it can
be noted in Figure 5(a) that the overall score is up to 0.71 as
only the top 1 feature is used and the score increases to 0.81
when the top 10 features are used. This is one of attractive
advantages of the proposed classification.

Another advantage is that the proposed SVM classifier
has very stable output. Even if the SVM classifier is trained
independently by randomly selected features, the overall
score has very low variations (standard variance is approxi-
mately lower than 0.02). That is to say, the proposed features
and SVM classifier are adaptable to the classification.

4.2. Classification Performance Based on Features in Speci-
fied Domain. Table 13 and Figure 5 show the classification
performance based on mixed features from multidomains.
It is interesting to test the performance based on features
of a separated domain. This test would be evidence to
show the power of combined features for classification. So,
the SVM classifier and 10-fold validation are used for this
purpose. The results are listed in Table 14. It is seen that,

the highest score, 0.85, is produced if only the features in
“frequency spectrum of state” are used. Other high scores
are obtained based on features in domain of “entropy”,
“energy”, and “cepstrum”. It can be found that these results
are almost coincident with those of correlation analysis
given in Section 3.1 where “frequency spectrum of state”,
“energy”, “entropy”, and “cepstrum” are the top domains to
contribute effective features. This simulation indicates that
it is reasonable to improve classification performance by
combining multidomain features.

4.3. Selection of Kernel Function and Influence of the Gaussian
Kernel Function. Typically, the kernel functions for a SVM
have several selections, such as linear kernel, polynomial
kernel, sigmoid kernel, and Gaussian radial basis function.
Given an arbitrary dataset, one does not know which kernel
may work best. Generally, one can start with the simplest
hypothesis space first and then work a way up towards
a more complex hypothesis space. The authors followed
this lesson summarized by the previous researchers. A bad
performance was produced by the SVM classifier using a
linear kernel since 515 features in this study were complex
and they were not linearly separable, as well as using a
polynomial kernel. The authors actually tried out all possible
kernels and found that the RBF kernel produced the best
performance.The authors believed that the best performance
should be attributed to the RBF kernel’s advantages. The first
is translation invariance. Let the RBF kernel be 𝐾(x𝑖, x𝑗) =
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Table 14: Classification performance based on features in specified domain.

Rank Domain (# features) Mean of overall score Standard deviation
1 Frequency spectrum of state (308) 0.85 0.021
2 Entropy (16) 0.82 0.028
3 Energy (47) 0.78 0.020
4 Cepstrum (65) 0.75 0.027
5 High-order statistics (16) 0.73 0.029
6 Frequency spectrum of records (27) 0.71 0.025
7 Time interval (20) 0.70 0.025
8 Cyclostationarity (4) 0.65 0.042
9 State amplitude (12) 0.61 0.025
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Figure 6: The mean overall score with respect to rate of data for
training and value of sigma. The diamond shows the peak position.

exp(−‖x𝑖 − x𝑗‖/𝛾); then𝐾(x𝑖, x𝑗) = 𝐾(x𝑖 + ^, x𝑗 + ^)where ^ is
any arbitrary vector. It is known that the kernel is effectively
a similarity measure. The invariance is useful to measure the
similarity between the proposed features. The second is that
the similarity is measured by Euclidean distance. RBF kernel
is a function of the Euclidean distance between the features.
In this study, the Euclidean distance is a preferred similarity
metric.The authors selected the RBF kernel function because
the advantages match the classification purpose and features.

One difficulty with the Gaussian RBF kernel function is
the parameter sigma governing the kernel width. A general
conclusion about sigma has been summarized by previous
researchers. A large value of sigma may lead to an over
smoothing hyperplane and a washing out of structure that
might otherwise be extracted from the feature space. A
reducing value of sigma may lead to a noisy hyperplane
elsewhere in the feature space where the feature density is
smaller. There is a trade-off between sensitivity to noise at
small value and over smoothing at large value. To select
appropriate value for sigma, the authors did grid search in
a specified range, as seen in Figure 6. This figure shows
the mean overall score, based on 50 independent runs, with
respect to rate of data for training and value of sigma where
the value of sigma increases from 4 to 35 by step of 1 and the
rate of data for training increases from 0.1 to 0.9 by step of 0.1.
It is found that the peak of the overall score occurs at sigma
14 as indicated by the diamond.

5. Conclusions

In this paper, 515 features are extracted from multiple
domains, i.e., time interval, state amplitude, energy, high-
order statistics, cepstrum, frequency spectrum, cyclostation-
arity, and entropy. Correlation analysis between the features
and the target label shows that the features from frequency
spectrum contribute the most to the classification. The
features and the SVM classifier jointly show the powerful
classification performance.The results show the overall score
reaches 0.88±0.02 based on 200 independent simulations,
which is competitive to the previous best classification meth-
ods.Moreover, the SVM classifier has very good performance
with even small number of features for training and has stable
output regardless of randomly selected features for training.
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