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Effects of climate change and land 
cover on the distributions 
of a critical tree family 
in the Philippines
Sean E. H. Pang*, Jose Don T. De Alban & Edward L. Webb*

Southeast Asian forests are dominated by the tree family Dipterocarpaceae, whose abundance and 
diversity are key to maintaining the structure and function of tropical forests. Like most biodiversity, 
dipterocarps are threatened by deforestation and climate change, so it is crucial to understand the 
potential impacts of these threats on current and future dipterocarp distributions. We developed 
species distribution models (SDMs) for 19 species of dipterocarps in the Philippines, which were 
projected onto current and two 2070 representative concentration pathway (RCP) climate scenarios, 
RCP 4.5 and 8.5. Current land cover was incorporated as a post-hoc correction to restrict projections 
onto intact habitats. Land cover correction alone reduced current species distributions by a median 
67%, and within protected areas by 37%. After land cover correction, climate change reduced 
distributions by a median 16% (RCP 4.5) and 27% (RCP 8.5) at the national level, with similar losses 
in protected areas. There was a detectable upward elevation shift of species distributions, consisting 
of suitable habitat losses below 300 m and gains above 600 m. Species-rich stable areas of continued 
habitat suitability (i.e., climate macrorefugia) fell largely outside current delineations of protected 
areas, indicating a need to improve protected area planning. This study highlights how SDMs can 
provide projections that can inform protected area planning in the tropics.

Biodiversity loss worldwide is proceeding at unprecedented rates1. Among the major drivers of biodiversity loss, 
anthropogenic land use (i.e., habitat loss) and climate change are recognised as the most urgent threats2–4. Land 
cover change immediately reduces the extent of suitable habitat for resident species2,5 and has second-order 
implications for species persistence in fragmented landscapes such as reduced habitat connectivity6,7. Similarly, 
climate change has long-term implications for species, with predicted alterations to temperature, precipita-
tion and seasonality leading to concomitant shifts in species distribution3,8. Indeed, both field-based historical 
studies9,10 and climate change informed projections of plant species distributions indicate shifts and changes in 
distribution3,8,11,12. Distribution assessments through the use of species distribution models (SDM) could estimate 
the risk these drivers pose to species, better-asserting species vulnerabilities13–15.

Southeast Asia is a hotspot of both biodiversity and deforestation16,17, and is expected to be heavily impacted 
by climate change8,18. The Philippine archipelago is particularly emblematic of the threats to Southeast Asia (SEA), 
being a biodiversity hotspot with a large number of endemics but which is also biologically undersurveyed19, 
resulting in a lack of contemporary occurrence records20,21. The Philippines has also experienced intensive logging 
and agricultural expansion, leaving only 3% of its primary forests intact22,23, and is exceptionally vulnerable to 
climate change18. In this regard, as the dominant family of trees in SEA forests, species from the family Diptero-
carpaceae are of exceptional interest24–26. These non-pioneering, often fast-growing and highly productive trees 
are amongst the tallest in the tropics, and comprise the majority of above-ground carbon stores and emergent 
individuals24,26–28. With high functional variation and effective exploitation of different environmental niches, 
their abundance and diversity are key to maintaining the structure and function of tropical forests24,27–29. Con-
sidering the significance of dipterocarps to forests in the Philippines24–26, shifts in their distribution are likely to 
affect the integrity of ecosystems and its constituent species29–33. It is of great importance, therefore, to understand 
the potential effects of anthropogenic land use and climate change on dipterocarp distributions in the Philippines 
to better conserve remaining forests27,34–36.
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A potential mitigation measure against these threats is protected areas37,38. Protected areas provide safe havens 
for species, potentially preventing habitat loss from anthropogenic land use or as buffers against the changing 
climate37–39. Thus, the coverage afforded by protected areas and the distribution changes within them are impor-
tant for distribution assessments and conservation efforts.

Areas of continued habitat suitability under climate change are similarly important, whose availability is espe-
cially crucial in safeguarding the persistence of species with limited dispersal abilities such as dipterocarps34,39. 
Part of meeting the challenges of climate change would be to ensure that these areas are protected or prioritised 
for protection34,40.

It is widely recognised that land cover should be included as a spatially-explicit variable in SDMs41,42, and is 
crucial for distribution assessments36,43. Incorporating land cover as a variable into a SDM—the most common 
practice—generates new, restrictive, requirements for the use of species occurrence data44. Specifically, the land 
cover data being integrated into SDMs is often contemporary, implying that occurrence data should be cor-
respondingly recent to allow for accurate occurrence-land cover associations. Temporal mismatches between 
historical species occurrences and contemporary land cover may pose constraints for SDMs by inaccurately 
assigning species-habitat associations, in cases where the land cover has changed after the date of occurrence 
data collection (e.g., a collection made in a forest before it was converted to agricultural land). This is an impor-
tant consideration for tropical developing countries such as in Southeast Asia, which have experienced rapid 
rates of deforestation16,17, but which also tend to have high biodiversity and be poorly biologically surveyed5,20. 
Nevertheless, occurrence points located on changing landscapes remain important representations of spe-
cies’ environmental niches and should be included where possible. Simply excluding occurrences mismatched 
against contemporary land cover would likely introduce sampling biases and niche truncations, biasing SDM 
estimates45–47. In this study, we investigated the effects of anthropogenic land use and climate change on the cur-
rent and future distributions of dipterocarps in the Philippines. Our study applied the well-established maximum 
entropy modelling approach (MaxEnt; Phillips et al.15) to model species distributions for the current and two 
2070 climate scenarios. Our specific objectives were to assess the effects of land cover and climate change on the 
distribution of dipterocarps within and outside of protected areas, and subsequently to infer the adequacy of 
protection currently afforded to areas of continued habitat suitability.

