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a b s t r a c t

Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is
critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress
and development of disease, but likewise, insufficient ROS production will be detrimental to health.
Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes
encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due
to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic
granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have
been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for
DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors
for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/
Duox-deficiency disorders is presented, combined with insights gained from structure–function studies
that will aid in predicting functional defects of clinical variants.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Oxidative stress, the imbalance between the generation of re-
active oxygen species (ROS) and the ability of antioxidant defense
systems to scavenge ROS, has been recognized as a risk and con-
tributing factor for various forms of pathophysiology, including in-
flammation and tissue injury, neurodegeneration, and carcinogen-
esis. Many enzyme systems can be the source of superoxide (O2

�) or
hydrogen peroxide (H2O2), the initial ROS produced, and even
more proteins are involved in adduct reactions involving oxygen
radicals, generating for instance hypochlorous acid or peroxynitrite.
A similar variety exists in antioxidant systems. The overall redox
balance is critical for propagation and termination of essential
signaling pathways in cells and tissues, while specialized functions
in certain cells such as phagocytes require a regulated burst of
ROS. Undesirable consequences of increased ROS, due to deregu-
lated ROS overproduction or failure of antioxidant systems, can be
detected by changes in cellular responses such as increased apop-
tosis or cell proliferation, and even in cases of overall cellular
adaptation by the appearance of oxidative modifications on DNA,
proteins or lipids.

The dichotomy of ROS being vital signaling molecules in a
plethora of physiological processes while also propagating disease
often impedes a clear distinction between beneficial and harmful
ROS, but a comprehensive study of genetic disorders can reveal the
overall consequences for health when the redox balance is per-
manently altered. For example, sequence alterations in mi-
tochondrial DNA, superoxide dismutases, catalase and glutathione
synthetase usually augment ROS levels. In contrast, NADPH oxi-
dases (Nox/Duox), the only enzyme family whose sole known
purpose is the regulated generation of ROS, are downregulated or
inactivated in genetic variants. NADPH oxidases have been asso-
ciated with pathologically elevated ROS mainly by linking gene/
protein expression profiles with ROS levels and oxidative mod-
ifications, but inferring a causal relationship of increased ROS with
disease has been more challenging. The only potential gain-of-
function variants of a gene directly required for terminal NADPH
oxidase activation are certain CYBA (p22phox) polymorphisms that
may increase Nox1-4 activity and confer an elevated risk for car-
diovascular disease [1–4]. On the other hand, loss-of-function
variants in genes required for formation and catalytic activity of
active Nox/Duox complexes are increasingly recognized as risk
factors, or as origin of inherited or spontaneous genetic diseases
that are characterized by reduced or abolished ROS production.
The NADPH oxidase family comprises seven members (Nox1-5,
Duox1-2) in humans, all of which assemble as multimeric com-
plexes regulated by protein–protein interactions and by the small
GTPase Rac (Nox1-3), requiring phosphorylation, calcium flux or
lipid binding to generate O2

− or H2O2 by catalyzing the transfer of
electrons from NADPH to molecular oxygen. Their largely tissue-
specific expression profiles correlate well with specific genetic
diseases linked to Nox/Duox deficiency. Here, disorders associated
with gene variants in NADPH oxidases including chronic granu-
lomatous disease, inflammatory bowel disease and congenital
hypothyroidism will be discussed in the context of functional
consequences initiated by structural changes due to missense
variants.
2. Chronic granulomatous disease – the new faces of the
disease

2.1. Background

Chronic granulomatous disease (CGD) is a rare inherited im-
munodeficiency syndrome (frequency 1/200,000 to 1/250,000)
characterized by mutations in one of the genes encoding the
components of the Nox2 NADPH oxidase complex in phagocytic
cells. In most patients, diagnosis occurs early in childhood due to
recurrent and life-threatening infections with bacterial and fungal
pathogens (mainly catalase-positive bacteria, e.g. Staphylococcus
aureus, Burkholderia and Nocardia species, and fungi e.g. Asper-
gillus and Candida species). These infections cannot be contained
due to deficient generation of superoxide by a functionally im-
paired or structurally labile (and often absent) NADPH oxidase in
innate immune cells, as pathogens cannot be killed even when
phagocytosed efficiently [5,6].

Understanding the composition of the multimeric phagocyte
Nox2 oxidase was greatly aided by studies on neutrophils collected
from CGD patients [7–9]. CGD is a genetically heterogeneous dis-
ease with all ethnic groups equally affected. The molecular basis of
CGD is characterized by two types of transmission and four main
genetic forms. The major genetic form of CGD is X-linked CGD
caused by mutations in the CYBB gene (OMIM number 306400)
encoding gp91phox (renamed Nox2) (Fig. 1). X-CGD represents
about 70% of the total cases reported to date [10]. The other forms
of CGD are autosomal recessive (AR), characterized by mutations
in CYBA (OMIM number 233690), NCF1 (OMIM number 233700)
and NCF2 (OMIM number 233710) encoding p22phox, p47phox and
p67phox respectively [11]. Whereas AR-CGD220 and AR-CGD670 are
extremely rare (less than 5% of cases), AR-CGD470 occurs with high
frequency (about 25% of CGD cases) due to the presence of two
NCF1 pseudogenes carrying the main mutation. Up to now only
one case of AR-CGD in NCF4, encoding p40phox, was described [12].
Nox2 oxidase activity additionally requires activation of the small
GTP-binding protein Rac, which was discovered concomitantly by
Knaus et al. [13] and Abo et al. [14] in neutrophils. The importance
of Rac2 was underlined by a case of severe immunodeficiency
diverging from classical CGD in a 5-week-old child that was traced
back to a dominant negative mutation in RAC2 [15,16]. For CYBB,
CYBA, NCF1 and NCF2 many variants harboring deletions, frame
shifts, missense, nonsense and splice site mutations have been
identified and are accessible at the immunodeficiency (ID) bases
(http://structure.bmc.lu.se/idbase/).
2.2. Are absence of ROS and hyperinflammation paradoxical in CGD?