Materials and methods
Study area.  The Philippines is the world’s second-largest archipelago, consisting of more than 7600 islands 
covering about 300,000 km2. The two largest islands of Luzon and Mindanao constitute two-thirds of the total 
land area. The topography of the country varies greatly and ranges from sea level to 2954 m above sea level 
(asl) (Mt. Apo, Mindanao Island). The tropical climate is influenced by the southwest and northeast monsoons, 
characterised by a wet season from June to November and a dry season from December to May. The mean 
annual rainfall varies from 965 to 4064 mm across the country48. The mean monthly temperature ranges from 
26 to 28 °C for warmer months (March to October) and from 25 to 26 °C for the cooler months (November to 
February). The coldest month is January (mean = 25.5 °C) while the warmest month is May (mean = 28.3 °C)48.

Data acquisition and preparation.  Occurrence data for Dipterocarpaceae species were gathered from 
the Global Biodiversity Information Facility (GBIF)49, and a cleaned, filtered, and verified georeferenced data-
base of Philippine tree species published by Ramos et al.21 (Table 1). Observations from GBIF were filtered to 
only include observations with spatial accuracy comparable to the resolution of the variables used, and impor-
tantly, were not limited to the Philippines in order to better model the species’ fundamental niche, reducing the 
risk of niche truncations46,50. Almost all selected species are threatened globally and locally in the Philippines51,52. 
Only known native dipterocarps of the Philippines with at least one occurrence point within the Philippines, and 
at least 10 in total, were retained. Single island endemics were excluded50. Occurrence points for each species 
were then thinned at 10 km to address spatial sampling bias53–55. Most observations were fairly recent (> 1960), 
although several stretched as far back as 1902. While this could lead to temporal mismatches with the contem-
porary land cover map, we avoided this by applying land cover post-hoc (see below). The data represented 26 of 
54 species, and 5 of 6 genera of dipterocarps in the Philippines, of which, 19 species and 4 genera were eventually 
assessed (Table 1)56. Nomenclature follows The International Plant Names Index57.

Bioclimatic variables were sourced from CHELSA at 30 arc seconds resolution (estimated to 1 km2 at the 
equator)58, which served as the base data for current projections (see Supplementary Table S1). A pairwise 
Pearson’s correlation analysis was performed on the bioclimatic variable to exclude highly correlated variables 
(|r|> 0.7)59,60; variables bio02, bio10, bio11, bio13 and bio14 were retained. To model the effects of climate change, 
future projections of those bioclimatic variables from five best Coupled Model Inter-Comparison Project (CMIP5) 
Global Circulation Models (GCMs)61 for Southeast Asia62: Canadian Earth System Model, second generation 
(CanESM2); Community Earth System Model, version 1 of Biogeochemistry (CESM1-BGC); Community 
Earth System Model, version 5.0 of the Community Atmosphere Model (CESM1-CAM5); Centre National de 
Recherches Météorologiques, Climate Model version 5 (CNRM-CM5); and Model for Interdisciplinary Research 
On Climate, version 5 (MIROC5), were also sourced from CHELSA and averaged for two representative concen-
tration pathways (RCPs): RCP 4.5 and 8.5 for 207058. The future climate scenarios assumed that global annual 
greenhouse gas (GHG) emissions would peak by 2040 and subsequently decline substantially for RCP 4.5, or 
that GHG emissions would continue to rise until 2070 for RCP 8.5, respectively a “best-case” and “worst-case” 
scenario (RCP 2.6 was not considered as it was considered to be too unrealistic, assuming peak emissions by 
2020 and subsequent decline)63. Climate change for the Philippines is projected to increase mean temperatures 
by 0.9–1.9 °C (RCP 4.5) and 1.2–2.3 °C (RCP 8.5) with greater extremes and fluctuations, and increased mean 
precipitation with greater frequency and intensity of extreme rainfall events64.
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An additional eight soil variables from SoilGrids at 250 m resolution were included: bulk density (fine earth), 
clay content mass fraction, coarse fragments volumetric, sand content mass fraction, cation exchange capacity, 
soil pH in H2O, soil pH in KCl, and available soil water capacity65. To reduce multicollinearity and potential 
overfitting59, a principal component analysis (PCA) was performed on the eight soil variables60. The first five 
principal components (PCs) were selected as they explained more than 90% of the total variance (93.74%) (see 
Supplementary Table S2) and aggregated to match the resolution of bioclimatic variables at 30 arc seconds. All 
processing and analyses of variables were conducted in software R 3.4.166 using the ‘raster’ package67.