The link between absent or decreased ROS production in CGD
and defective killing mechanisms including autophagy is well es-
tablished, but in contrast to the prevailing notion of ROS initiating
or exacerbating tissue damage, hyperinflammation is often docu-
mented in CGD patients. Initially, decreased degradation of pha-
gocytosed material in the absence of ROS production was con-
sidered the cause of the observed proinflammatory phenotype.
Thereby, phagocytosed microorganisms could accumulate in
NADPH oxidase deficient phagocytes leading to persistent cell

http://structure.bmc.lu.se/idbase


Abbreviations

ALS amyotrophic lateral sclerosis
CD Crohn's disease
CFU-G colony forming unit-granulocyte
CGD chronic granulomatous disease
CH congenital hypothyroidism
CV cardiovascular
DSS dextran sulfate sodium
DUOX dual oxidase
DUOXA DUOX maturation factor
EB embryoid body
ER endoplasmic reticulum
ESC embryonic stem cell
FAD flavin adenine dinucleotide
FMD flow-mediated arterial dilation
FNR family fumarate-nitrate reductase regulator protein family
GEF guanine nucleotide exchange factor
GI tract gastrointestinal tract
GM-CSF granulocyte-macrophage colony stimulating factor
GWAS genome-wide association study
H2O2 hydrogen peroxide
IBD inflammatory bowel disease
IDO indolamine 2,3 dioxygenase
IEC intestinal epithelial cell
IFN-γ interferon gamma
IL-1 interleukin-1
iNOS inducible nitric oxide synthetase
iPSC induced pluripotent stem cell
IYD iodotyrosine deiodinase
KO knockout
LPO lactoperoxidase
LPS lipopolysaccharide
LTP long term potentiation
L-T4 L-thyroxine/levothyroxine

MPO myeloperoxidase
NADPH nicotinamide adenine dinucleotide phosphate
NCF1/2/4neutrophil cytosolic factor 1/2/4
NF-κB nuclear factor-kappa B
NIS NADPH domain insertion sequence
NO nitric oxide
NOX1-5 NADPH oxidase 1-5
NOXA1 NADPH oxidase activator 1
NOXO1 NADPH oxidase organizer 1
O2

− superoxide
OMIM online Mendelian inheritance in man
OxLDL oxidized low-density lipoprotein
phox phagocyte oxidase
PIOD partial iodide organification defect
PMA phorbol 12-myristate-13-acetate
PO peroxidase
ROS reactive oxygen species
SCH subclinical hypothyroidism
SIN self-inactivating
SLE systemic lupus erythematosus
SNP single nucleotide polymorphism
SOD superoxide dismutase
TG thyroglobulin
ThOX thyroid oxidase
TIOD total iodide organification defect
TLR toll-like receptor
TM transmembrane
TNBS trinitrobenzene sulfonic acid
TPO thyroid peroxidase
TSH thyroid stimulating hormone
TSHR thyroid stimulating hormone receptor
UC ulcerative colitis
VEOIBD very early onset inflammatory bowel disease
WBS Williams–Beuren Syndrome
ZFN zinc finger nuclease
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activation. In addition, ROS can induce neutrophil apoptosis of
inflammatory cells limiting inflammation. Efferocytosis, the up-
take of apoptotic cells, conducted by macrophages through phos-
phatidyl serine receptors, is also reduced in CGD [17]. The overall
consequence will be unbalanced neutrophil necrosis, an increase
Fig. 1. Molecular basis of chronic granulomatous disease. CGD is caused by alterations
p40phox respectively. The main genetic form is X-linked CGD representing about 70% of t
CGD220, represent the rest of the cases described, the AR-CGD470 being the most frequ
of proteases and toxic oxygen-derived components, as well as
release of proinflammatory cytokines, all contributing to local in-
flammation. CGD macrophages are also severely compromised in
their ability to produce anti-inflammatory mediators due to a
delay in apoptotic debris clearance [18].
in CYBB, CYBA, NCF1, NCF2 or NCF4 encoding Nox2, p22phox, p47phox, p67phox and
otal cases. Three autosomal recessive CGD forms, AR-CGD470, AR-CGD670, and AR-
ent form (25% of cases). Only one NCF4 variant has been described up to now.
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Another factor that may explain hyperinflammation in tissues
of CGD patients are alterations in intracellular signaling. ROS are
essential for regulating signaling pathways and in particular the
absence of ROS in CGD phagocytes favors proinflammatory re-
sponses [19,20]. Thus, ROS act as anti-inflammatory mediators that
control gene expression, for example via NF-kB activation, thereby
limiting the development of inflammatory disorders [21]. In ad-
dition, expression of certain innate immune receptors such as Toll-
like receptor 5 that recognizes bacterial flagellin, or complement
receptor, are reduced in CGD neutrophils [22]. However, how this
decrease of immune receptors at the cell surface contributes to
inflammatory manifestations in CGD patients remains
unexplained.

The role of indolamine 2,3-dioxygenase (IDO) in CGD hyper-
inflammation is not yet resolved. IDO, mainly expressed in den-
dritic cells and monocytes, converts L-tryptophan into L-kynur-
enine, which acts as an anti-inflammatory agent by a poorly un-
derstood mechanism. L-kynurenine can induce cell death in pro-
inflammatory Th17 and γδT cells, leading to immune tolerance in
several autoimmune disorders such as chronic inflammatory bo-
wel disease, rheumatoid arthritis, maternal tolerance or tolerance
against malignant tumors [23–25]. IDO was also crucial for sur-
vival of CGD mice challenged with Aspergillus, suggesting that IDO
activity depends on superoxide production [26]. However, several
experimental findings in humans did not support these animal
studies. First, human CGD macrophages exposed to IFN-γ or LPS
degraded tryptophan like healthy donor cells, suggesting that su-
peroxide is not essential for IDO activity [27]. IFN-γ induced nor-
mal levels of L-kynurenine in cultured monocytes, neutrophils and
dendritic cells purified from CGD patients [28]. In addition, levels
of L-kynurenine and other tryptophan metabolites were normal to
elevated in CGD patients. While the kynurenine pathway is well-
studied in mammals, bacteria such as Pseudomonas aeruginosa
(commonly present in CGD patients) also use this pathway, which
produces quinolone signaling molecules as virulence factors [29–
31]. Recent studies show that IDO (KynA in bacteria) in P. aerugi-
nosa is responsible for the production of kynurenines when in
contact with phagocytes [32]. The production of kynurenines cir-
cumvents the innate immune response by scavenging released
neutrophil superoxide, thereby promoting bacterial survival. Thus,
KynA might be an interesting target to combat infections with P.
aeruginosa. However, this observation suggests that L-kynurenine
restores the immune tolerance in immune cells, while favoring
bacterial virulence by its ROS scavenging ability. The exact role of
IDO in hyperinflammation and immune tolerance still remains an
open question.

Hyperinflammation in CGD can also be linked to defective au-
tophagy, the major intracellular degradation process [33,34]. TLR
activation, which is sometimes compromised in CGD, connects
phagocytosis to the autophagy pathway in macrophages [35].
Upon TLR or Fcγ receptor stimulation Nox2-mediated ROS pro-
duction seems to play a role in regulating the activation and re-
cruitment of the autophagy machinery to phagosomes [36].
However, uric acid crystal-induced NLRP3 inflammasome activa-
tion in CGD monocytes generated a 4-fold increase in IL-1β se-
cretion, indicating that IL-1β production is not dependent on Nox2
activity [37]. Rather, ROS seem to dampen inflammasome activa-
tion, possibly explaining the granuloma formation and hyperin-
flammation occurring in CGD patients. The link between autop-
hagy and inflammasome activation in CGD has recently been fur-
ther clarified [38]. ROS deficiency in CGD phagocytes caused au-
tophagy dysfunction, which contributed to increased production
of proinflammatory IL-1β. Two CGD patients treated with Ana-
kinras, an IL-1 receptor blocker, showed rapid and sustained im-
provement in colitis and this drug restored defective autophagy in
CGD mice and human CGD phagocytic cells. These results open up
the possibility of clinical trials in order to study the efficacy of IL-1
antagonists to ameliorate CGD granulomas or Crohn's-like disease
(see Section 3, Inflammatory Bowel Disease).

2.3. Pathologies associated to CGD

Components of the phagocytic Nox2 complex are expressed in
cells and tissues other than phagocytes, and thus inactivating
mutations or deletions in these proteins (Nox2, p22phox, p47phox

and p67phox) have pathophysiological consequences unrelated to
immunodeficiency syndromes. Consequences of polymorphisms
in CYBA, NCF1 or NCF2 will not be discussed here in detail, but are
to some extent featured later in the context of inflammatory bowel
disease. Many pathological effects of Nox2 complex deficiency
were demonstrated in CYBB or NCF1 knockout mice, but we will
mainly report results obtained in clinical studies involving CGD
patients.

2.3.1. Nox2 deficiency and vascular diseases
The expression of several NADPH oxidases including Nox1,

Nox2, Nox4 and Nox5 have been described in the vasculature,
including the smooth muscle layer, the endothelium and the ad-
ventitia [39,40]. Superoxide is involved in the modulation of the
arterial tone via rapid degradation of nitric oxide (NO), a well-
known vasodilator. Data obtained in studies with Nox1 and Nox2
knockout mice suggest that these oxidases control vascular func-
tion via modulation of NO bioactivity [41,42]. In 2009, a multi-
center study conducted with 25 X-CGD patients and 25 healthy
subjects linked Nox2 deficiency with enhanced arterial dilatation
[43]. Platelet Nox2 expression, urinary isoprostanes and oxLDL
(both markers of oxidative stress) were reduced in X-CGD patients
compared with healthy subjects. However, nitrite and nitrate le-
vels were significantly higher in X-CGD patients and correlated
with flow-mediated arterial dilation (FMD). FDM also correlated
inversely with platelet Nox2 expression and isoprostanes. This was
the first time that a ROS-generating pathway controlled by Nox2
was connected to arterial tone modulation in humans.

More than 10 years ago, Krotz et al. demonstrated that NADPH
oxidase dependent O2

− formation enhanced platelet aggregation
and platelet-dependent thrombosis in vitro [44]. Afterwards Violi
et al. reported that soluble sCD40 L- and P (sP)-selectin, two
markers of in vivo platelet activation, were reduced in X-CGD
patients. Platelet isoprostane was downregulated, while platelet
NO generation was enhanced. In addition, platelet Nox2 expres-
sion was directly associated with plasma levels of sCD40L and sP-
selectin according to correlation analysis. Thus, this study provides
the first evidence that in vivo platelet activation might be directly
associated with Nox2 activity. Platelet Nox2 appears to be a novel
target for anti-thrombotic treatment [45].

2.3.2. Nox2deficiency and brain diseases
Superoxide generation is required for hippocampal synaptic

plasticity, especially long-term potentiation (LTP) and hippo-
campus-dependent memory [46]. Although the mitochondrial
respiratory chain is considered the main ROS source in the brain,
Nox2-deficient mice demonstrated impaired memory and synaptic
deficit, pointing to a role of NADPH oxidase in these processes
[47,48]. However, clinical studies in children with CGD were rather
ambiguous. In the first study the cognitive function in a cohort of
23 CGD patients, most of them suffering from X-CGD, was assessed
[49]. A 23% prevalence rate of cognitive deficits (IQo70) was
found in this selected CGD population, which is higher than the 1–
3% low IQ prevalence in the general population. However, it is not
clear whether this decrease in cognitive function reflects the se-
quelae of recurrent infections or the defect in superoxide gen-
eration. The second study compared the average cognitive ability
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of CGD patients with patients who had received a hematopoietic
stem cell transplant to cure CGD [50]. Children with CGD (22
X-CGD), either treated conservatively with antimicrobial prophy-
laxis or curatively with hematopoietic stem cell transplantation,
had normal IQ scores and cognitive ability was in the normal
range. However, for both studies the low number of subjects im-
pacted statistical significance. Furthermore, the applied WAS-I test
may not be able to detect subtle cognitive deficits. These findings
deserve further prospective studies with a larger cohort of X-CGD
patients. In particular, it will be necessary to pay attention to the
precise description of infections and their after effects, and to the
adequate cognitive function test employed.

Expression of NADPH oxidase components was analyzed in
brain tissues derived from human autopsies [51]. Particularly,
Nox2 was overexpressed in microglia and infiltrating macrophages
in patient tissues with initial multiple sclerosis lesions. This sug-
gests that an inflammation-associated oxidative burst could play
an important role in demyelination and tissue injury in multiple
sclerosis and degenerative diseases. Indeed, the expression of
Nox2 in microglia was inducible, and involved in motor neuron
degeneration in a mouse model of amyotrophic lateral sclerosis
[52,53]. However, it is not yet known if CGD patients with Nox2
deficiency are less prone to develop degenerative brain diseases
than the general population.

2.3.3. p47phox deficiency, diabetes, renal and cardiovascular diseases
A recent clinical study conducted with 229 CGD patients at the

National Institute of Health revealed that diabetes, renal and car-
diovascular diseases occur more often and with greater severity in
p47phox-deficient CGD patients than in Nox2-deficient CGD (or
X-CGD) patients [54]. Six of 64 AR470-CGD patients developed
Type 1 diabetes (�10% of cases) in contrast to none of the 165
X-CGD patients. Among the six diabetes patients, two patients
presented with severe cardiovascular (CV) disease (coronary artery
disease, myocardial infarction, cerebral aneurysms), which could
be a consequence of diabetes. One AR470-CGD patient presented
with pulmonary hypertension and mitral/aortic regurgitation
without underlying diabetes. Despite comparable treatment with
antifungal/nephrotoxic drugs AR470-CGD patients developed
chronic kidney disease more frequently than X-CGD patients. In
general, the residual superoxide production is higher in AR470
Fig. 2. Molecular mechanisms of NADPH oxidase complex activation. The NADPH oxida
composed of Nox2 and p22phox is localized in the plasma membrane and the cytosolic fa
binding protein Rac associates with Rho-GDI in its inactive GDP form. Upon activation, s
oxidase subunits leading to their assembly. Activated Rac-GTP translocates, anchors in th
oxidase complex is able to trigger electron transfer from NADPH to FAD and hemes to r
patients compared to those with X-CGD, which contributes to their
improved survival [5,55]. However, the increased incidence of
non-immune related disease may indicate distinct features of the
AR470-CGD phenotype, likely beyond the generation of superoxide
alone.