Species distribution modelling.  MaxEnt is a widely used machine learning software that estimates a 
species probability distribution through species-climate correspondence using maximum entropy, while 
bound by the variables and occurrence data provided15,68. MaxEnt was selected among other algorithms as it 
has been shown to be consistently among the top-performing SDMs for presence-only datasets69,70, and model 
transferability71,72. While an ensemble of modelling algorithms approach has been suggested to achieve better 
predictions73, the converse has been suggested as well72,74. Nevertheless, we chose to use a single well-tuned 
model that has been calibrated for model transferability while adopting recommended approaches to prevent 
over-parameterisation and overfitting71,72,74,75.

All 26 species were individually modelled using MaxEnt with species-specific background extent, feature 
class, and regularisation multiplier (for modelling workflow, see Supplementary Fig. S1). For model tuning of 
both the background extent and MaxEnt parameters (feature class and regularisation multiplier), the perfor-
mance scores used to select models were obtained by cross-validating models built from partitioned presence 
and pseudo-absence. To reduce spatial autocorrelation and improve spatial independence between partitions76, 
a ‘block’ partitioning of equal presence points approach (four geographically separated bins based on equal pres-
ence points) was used for species with occurrence points greater than 25 (see77). The more spatially independent 
training data for the models would reveal potential overfitting76,78, which is important when modelling climate 
change projections of species’ suitable habitats. A jackknife approach (k-fold cross-validation for which k = num-
ber of observations) was adopted for species with occurrence points less than or equal to 25, an approach that 
can identify better performing and less overfitted models built with small sample sizes79,80.

The optimal background extent was selected by modelling species with different sets of pseudo-absences that 
were limited by a distance buffer from occurrence points (i.e., varying the background extent used to generate 
pseudo-absences), using a Michaelis–Menten model to fit distance buffer and model performance, and selecting 
the lowest distance buffer for which the model’s performance exceeds the theoretical asymptotic performance 
value81,82. The distance buffer ranged sequentially from 20 to 2000 km at increments of 10 km, which totalled 

Table 1.   The final 19 Dipterocarpaceae species in the Philippines included in this study showing the number 
of occurrences remaining after thinning (N), their threat status based on DAO 2017–11 and IUCN 2019 
(DAO51; IUCN52), their habitats (Fernando et al.26; Pelser et al.56), and if they are a dominant species (Fernando 
et al.26). Nomenclature follows The International Plant Names Index (IPNI 2020). a DAO Department 
Administrative Order, IUCN International Union for the Conservation of Nature, CR Critically Endangered, 
EN Endangered, VU Vulnerable, LC Least Concerned, ND No Data.

Species N DAOa IUCNa Habitats/Forest formations Dominant

Dipterocarpus gracilis Blume 111 VU CR Seasonal semi-evergreen rainforest, well-drained soil. Up to 800 m

Dipterocarpus grandiflorus (Blanco) Blanco 109 VU CR Semi-evergreen rainforest, exposed ridges. Up to 500 m ✓

Dipterocarpus hasseltii Blume 56 VU CR Lowland evergreen rainforest, forest over limestone. Up to 1,000 m

Dipterocarpus kunstleri King 44 VU CR Lowland forests, on undulating or flat land, especially near streams

Dipterocarpus validus Blume 27 ND CR Lowland evergreen rainforest, lower slopes, plains near streams, low hills. Up to 300 m

Hopea acuminata Merr 32 EN CR Lowland evergreen, semi-evergreen rainforest, forest over limestone. 100–800 m

Hopea malibato Foxw 31 CR CR Non-seasonal lowland evergreen rainforest, well-drained soil. Up to 700 m

Hopea plagata (Blanco) S. Vidal 21 VU CR Lowland evergreen and seasonal semi-evergreen rainforest, forest over limestone

Shorea almon Foxw 45 VU CR Lowland evergreen and lower montane rainforest. Up to 1,100 m ✓

Shorea assamica Dyer 21 ND LC Lowland evergreen and semi-evergreen forests in seasonal and relatively non-seasonal 
regions

Shorea astylosa Foxw 12 CR CR Primary lowland evergreen dipterocarp forest. Lower elevations

Shorea contorta S. Vidal 63 VU CR Lowland evergreen, semi-evergreen, lower montane rainforest, forest over limestone Up to 
1,000 m ✓

Shorea guiso (Blanco) Blume 108 ND CR Lowland evergreen and semi-evergreen rainforest, forest over limestone

Shorea hopeifolia (F. Heim) 36 ND CR Primary forests on fertile and clay rich soil, with undulating terrain and hills below 600 m