2.4. Rare variants in X-CGD are useful to decipher Nox2 structure
and function

2.4.1. Functional domains of Nox2
As the Nox2 crystal structure has not yet been resolved,

homology modeling offers the best tool for understanding struc-
ture–function relationships. The N-terminal half of the protein
appears to be embedded in the plasma membrane and is struc-
tured into six α-helices, two cytosolic loops (named B and D), and
three external loops (A, C, and E), and contains two non-identical
hemes coordinated by four histidine residues located in the third
and fifth transmembrane helices. Nox2 is glycosylated on aspar-
agine residues in the C and E loops (Fig. 2). The B and D in-
tracytosolic loops are essential for oxidase assembly and electron
transfer in Nox2 [56–58]. The D loop might also participate in
folding and interaction with p22phox (a 2 TM or 4 TM domain
protein), as was recently shown for Nox4 [59]. The C-terminal half
of Nox2 constitutes a cytosolic region required for catalysis and
regulation of NADPH oxidase activity. The first three-dimensional
homology model of the Nox2 C-terminal domain was based on
sequence homology of this region with members of the FNR family
[60]. This model provided an extremely useful structural image
and indicated the presence of FAD and NADPH binding sites, thus
the current terminology “dehydrogenase domain”. In 2000, a
crystal structure of the NADPH binding domain of Nox2 was re-
leased in the Protein Data Bank (PDB 3A1F) by Sumimoto and
colleagues. This unpublished structure confirmed homology of this
domain with the FNR family.

One approach for deciphering structure–function relationships
in Nox2 is studying naturally occurring CYBB mutations causing
Xþ-CGD. In this case mutated Nox2 is expressed normally, but is
not catalytically active in neutrophils. This feature can be used to
obtain insights into the importance of certain regions, but due to
the scarcity of patient material, model systems are usually em-
ployed for detailed studies. In the CYBB KO PLB-985 cell model
se complex of phagocytic cells is dissociated in resting phagocytes. Cytochome b558
ctors p47phox, p67phox and p40phox form a complex in the cytoplasm. The small GTP-
ignaling events cause phosphorylations and conformational changes of the NADPH
e membrane and binds to the NADPH oxidase complex. The fully assembled NADPH
educe molecular oxygen into superoxide.



Fig. 3. Localization of Xþ- and X�-CGD mutations in Nox2. The N-terminal part of the Nox2 protein is embedded in the plasma membrane and is structured into six α-
helices, two cytosolic loops (B, D), and three external loops (A, C, E), and contains two non-identical hemes coordinated by four histidine (H) residues located in the third and
fifth transmembrane helices. Nox2 is glycosylated on asparagines in C and E loop (ϒ). In the cytosolic “dehydrogenase domain” of Nox2, the FAD/NADPH-binding domains are
illustrated as gray clouds. Variants causing Xþ-CGD are preferentially located in the C-terminal part of Nox2 (A). Green and pink circles and squares correspond to Xþ-CGD
missense variants [10]. Pink circles are variants studied in the PLB-985 cell model [57,62,63,65–67,247]. Blue and red circles, squares and triangles correspond to X�-CGD
missense variants, deletions or duplications respectively [10]. Red circles are additional variants studied in the PLB-985 cell model [67,78]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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NADPH oxidase activity can be restored by transferring wild type
Nox2 cDNA, while introduction of mutant Nox2 cDNA will mimic
the phenotype of the patient's neutrophils [61,62]. To date about
26 Xþ-CGD mutations have been reported [10]. Most of them are
missense mutations or small deletions, and are primarily located
in the C-terminal cytosolic tail of Nox2, confirming the importance
of this region in catalytic activity, but not in structural stability.
Eighteen Xþ-CGD mutations were reproduced in the PLB-985 cell
line by mutagenesis, stable transfection and clonal selection for
functional studies [57,63–67] (Fig. 3A).

Nox2 contains an insertion of twenty amino acids in the de-
hydrogenase domain, which is absent in FNR family members
(designated NOX-NIS for NOX-NADPH-domain Insertion Sequence,
amino acid residues 484-504 in Nox2). As this insertion appears to
be ideally positioned at the start of the NADPH binding site, Taylor
et al. proposed that the insertion, modeled as an α-helix, may
control access of NADPH to the binding site [60] (Fig. 3A). This
would explain the need for an activation step in Nox enzymes in
contrast to FNR-type enzymes, which are constitutively active.
Three Xþ-CGD mutations-L505R, Q507_T509del and D500G-
within this region were reproduced in the PLB-985 cell model to
decipher the role of the NOX2-NIS [57,65,66]. Asp500 was essen-
tial for proper assembly of the Nox2 complex to facilitate the
electron transfer from NADPH to FAD upon oxidase activation. The
kinetic parameters of purified Nox2 L505R demonstrated that
Leu505 affects the p67phox-dependent activation of the Nox2-
p22phox heterodimer, thus controlling access of NADPH to its
binding site. The short Q507_T509del Nox2 deletion partially in-
hibited the assembly of the oxidase and electron transfer from
NADPH to FAD (diaphorase or iodonitrotetrazolium (INT) re-
ductase) similar to the Nox2 L505R mutation. In addition, Nox2
was shown to be phosphorylated by protein kinase C in human
neutrophils, thereby enhancing catalytic activity and assembly of
the complex [68]. Recent results from our laboratory indicate that
the insertion NOX-NIS is likely a dynamic switch for Nox2 activa-
tion by functionally linking to the Nox2 phosphorylation sites. This
data highlights a new step in the Nox2 activation mechanism in-
volving the NIS sequence [66].

Analyzing the Xþ-CGD mutations T341K, P415H, P415L and
C537R in the PLB-985 cell model confirmed the location of the
NADPH and FAD binding sites in the dehydrogenase domain of
Nox2 [66] (Fig. 3A). Indeed, T341 is strictly conserved in Nox
homologs and belongs to the putative FAD binding motif
338HPFT341. The Nox2 residues P415 and C537 are located in the
410GIGVTP415 and 535FLCGPE540 sequences respectively, which
were proposed to be part of the active site pocket of the dehy-
drogenase domain with the first motif being the binding site of the
NADPH isoalloxazine ring and the second motif forming the
NADPH nicotinamide ring binding site. Indeed, the mutation of
Thr341 to Lys inhibited the FAD incorporation into Nox2, whereas
the Nox2 mutations P415H/L and C537R had no effect. All three
mutations disturbed the diaphorase activity, but not the assembly
of the NADPH oxidase complex. Thus, these mutations led to steric
hindrance probably incompatible with the correct orientation of
NADPH in respect to FAD within the active site. Another set of Xþ-
CGD mutants, Nox2 C369R, G408E, G408R, and E568K, had com-
mon and global functional effects when expressed in the PLB-985
cell model. These mutants inhibited NADPH oxidase activity by
affecting FAD incorporation and translocation of p47phox and
p67phox to phagosomal membranes [66]. Nox2 Gly408 and Glu568
residues are probably located in sequences necessary to maintain
the integrity of the FAD/NADPH binding domains. Due to its sur-
face exposed location, Cys369 seems not to be critical for the
overall structural integrity of Nox2, but it might be a docking site
for cytosolic factors influencing modulation of the FAD environ-
ment during the oxidase activation process.
The second transmembrane passage of Nox2 is essential to
maintain structural stability and electron transfer of the NADPH
oxidase complex [67]. The preponderance of X-CGD mutations in a
“hot spot” of five residues from Ala53 to Cys59, located in the
putative second transmembrane α-helix, denotes the importance
of this membrane region. Nox2 P56L and C59F mutations drasti-
cally reduced Nox2 expression, indicating that these residues are
important for the structural stability of Nox2. The Nox2 A53D,
R54G, R54M, and R54S mutations inhibited superoxide produc-
tion, but did not affect spectral properties of the oxidized/reduced
Nox2-p22phox complex, oxidase complex assembly, FAD binding, or
diaphorase activity, suggesting that amino acids 53 and 54 are
essential for electron transfer from FAD. In addition, the second
transmembrane passage (and especially the Nox2 A57E mutation)
negatively influenced the function of the first intracytosolic B-loop
in terms of regulating diaphorase activity of Nox2. Indeed, Jackson
et al. demonstrated that the B-loops of Nox2 and Nox4 provide an
interface between the dehydrogenase domains and the trans-
membrane domains of Nox enzymes [69].

2.4.2. Structural domains of Nox2
The synthesis of the membrane-bound oxidase heterodimer

(cytochrome b558) is a complex process, because it involves not
only the presence of both subunits, Nox2 and p22phox, but also
several maturation steps, including heme incorporation, hetero-
dimer formation and glycosylation of Nox2 [70–72]. The associa-
tion of Nox1-4 with p22phox seems to be a prerequisite for stabi-
lization of the complex and localization of the heterodimer to
specific membrane compartments [73,74]. The exact interaction
surfaces and binding regions of Nox enzymes with p22phox are not
yet known, although several residues and motifs have clearly
functional relevance [75–77]. For Nox2, deciphering the molecular
mechanism of cytochrome b558 synthesis was aided by focusing on
decisive regions in CYBB-CGD disease variants termed X minus
(X�). X�-CGD mutants are characterized by a partial defect of
cytochrome b558 synthesis associated with no or diminished oxi-
dase activity. The genetic defects in CYBB found in these variants
(�36 different mutations) are often missense mutations, small
deletions or insertions localized in the coding region (Fig. 3B) [10].
The clinical severity of these CGD variants is variable and likely
correlates with the residual oxidase activity found in X�-CGD
neutrophils derived from these patients. Ten X�-CGD mutations
were reproduced in the KO PLB-985 cells in order to study their
impact on different steps of the cytochrome b558 synthesis process
[78]. These mutations were chosen in mutational hot-spot regions
such as the D-loop, a cytosolic region close to the last trans-
membrane passage, the FAD-binding site, the extreme N-terminal
region of Nox2 and isolated residues including W18C and G389A
(Fig. 3B). Many of these residues are highly conserved in Nox1-4,
suggesting a common and important role, possibly the interaction
with p22phox. One group of mutations (Nox2 H338Y, P339H and
F556-F570del) in the FAD-binding pocket of Nox2 led to loss of
NADPH oxidase activity and was associated with variable levels of
Nox2 expression, suggesting that the FAD domains are not only
essential for electron transfer, but are also involved in the struc-
tural integrity of Nox2. Surprisingly, Nox2 H338Y and P339H
mutants showed an abnormal accumulation of Nox2 in in-
tracellular compartments, suggesting that these mutations dis-
turbed Nox2 targeting or proper degradation. In another group of
mutations (Nox2 W18C, E309K, K315del, I325F), decreased ex-
pression levels led to a proportional decrease in ROS generation.
Thus, residues located in the first transmembrane passage, or in an
intermediate region between the membrane domain and the de-
hydrogenase domain of Nox2, are involved in the structural sta-
bility and synthesis of cytochrome b558. For the Nox2 W18C, E309K
and I325F mutants, an intracellular accumulation of the 65 kDa
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precursor of Nox2 was observed. Furthermore, a defect in dimer
formation with p22phox, and thus in the final maturation of cyto-
chrome b558, occurred. These results suggest that the first trans-
membrane passage and the intermediate region between the
membrane and the cytosolic dehydrogenase domains of Nox2 are
involved in association with p22phox.

In conclusion, functional studies of human defects, as demon-
strated here for selected X-CGD variants, can identify essential
sequences required for structural stability and/or functionality of
Nox2. This approach establishes an example that can be used for
the study of various clinical cases at the molecular level, which in
turn may aid in predicting clinical outcome or treatment options.

2.5. Refined analysis of recent NCF1 and NCF2 variants

2.5.1. NCF1 and NCF1 pseudogenes
In contrast to the considerable heterogeneity found in most

CGD variants, a common variant has been identified in approxi-
mately 90% of affected NCF1 alleles analyzed worldwide [11]. This
variant is a GT deletion (ΔGT) in a GTGT tandem repeat, corre-
sponding to the first four bases of exon 2 in NCF1 [79]. However, a
few other alterations are present in the NCF1 gene [80]. AR470-
CGD presents as a mild clinical form with higher cumulative sur-
vival and is usually diagnosed later than X-CGD or AR220-CGD
[5,55]. Phagocytic AR470-CGD cells exhibit higher residual ROS
generation underscoring the point that p47phox contributes to
NADPH oxidase activity as an adapter, facilitating assembly of the
oxidase, but is not as essential as properly formed cytochrome
b558. Supporting this notion is the fact that the extremely rare
AR670-CGD is associated with severe disease, as NCF2 (p67phox) is
essential for optimal functioning of the Nox2 oxidase [81,82].