Shorea ovata Dyer ex Brandis 40 EN EN Primary forests at medium elevations up to 900 m

Shorea palosapis (Blanco) Merr 43 ND CR Lowland evergreen rainforest on fertile, well-drained soil. Lower montane rainforest up to 
1,000 m but more common in lower elevations ✓

Shorea polysperma (Blanco) Merr 58 VU CR Lowland evergreen and lower montane rainforest, forest over limestone. Up to 1,100 m ✓

Shorea virescens Parijs 24 ND ND Primary lowland evergreen forests on fertile well-drained soil. Flat and undulating terrains, 
and low hills up to 500 m

Vatica pachyphylla Merr 12 CR CR Seasonal, primary dipterocarp forests. Lower elevations
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to 199 sets of pseudo-absences and 199 models for each species (default MaxEnt settings were used). A fixed 
10 km exclusion buffer was also used to prevent points containing both presence and pseudo-absence83. Due 
to the computational intensity of this tuning process, the ‘block’ approach was used for all species regardless of 
occurrence number and only 1000 pseudo-absences were selected84. A model performance criterion of Area 
Under the Curve (AUC) was used to assess model performance.

For the selection of MaxEnt parameters, an extensive round of species-specific tuning was performed for the 
model’s feature class and regularisation multiplier. A total of five combinations of the available feature classes (L, 
LQ, H, LQH, LQPH; Linear, Quadratic, Hinge and Product)77,85,86, and 19 regularisation multipliers determined 
using a geometric progression with a common ratio of 0.75 for eight sequences with a scale factor of 1 based on 
the default, and a sequential increase of 0.5 from the default 1 to 6.0, was considered. The wider than normal 
range of regularisation multipliers allowed the evaluations of candidate models with larger values while still 
accounting for relatively small changes that could also affect model performance80,87,88. The five combinations 
of feature classes and 19 regularisation multipliers generated 95 unique combinations of parameters that were 
used to build candidate MaxEnt models for each species; 10,000 randomly sampled pseudo-absences limited by 
the exclusion buffer and background extent determined in the previous tuning was used82–84,89.

Candidate models with the lowest Omission Rates (OR) based on the lowest presence threshold (also mini-
mum training presence) were selected79,90, assuring against the selection of models overfitted to the calibration 
data. In cases where more than one candidate model had the lowest OR, the model with the highest AUC was 
selected as the most optimal91. Selected models were then and used to project the species’ geographical suitability 
in the Philippines for the current and future climate scenarios. While Akaike Information Criterion corrected for 
small sample size (AICc) has been recommended for the selection of MaxEnt models to prevent overfitting77,88, it 
has been shown to lead to oversimplified models with low predictive performance46,92, which was also observed 
for this study. Thus, OR and AUC with an appropriate cross-validation approach to prevent overfitting and 
improve model transferability was selected as the criterion for model selection77–79,87. The tuning of parameters 
was conducted in R using the ‘ENMeval’ and ‘SDMtune’ packages77,93.

Selected models were evaluated with AUC, OR, and True Skill Statistics (TSS), based on the maximising the 
sum of sensitivity and specificity (maxSSS) threshold for TSS and OR94, i.e., true positive rate and true nega-
tive rate. Models of species with AUC < 0.7591, TSS < 0.4595,96, or OR > 0.2546,90, were excluded due to their poor 
predictive accuracy. Though largely arbitrary78,97, it allowed for an assessment of model performance and the 
exclusion of underperforming models. The final models for each species were then used to project their potential 
distributions across the Philippines under different climate scenarios. The continuous outputs of habitat suit-
ability were converted into binary maps using the maxSSS threshold94.

Post‑hoc land cover correction.  Considering potential temporal mismatches from using land cover as a 
predictor variable and the required integration of habitat loss from anthropogenic land use, the land cover was 
incorporated post-hoc through land cover correction (LCC). This was done by masking areas of unsuitable land 
cover types; in essence, using land cover to correct the distribution of suitable habitat. To create the masking 
layer, a static land cover map of the Philippines was sourced from PhilGIS.org and converted to a binary map, 
with each land cover type reclassified as either ‘suitable’ or ‘unsuitable’ for dipterocarps (see Supplementary 
Fig. S2). The same unsuitable land cover type was then used to mask out model projections of environmental 
suitability, for both current and future climate scenarios.