The NCF1 ΔGT mutation predominates as most normal in-
dividuals (495%) have two NCF1 pseudogenes (ΦNCF1) on each
allele. Both pseudogenes, located close to NCF1 at 7q11.23, exhibit
the ΔGT deletion with more than 99% identity with the NCF1 gene.
These ΦNCF1 are the best-conserved, unprocessed pseudogenes
known [83]. The predominance of the ΔGT mutation arises from
recombination events between NCF1 and the highly homologous
pseudogenes ΦNCF1 [84,85]. At least three different cross-over
points exist within the NCF1 gene cluster, indicating that auto-
somal AR470-CGD is genetically heterogeneous [86]. The biological
relevance of the presence of ΦNCF1 is not yet clear. The ratio of
NCF1/ΦNCF1 varies in different human tissues and in human po-
pulations [87]. An increased copy number of NCF1 was linked to
protection for developing rheumatoid arthritis [88]. Extremely
rare cases of CGD can be associated with Williams–Beuren syn-
drome (WBS) [89,90]. This neurodevelopmental disorder with
multi-systemic manifestations is caused by a heterozygous seg-
mental deletion at chromosomal band 7q11.23. This deletion can
include the NCF1 gene and if an NCF1 mutation occurs simulta-
neously on the other allele by inheritance, the patient will present
with both diseases. It has been postulated that WBS patients with
two functional NCF1 genes were more susceptible to hypertension
than WBS patients with only one functional NCF1 gene [91].
However, one of the two patients suffered from hypertension,
indicating that factors other than vascular NADPH oxidase activity
are likely involved in the development of hypertension [92]. A
possible explanation is inclusion of the ELN locus in the classical
WBS deletion, which codes for elastin, a protein essential for
elasticity of the vasculature.

2.5.2. NCF2 gene
Most of the time gene variants lead to the absence of the

mutated protein due to instability of the mRNA or synthesis of an
unfolded and/or truncated protein. Very rare variants can abolish
or reduce NADPH oxidase activity, but lead to normal (superscript
þ) or diminished (superscript �) expression of oxidase compo-
nents in phagocytes [10,93]. Recently, an A67�-CGD patient with
extremely late diagnosis of CGD was described. CGD was diag-
nosed in two brothers in their 50s, who harbored a splice variant
in NCF2, generating several splice products of exons 11 and 12 [94].
Even though exons 11 and 12 of NCF2 seem to be necessary for
optimal oxidase activity, the encoded p67phox protein remained
partially expressed and had functional properties. The deletion of
exons 11 and 12 does not affect any known functional domains,
but is responsible for shortening the distance between the first
SH3 domain (a putative Nox2 interaction domain) and the PB1
domain, a binding motif for p40phox.

One case of hypomorphic mutation in the activation domain of
p67phox (12 amino acids, 199–210) was found in three CGD patients
from two distinct families with mild clinical profiles [95]. The
A202V change in p67phox led to a slight decrease of p67phox ex-
pression in neutrophils of CGD patients. Surprisingly, NADPH
oxidase activity and translocation of p67phox to the phagosomal
membrane varied depending on the stimulus. Upon PMA stimu-
lation, but not with opsonized zymosan, ROS generation and
p67phox translocation were reduced. This suggests that the con-
formation of the activation domain of p67phox is involved directly
or indirectly in the binding to Nox2, thus affecting NADPH oxidase
activity. The discrepancy between both stimuli might be linked to
differential phosphorylation events of the activation domain of
p67phox in response to each stimulus, but this remains to be re-
solved experimentally.

2.6. Induced pluripotent stem cells – potent cellular models for pa-
thophysiological studies and therapeutic development

At the moment, the only cellular model mimicking CGD pha-
gocytes is the KO PLB-985 cell line [62]. These cells can be differ-
entiated into neutrophil-like cells, reproducing the X-CGD phe-
notype, and are very useful for structure–function relationship
studies as described above. However, differentiated PLB-985 cells
are still an imperfect model as they are lacking certain important
neutrophil features. Induced pluripotent stem cells (iPSCs) re-
present a revolution in the field of stem cell research, permitting
the establishment of cellular models of pathologies. A cocktail of
four transcription factors is able to reprogram murine and human
somatic cells to a pluripotent state similar to embryonic stem cells
(ESCs) [96,97]. iPSCs can be differentiated into many cell types,
their use is not hampered by ethical issues, and they are useful cell
models for physiological studies, toxicity screening and cell ther-
apy among others. Most importantly, iPSCs derived from somatic
cells of patients, can be differentiated to produce cellular models
of the disease that are very useful for drug development, and in
the future for regenerative medicine after correction of the genetic
defect [98,99].

Since 2011, four teams have modeled several genetic forms of
CGD from iPSCs (Table 1). The first CGD cellular model was ob-
tained from mouse fibroblasts isolated from X-CGD mice and re-
programmed into X-CGD iPSCs [100]. The hematopoietic differ-
entiation involved the formation of embryoid bodies (EBs), culture
on collagen IV to isolate FLK1þ cells, followed by co-culture on
OP9 stromal cells in the presence of hematopoietic cytokines. Fi-
nally, X-CGD neutrophils obtained as CFU-G (colony forming unit-
granulocytes) colonies in 24–31 days with a purity of around 71%
were unable to produce ROS after PMA stimulation. Gene correc-
tion of the EBs with self-inactivating (SIN) lentiviral vectors en-
coding a codon-optimized gp91phox transgene successfully led to
the generation of CFU-G containing neutrophils with restored
NADPH oxidase activity [101]. This group demonstrated for the
first time that X-CGD iPSC-derived neutrophils were a suitable tool
to test new gene therapy approaches. Of importance, no difference



Table 1
List of reported murine and human CGD iPSCs.