Of the 22 land cover types present in the land cover map, 17 were considered unsuitable for dipterocarps in 
this study (see Supplementary Table S3). A land cover type was considered unsuitable if it was an anthropogenic 
land use type (e.g., coconut plantation, quarry, built-up area), while suitable if it was a natural land cover type 
with intact habitat. This was a reasonable assumption given the focus on tree species, and that anthropogenic 
land use would entail clearing the land of its forests. Among natural land cover types, only mangrove was con-
sidered unsuitable. A conservative approach was adopted for mosaic land cover types, which were designated as 
unsuitable. Although mosaic landscapes are characterised by forest conversion, degradation, and replacement 
by non-forest tree cover (e.g., plantations), they may still be ecologically important and potentially suitable for a 
variety of species98,99. The scattered fragments could also potentially be an important accompaniment to larger 
forests nearby100, even though such fragmented habitats would inhibit the reproductive potential of resident 
individuals6,7. Nevertheless, our approach restricted suitable habitat to areas critical for conservation by combin-
ing intact habitats, distribution of critical species, and habitat stability under climate change scenarios. Thus, the 
final distributions from our models (with LCC applied) represented higher conservation priority landscapes, 
as opposed to a general species distribution that includes areas of potentially less definitive suitability14,34,40,101.

Analysis of outputs.  For each species, a total of six suitable habitat distribution scenarios were projected 
using three climate scenarios (current, RCP 4.5 and RCP 8.5) and two LCC scenarios each (with and without 
LCC). Changes in suitable habitat for each species were classified as loss, gain, and stable. Loss referred to areas 
that were originally suitable for the species but were unsuitable after climate change. Gain referred to areas that 
were initially unsuitable for the species but became suitable after climate change. Stable referred to areas that per-
sisted as suitable habitat after climate change, which have also been referred to as species-specific in-situ climatic 
macrorefugia39. Stable areas were stacked to generate and map areas that remained suitable for multiple species.

Changes in suitable habitat for each species were calculated for areas within demarcated protected areas of 
the Philippines, obtained from the World Database of Protected Areas102. This allowed assessing the extent of 
protection afforded to species—both individually and in aggregate—for current and future climate scenarios. 
This was particularly important for evaluating stable areas, which should be given a high conservation priority 
owing to their continued suitability for dipterocarps under climate change.
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To further examine the impact of climate change on the distribution of dipterocarps, elevation values for 
each species projection of suitable habitat—including loss, gain, and stable—was extracted from the GTOPO30 
Digital Elevation Model103. We calculated the frequency values for each species across elevation bins at 50 m 
intervals. Raw frequency values were then scaled against the maximum value obtained for the current climate 
scenario, where the scaled value of 1 would represent the maximum frequency of currently suitable habitats 
observed across elevation bins (i.e., peak elevation distribution). The scaled values were then aggregated and 
used to analyse the potential shifts in elevation distribution for dipterocarps. All analyses were conducted in R 
with the ‘raster’ package67.

Results
Of the 26 species modelled, only 19 were accepted with an average AUC of 0.91 (s.d. 0.05), TSS of 0.69 (s.d. 
0.13) and OR of 0.13 (s.d. 0.06) (see Supplementary Table S4). Although occurrence records were low (< 30) for 
several species, our methods had minimised the potential for model over-parameterisation and overfitting; spe-
cies with low occurrence records generally had simpler models with larger beta multipliers and a single feature 
class (see Supplementary Table S4), and had most of their predictors excluded by the lasso penalty in MaxEnt 
(see Supplementary Table S5)68,86.

Correcting for land cover resulted in a significant reduction of suitable habitat area across species (Fig. 1). All 
species experienced a minimum 50% reduction of suitable habitat from LCC, with a median of 66.6% (s.d. 6.4%) 
at the national level and a median of 36.6% (s.d. 10.2%) within protected areas (Table 2); some of the greatest 
reductions occurred in southern Luzon and the northern Visayas (Fig. 1). Because of the severe reduction of 
suitable habitat with the application of LCC, all estimates of shifting potential species distributions under climate 
change were done using land cover-corrected distributions.

At the national level, climate-induced losses were projected at a median of 16.3% RCP 4.5 (IQR 6.6%–39.1%) 
and 27.0% RCP 8.5 (IQR 8.4%–57.0%), with gains of 15.5% RCP 4.5 (IQR 8.3%–34.8%) and 20.8% RCP 8.5 (IQR 
11.5%–42.5%) (Fig. 2). Species-specific responses varied substantially, with losses ranging from 0% (D. validus) 
to 87.5% (S. astylosa), and gains of 0.4% (S. almon) to 193.9% (D. validus) for RCP 8.5 (Table 2). Losses and gains 
for RCP 4.5 were significantly less than RCP 8.5 (pairwise T-test, n = 19, PLoss < 0.001; PGain = 0.015), with a mean 
difference of 10.1% for loss and 10.4% for gain.

Changes in suitable habitat within protected areas showed similar trends: median losses of 13.3% RCP 4.5 (IQR 
3.1%–39.5%) and 20.0% RCP 8.5 (IQR 3.8%–58.6%), and gains of 22.8% RCP 4.5 (IQR 7.5%–53.2%), and 30.8% RCP 8.5 
(IQR 11.2%–76.6%) (Fig. 2). Losses and gains within protected areas for RCP 4.5 were also significantly less 
than RCP 8.5 (pairwise T-test, n = 19, PLoss < 0.001 and PGain = 0.010), with a mean difference of 8.6% for loss and 
17.5% for gain. While losses within protected areas were not significantly different from those at the national level 
(pairwise T-test, n = 19, PRCP 4.5 = 0.741; PRCP 8.5 = 0.162), gains within protected areas were significantly greater 
(pairwise T-test, n = 19, PRCP 4.5 = 0.033; PRCP 8.5 = 0.038).

Figure 1.   The effects of LCC on the current distribution of suitable habitat for 19 dipterocarps for southern 
Luzon and northern Visayas, Philippines, which was the region in the Philippines projected to have the largest 
distribution of species rich suitable habitats. The viridis colours indicate dipterocarp richness—lighter colours 
indicated higher richness and darker colours indicated lower richness—and protected areas were demarcated in 
red. The maps were created in R using the raster and ggplot2 package66,67,121.
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Under projections of climate change, species distributions of suitable habitat across the elevation gradient 
experienced shifts. The scaled elevation distributions averaged across species decreased at elevations below 
400 m asl and increased at 600–900 m asl from current to both future climate scenarios (Fig. 3a). These changes 
corresponded well to gross losses and gains, indicating a general upward trend in species elevation distribution, 
most evident under RCP 8.5 (Fig. 3b). The dip in stable areas at 300 m asl—which resulted in twin peaks—is 
attributable to high losses at 100–300 m asl for a subset of about eight dipterocarp species (see Supplementary 
Fig. S3 for species-specific shifts).

At the national level for the current climate scenario, there was a relatively even distribution of areas outside 
national parks that contained fewer than 12 dipterocarp species (6000–8000 km2) (Fig. 4a). In contrast, species-
rich areas (> 12 species) comprised a total of ca. 3000 km2 combined (Fig. 4a). Under both RCP scenarios, areas 
with low species richness (1–8) increased while areas with higher richness decreased, suggesting an erosion of 
species richness under climate change.

Protected areas, which comprised a small proportion of total area, mirrored the trends observed at the 
national level for current and both future climate scenarios (Fig. 4b). The proportion of area covered by pro-
tected areas increased with richness (Fig. 4b), in line with the mandate of protected areas to focus on species-
rich regions. Importantly, areas designated as stable under climate change were poorly covered by the existing 
protected area system (Fig. 5). This was particularly notable for areas with the highest species richness. Areas 
of high dipterocarp richness that were left unprotected included the lowlands of northern and southern Sierra 
Madre, and Cordillera mountain ranges for the Greater Luzon region (Fig. 5).

Discussion
Post‑hoc land cover correction of SDMs.  Incorporating land cover into species distribution models 
in dynamic geographic regions such as Southeast Asia presents a considerable challenge for model accuracy, 
because of temporal mismatches between (historical) occurrence records and (contemporary) land cover data. 
Indeed, previous research investigating changes in suitable habitat under climate change typically did not include 
land cover11,104 or included it as a variable in the model itself12,105,106. Here, we incorporated land cover post-hoc, 
which allowed us to leverage the maximum amount of occurrence-environment data without incorporating 
errors generated from those temporal mismatches 46,47. As such, our approach directly accounted for the spatial 
constraints imposed by anthropogenic land use when assessing the impacts of climate change36,41. Accounting 
for anthropogenic land use is particularly important for the Philippines as dipterocarps are typically lowland 
species25,26, many of which are threatened with habitat loss as a major driver for their decline51,52, and the tropical 

Table 2.   The total potential distribution to the nearest km2 for each species with LCC applied, at the National 
level and within protected areas (PA), for the current climate scenario. Reduced, indicates the percentage 
of the species distribution that was removed due to LCC. Future projections show as a percentage of the 
current distribution (with LCC), suitable area loss, refugia, or gain for both the National level and Within PA. 
Projections were done for RCP 4.5 and RCP 8.5 for 2070. Percentages in bold indicate a greater than 50% loss 
of suitable habitat.

Current Future (RCP 4.5) Future (RCP 8.5)

National level Within PA National level Within PA National level Within PA

with LCC Reduced (%) with LCC Reduced (%) Loss (%) Gain (%) Loss (%) Gain (%) Loss (%) Gain (%) Loss (%) Gain (%)