Type Cell model Genetic form Modeled variant Ref

Mukherjee et al. Mouse Neutrophils X-CGD CYBB knockout [100]
Zou et al. Human Neutrophils X0-CGD CYBB: nonsense mutation: 458T4G in exon 5 [102]
Jiang et al. Human Macrophages X�-CGD CYBB: point mutation in intron 1 (�11T4G) [106]

X0-CGD CYBB: large deletion including exon 1–3
AR470-CGD NCF1: GT deletion in exon 2

Brault et al. Human Neutrophils and macrophages X0-CGD CYBB: nonsense mutation 469C4T in exon 5 [107]
AR220-CGD CYBA: deletion c.295_301delGTGCCCG in exon 5
AR470-CGD NCF1: GT deletion in exon 2
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in the differentiation process between control and X-CGD iPSC
cells in the process of generating neutrophils was observed, sug-
gesting that Nox2-derived ROS generation is not required. In the
same year, a human model of X-CGD neutrophils was published
[102,103]. The iPSCs were generated from mesenchymal stem cells
isolated from an X-CGD patient and differentiation into neu-
trophils was obtained using a protocol developed for ESCs invol-
ving EB formation and OP9 co-culture [104]. Although purity was
lower (30–40%) and the timing longer (34 days) than in - than in
the previousthe previous work, neutrophils from X-CGD iPSCs
were characterized for morphology, surface markers, phagocytosis
and ROS production, confirming the successful generation of ma-
ture neutrophils mimicking the CGD neutrophils of the patient.
Correction of the CGD phenotype was accomplished by genome
editing using a zinc finger nuclease (ZFN) approach developed in
2009 with iPSCs [102,105]. Contrary to Mukherjee et al. who
transduced EBs, iPSCs were directly transduced with ZFN, followed
by selection of transduced iPS clones with one single allele AAVS1
locus insertion. This resulted in restored NADPH oxidase activity
and a high level of Nox2 expression. In 2012, Jiang et al. produced
the first X-CGD and AR47 human macrophages [106]. They used a
co-culture-free protocol involving EBs formation and culture in
suspension with hematopoietic cytokines. Monocytes emerged in
the supernatant, which upon differentiation into mature macro-
phages were able to phagocytose zymosan particles and to secrete
cytokines in response to stimulation. Thus, X-CGD and AR470-CGD
macrophages could be modeled from iPSCs.

Recently, our group optimized protocols to differentiate iPSCs
from X0-, AR470- and AR220-CGD patients' fibroblasts into neu-
trophils and macrophages [107]. Unlike other protocols described
for CGD modeling, iPSCs were directly differentiated using adapted
Fig. 4. Phenotypic and functional characterization of neutrophils and macrophages de
phology of neutrophils (upper panel, scale bar 10 mm) and macrophages (lower panel, sc
in neutrophils and vacuoles in macrophages (scale bar 2 mm). (C) NBT reduction assay on
scale bar 10 mm) and macrophages (lower panel, scale bar 20 mm). ROS-mediated NBT red
(black arrows). (For interpretation of the references to color in this figure legend, the re
and optimized protocols from Choi et al. for the production of
neutrophils and macrophages separately [108,109]. The average
production of CD34þ progenitors was 1.5�106 cells after 10 days
of differentiation of 10�106 iPSCs. Extensive characterization of
CGD iPSC-derived neutrophils confirmed the presence of primary,
secondary and tertiary granules in the cytoplasm (Fig. 4A, B). Cells
were terminally differentiated into about 3�105 neutrophils or
3�107 macrophages in 25–28 days. CGD neutrophils and macro-
phages exhibited an oxidase-negative phenotype characterized by
the absence of NADPH oxidase activity related to the absence of
Nox2 and p22phox expression in X0-CGD and AR220-CGD cells
(Fig. 4C). CGD iPSC-derived macrophages were able to phagocytose
opsonized S. aureus or zymosan particles and produced pro- and
anti-inflammatory cytokines after stimulation. iPSC-derived mac-
rophages expressed classical CD14, CD45, and CD11b antigen sur-
face markers and were HLA-DR� , CCR7� , and MRþ , specific to the
M2c subtype of macrophages, which are regulatory macrophages
involved in immunosuppression and wound healing/tissue repair
[107].

Faithful cellular models of the three genetic forms of CGD (X0,
AR220 and AR470) are now available for the development of new
therapies for CGD, although an iPSC model for p67phox-deficient
neutrophils and macrophages is still lacking. Today, scientific ef-
forts are focusing on gene therapy to correct CGD using iPSCs or
EBs. This will represent a source of “healthy” autologous cells for
one-time treatment. However, safe iPSC reprogramming methods
including xeno-free, feeder-free cell cultures, and flawlessly mas-
tered gene therapy will be necessary to correct iPSCs derived from
CGD patients before transplantation. “Safe made” autologous iPSCs
are used already to treat age-related macular degeneration with
iPSC-derived retinal pigment epithelium cells at the RIKEN Center
rived from WT and CGD iPSCs. (A) MGG staining showing the characteristic mor-
ale bar 20 mm). (B) Electron microscopy shows the presence of cytoplasmic granules
opsonized latex bead-activated WT or CGD iPSC-derived neutrophils (upper panel,
uction is shown as blue formazan precipitates in WT neutrophils and macrophages
ader is referred to the web version of this article.)
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for Developmental Biology in Kobe, Japan. This is the first human
clinical trial for evaluating the efficiency of this approach.
3. Inflammatory bowel disease - reduced ROS as risk factor

Inflammatory bowel disease (IBD) is the common term for a
group of chronic or recurring inflammatory conditions of the gut
[110,111]. The main IBD disorders are Crohn's disease (CD), char-
acterized by inflammatory patches and deep ulcers all along the
digestive tract, and ulcerative colitis (UC), which affects the mu-
cosal lining of the entire colon. The symptoms can be very similar,
rangingfrom abdominal pain, diarrhea, and intestinal bleeding to
weight loss, colon cancer and extra-intestinal manifestations. IBD
is emerging as a global disease as incidence and prevalence are
increasing with time, and the gap of affected populations in terms
of economic, ethnic and racial differences is shrinking (www.cdc.
gov). The annual incidence and overall prevalence is highest in
Europe and North America [112], and in particular the incidence of
pediatric IBD is rapidly increasing [113,114]. Very early onset (VEO)
IBD, classified as disease in children o6 years of age according to
the modified Paris classification [115], presents predominantly as
pancolitis and occasionally perianal disease, with patients re-
sponding poorly to conventional anti-inflammatory and im-
munomodulatory therapy, resulting in increased morbidity and
mortality [116]. VEOIBD patients often have an underlying rare
genetic disorder causing primary immunodeficiency that cannot
be detected in genome-wide association studies. Exome-targeted,
candidate gene or whole-genome sequencing has identified sev-
eral rare gain-of-function and loss-of-function variants in VEOIBD
[116]. Considering the link between the intestinal immune re-
sponse and the microbiota, IBD-associated shifts in the micro-
biome and virome, and the emergence of pro-inflammatory pa-
thobionts in IBD [117,118], it is not surprising that dysfunction of
NADPH oxidases is now a recognized risk factor for IBD.