D. gracilis 65,048 67 21,452 40 16.3 6.4 6.6 5.8 31.3 10.3 20.0 9.4

D. grandiflorus 62,852 71 20,137 41 6.5 8.1 1.1 9.1 8.5 12.7 1.6 13.8

D. hasseltii 56,088 71 19,633 40 3.3 0.0 2.4 0.0 1.8 0.4 1.0 0.3

D. kunstleri 8097 74 559 68 10.0 13.2 4.4 62.9 13.2 30.6 9.4 157.3

D. validus 10,599 81 2424 48 0.0 110.1 0.0 116.3 0.0 193.9 0.0 212.4

H. acuminata 22,475 63 7904 34 35.2 43.9 36.2 43.6 56.0 62.7 58.0 64.1

H. malibato 28,181 63 10,459 32 14.1 33.0 11.2 27.5 19.2 47.5 11.7 43.1

H. plagata 63,728 63 21,216 37 2.0 1.0 1.2 0.6 3.0 1.5 2.1 0.8

S. almon 58,762 70 17,747 37 6.7 2.7 3.8 4.4 7.9 5.2 2.3 8.6

S. assamica 33,378 63 12,428 36 34.6 8.6 39.2 6.0 50.2 10.1 54.4 7.2

S. astylosa 3921 61 1018 28 68.1 32.8 63.2 32.9 87.5 35.5 86.3 46.6

S. contorta 42,472 67 17,674 36 5.2 9.2 2.4 9.0 8.3 14.5 5.3 13.0

S. guiso 56,517 67 18,130 37 19.1 14.8 13.3 20.3 24.9 17.5 19.8 23.5

S. hopeifolia 19,950 62 4734 31 55.9 17.7 50.8 30.0 71.8 19.2 69.4 30.8

S. ovata 8322 59 1954 26 39.9 50.7 19.8 92.5 56.9 53.0 37.3 90.5

S. palosapis 19,441 54 7802 25 38.3 22.7 39.8 22.8 57.1 37.5 59.1 39.2

S. polysperma 44,275 60 16,496 30 15.1 15.5 15.7 11.2 27.0 20.8 27.6 15.2

S. virescens 5185 56 244 54 45.4 42.7 88.6 78.0 69.9 64.4 86.2 128.7

V. pachyphylla 5663 68 949 36 50.8 36.7 49.5 88.8 63.2 30.8 61.6 89.1

Median 63.5 36.3 16.3 15.5 13.3 22.8 27.0 20.8 20.0 30.8
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lowlands have been the hardest hit by deforestation22,23. Indeed, the Philippines has only 3% of its primary forest 
remaining as a result of forest conversions to anthropogenic land use22,23.

Incorporating LCC, therefore, imposed significant and necessary spatial constraints on the extent of both 
current and future species distributions; this was a conservative approach that prevented the overestimation 
of species future distribution, which would have resulted in an underestimation of a species conservation 
priority36,42,107. For example, although D. validus and H. plagata were projected under either climate change 
scenario to experience almost no loss of suitable habitat, both had their potential distributions substantially 
reduced with LCC, which allowed for a more thorough assessment of future threats to species distributions. 
Constraining species distributions based on land cover suitability has important implications for conservation 
interventions, as improved spatial assessments will facilitate geographically targeted allocation of resources 
towards mitigating biodiversity loss13,14,37,108.

The post-hoc LCC approach has broad applicability when projecting the effects of climate change on species 
in regions that have experienced rapid recent land cover change, and for regions that are poorly surveyed—con-
ditions that describe much of the global tropics16–18,20. Importantly, the corrections applied in this study were 
based on a static contemporary land cover map. For the Philippines, this is unlikely to be a problem because the 
vast majority of quality forest has already been lost, while forest loss in the majority of provinces has been less 
than 6% from 2000–2014 (J. D. De Alban, unpublished data). However, in regions where deforestation rates are 
high or expected to increase going forward, such as Cambodia109 or Indonesia16, it may be more appropriate to 
incorporate projections of future land cover36,42.

Climate‑induced shifts and climate macrorefugia for dipterocarpaceae.  Our results revealed a 
high degree of variability in dipterocarp responses to climate change. While some species were projected to 
remain relatively unaffected by climate change, others were projected to experience a substantial loss of suitable 
habitat, especially along lower elevations. Suitable habitat loss for a species indicates, at a minimum, an increase 
of environmental pressure favouring mortality over recruitment in those locales, which may ultimately manifest 
in local extirpations or functional extinctions110,111. Consequently, this could trigger bottom-up effects on plant-
animal mutualistic networks, such as extinction cascades, which have been predicted to arise from the extinction 
of other plant species30–33. The differential response to climate change across closely associated dipterocarp spe-
cies further suggests the potential for future disaggregation of tree communities, which will affect the structure 
and function of the forests they form27,29,31. This is especially true for dipterocarps, considering their dominance 
and structural importance across forests in SEA24,28,29, which further reinforces the importance of dipterocarp 
persistence, and conservation efforts to ensure it27–29,35.

An important outcome of this study was the projections of suitable habitat that remained so under climate 
change—identified as stable in this study. These areas represent species-specific in-situ climatic macrorefugia 
that can potentially secure the persistence of species under climate change34,39,40. The availability of climatic mac-
rorefugia is especially vital for species with dispersal limitations and long maturation time, which would hinder 
a species’ ability to rapidly migrate following projected shifts in suitable habitat39. This applies to dipterocarps, 
as they generally exhibit both traits24,25,112,113. The loss of these areas would mean the loss of source populations, 
potentially limiting the recovery and survival of species following climate change27,34,35,39. With the projected low 

Figure 2.   Percentage of suitable habitat loss (red) and gain (green) from climate change, relative to current 
predictions with LCC, for 19 dipterocarp species in the Philippines under two future climate scenarios (RCP 
4.5 and RCP 8.5 for 2070), at the national level and within protected areas. The figure was created in R using the 
ggplot2 package66,121.
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availability of such refugia for several of the species studied, climatic macrorefugia represent areas of exceptional 
conservation importance.

Protected areas to safeguard climate macrorefugia.  The goal of protected areas is to safeguard spe-
cies both now and for future generations, the latter of which is gaining relevance given the large projected shifts 
in climatic conditions for protected areas globally64,114. Our findings highlight a critical gap in the Philippines 
protected area system in that it covers a relatively small proportion of suitable habitat for dipterocarps cur-
rently, and a similarly low proportion of species-rich climate macrorefugia under both RCP scenarios. Given the 
importance of dipterocarps in maintaining the structure and function of forest in SEA, a persuasive case can be 
made to integrate dipterocarp distributions into protected area network designs13,14,34,101.

Most existing protected areas have been designed based on the current distribution of species and 
richness19,106,115, and progressive planning will need to incorporate species range shifts under climate change13,116. 
Our study affirms the importance of integrating SDMs and species refugia into long-term planning of protected 
areas13,14,34,39,40,101,116–118. Here we highlight three applications of this research for incorporating SDMs into pro-
tected area planning. First, individual or stacked maps of suitable habitat loss would reveal protected areas most 
heavily affected by climate change, and consequently, most at risk of underperformance101,108,114. Second, mapping 
areas of continued habitat suitability for multiple species will allow the identification of species-rich climatic 
macrorefugia inside and outside protected areas, therefore prioritizing conservation effort for dipterocarps34,39,40. 
For example, the lowlands of northern and southern Sierra Madre, and Cordillera mountain ranges were identi-
fied as unprotected species-rich areas for Greater Luzon. When applied across the entire country, a larger set of 
priority landscapes would emerge to support site-specific, long-term conservation planning for the protected 
area system, ensuring the increased coverage of critically important species-rich climatic macrorefugia. Third, 
distribution maps of suitable habitat gain highlight potentially biodiverse regions in the future, which could be 
integrated into protected areas over the long-term13,14,114, notwithstanding the underlying assumption of full 
dispersal, which is largely unrealistic for dipterocarps owing to dispersal limitations112,113,119.

Figure 3.   (a) The averaged scaled distribution of dipterocarps—with LCC—along an elevation gradient for the 
current and two future climate scenarios (RCP 4.5 and RCP 8.5 for 2070); (b) and changes in those distributions 
from current to future as loss, stable and gain, for each of the two future climate scenarios in the Philippines. 
Scaled distributions indicate the distribution of suitable habitat—or for any of the three potential changes in 
suitable habitat—across elevation bins of 50 m intervals scaled against the maximum obtained for any bin under 
the current climate scenario, where 1 represented the peak distribution among bins. The figure was created in R 
using the ggplot2 package66,121.
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Figure 4.   (a) The total area by species richness for the current and two future climate scenarios (RCP 4.5 and 
RCP 8.5 for 2070)—only stable areas were calculated for future climate scenarios—at the national level and 
within protected areas only for dipterocarp species in the Philippines. (b) The proportion of the area by species 
richness at the national level that exists within protected areas. Proportion data was excluded if the area was less 
than 50 km2 (seen as absent points), as it may lead to arbitrarily high proportion protected values. The figure 
was created in R using the ggplot2 package66,121.

Figure 5.   The stacked distribution of stable areas for 19 dipterocarp species in Greater Luzon, Philippines 
under climate scenarios, RCP 4.5 and RCP 8.5 for 2070; viridis colours indicate dipterocarp richness—lighter 
colours indicated higher richness and darker colours indicated lower richness—and protected areas were 
demarcated in red. Areas of especially high species richness but were not currently protected include lowland 
regions of the northern Sierra Madre, southern Sierra Madre and Cordillera mountain ranges. The maps were 
created in R using the raster and ggplot2 package66,67,121.
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Finally, these SDM outputs could contribute to long-term spatially-explicit conservation planning through 
platforms such as Marxan, which demarcates protected areas based on set conservation targets at a minimal total 
cost120. Alongside suitable habitat projections of other key taxa and the inclusion of various cost metrics, our 
results could help indicate cost-effective areas for protected area expansion in the Philippines40,120. Moreover, with 
increasing commitments to restoring forest cover in SEA, suitable habitat projections before LCC would provide 
crucial information on locations for which dipterocarp reforestation could be done successfully13,14,17,27,35. Thus, 
the stacked maps of loss, stable, and gain can directly aid in informing more effective planning of conservation 
priorities and reforestation projections, better preparing protected areas for the challenges of protecting species 
under climate change40,117,118.

Data availability
Occurrence data of threatened tree species are accessible from Ramos et al.21 and GBIF49. Bioclimatic and soil 
variables are publicly accessible from CHELSA-climate.org and SoilGrids.org, respectively. The raw data of the 
results produced from this study can be found in the Supplementary material.
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