3.1.. Genetic susceptibility to IBD–CGD and beyond

The 35–40% prevalence of IBD with CD-like features in CGD
patients places impairment of the Nox2 complex prominently as a
risk factor for intestinal disease. Histologically this disease can be
distinguished from CD by the presence of multiple granulomas in
the lamina propria and large pigment-laden histiocytes [119–121].
The susceptibility for developing CGD-CD is associated with in-
activating CYBB variants rather thanwith NCF1 variants or with the
remaining ROS output in stimulated neutrophils [55,119]. What
exactly determines the manifestation of gastrointestinal disease in
Fig. 5. Missense mutations in cytosolic Nox2 complex components associated with VE
phorylations and structural rearrangements, exposing domains masked by intramolecula
complex. Constitutive interactions are indicated by blue arrows, stimulus-induced int
planation see text except: AIR (autoinhibitory region), PRR (proline-rich region), AD (acti
this figure legend, the reader is referred to the web version of this article.)
CGD patients at some point in their lives is still unresolved. It is
likely due to particular genetic CYBB variants in combination with
other susceptibility loci and the presence of hereditary and en-
vironmental factors.

In contrast to the often polygenic nature of adult IBD, VEOIBD is
considered a monogenic defect [116]. Several functionally altered
variants in Nox2 complex components have been identified in
VEOIBD [122–124]. Most of the variants are characterized by
heterozygous single nucleotide polymorphisms (SNPs) in the
coding sequence, occur in autosomal recessive genes coding for
cytosolic Nox2 complex components and do not lead to severe
immunodeficiency, indicating that the remaining ROS generation
is above the threshold required for full onset of CGD [55]. While
certain variants were only present in a single patient, some SNPs
in NCF1 and NCF2 seemed common (up to 10%) in the analyzed
VEOIBD cohort. Although only a single CYBB variant (rs141756032;
NOX2 p.G364R) was identified [124], this missense mutation will
likely cause a significant reduction in ROS production in male
carriers due to its location directly adjacent to the second FAD
binding site. Functional data of this variant are not available and
this CYBB variant has not been associated with CGD (http://struc
ture.bmc.lu.se/idbase/CYBBbase). An identified SNP in the CYBA
promoter (rs72550704) is part of the Sp1 transcription factor
consensus sequence [2], thus interfering with Sp1 binding and
leading to a 20% reduction in p22phox expression.

The majority of recently identified NADPH oxidase-related
variants occur in genes involved in Nox2 assembly and electron
transfer (Fig. 5). A previously characterized NCF1 SNP (rs13447;
p47phox R90H) [88] identified in 12/122 VEOIBD patients, is located
in the phospholipid (PX) binding domain, leading to reduced ROS
generation presumably due to altered membrane association. Five
missense NCF2 mutations with varying prevalence were identified
in a Canadian VEOIBD cohort [124]. These mutations are located
either in the first tetratricopeptide repeat (T1) motif (rs147415774,
p67phox R38Q), in the Phox and Bem1 (PB1) domain (rs17849502,
p67phox H389Q, rs35012521, p67phox N419I), in the C-terminal SH3
binding domain (p67phox G501R) or in exon 15. These domains are
required for protein interactions, namely for Rac-GTP binding (T1-
4), for Vav1 guanine nucleotide exchange factor (GEF) and p40phox

binding, and for p47phox binding, respectively [125]. Protein asso-
ciations are required for retaining the p47phox–p67phox–p40phox

complex in the cytosol in the dormant oxidase, and for reassembly
of these components in their phosphorylated form with mem-
brane-bound Nox2-p22phox and the GEF–Rac–GTP module when
oxidase activation takes place. Functional analysis of NCF2 variants
revealed decreased protein–protein associations when binding
partners were immunoprecipitated after their overexpression in
OIBD without leading to CGD. NADPH oxidase activation triggers multiple phos-
r interactions and permitting novel interactions required for assembly of the oxidase
eractions by purple arrows. Location of variants indicated in red. For domain ex-
vation domain). Adapted from [125]. (For interpretation of the references to color in
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Fig. 6. NOX1 variants identified as VEOIBD risk factor. Two functionally altered NOX1 variants were recently identified in VEOIBD patients, one located upstream of the first
FAD binding domain, while the other is located within the second FAD domain (indicated by black dots). p22phox is represented as a 4 transmembrane (TM) domain protein,
although models with 2 or 3 TM exist.
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model cell lines. It would be important to determine the influence
of p67phox sequence changes on Nox2 catalytic activity in a fully
reconstituted system and in the presence of an appropriate re-
ceptor-mediated stimulus. Furthermore, one VEOIBD patient was
identified with a NCF4 variant (rs141160114, p40phox R308Q),
which negatively influenced p40phox PB1 binding to p67phox. A
common SNP in NCF4 (rs4821544, intron 1) has been previously
associated with ileal adult CD in genome-wide association studies
(GWAS) [126,127]. Neutrophils isolated from CD patients carrying
this NCF4 risk allele produced less superoxide when primed with
granulocyte-macrophage colony-stimulating factor (GM-CSF) prior
to stimulation with the chemoattractant fMLF [128]. This defect
suggests that the NCF4 SNP alters regulation of Erk1/2-mediated
p47phox phosphorylation [129]. NCF4 as a CD susceptibility gene
could not be replicated in two other large scale studies [130,131].
Albeit the number of identified variants in VEOIBD associated with
the Nox2 complex is still limited, a trend towards affecting mainly
cytosolic components combined with reduced, but not substantial
loss of ROS production is noticeable.

Several NADPH oxidases (Nox1-3) require Rac activity for ROS
generation, and thus variants in RAC1 (rs35761891, rs10951982) or
RAC2 (rs739041, rs1476002) will likely influence oxidase function
[122,124]. The observed changes in expression, i.e. upregulated
Rac1 versus downregulated Rac2, may reflect involvement of Rac1
in oxidase regulation of cell types other than neutrophils, although
alteration of Rac expression will affect many other signaling out-
puts, cytoskeletal rearrangements and mucosal barrier main-
tenance. Interestingly, several SNPs in NOS2 (inducible nitric oxide
synthetase, iNOS) were identified in VEOIBD cohorts [132]. The
most prominent NOS2 SNP (rs2297518, iNOS S608L) showed in-
creased nitric oxide production in transfected cells. This is im-
portant in the context of NADPH oxidase function as nitrosylation
of oxidase components inhibits Nox2-dependent ROS generation
([133], Hayes and Knaus, unpublished observations), once more
reinforcing the link between genetic susceptibility to VEOIBD and
decreased NADPH oxidase activity.

3.2.. Mucosal NADPH oxidases as novel IBD susceptibility genes –
NOX1 and DUOX2

Intestinal epithelial cells (IECs) are on the forefront of main-
taining barrier function and mucosal homeostasis, and genetic
alterations compromising their response to the gut environment
can be considered the gateway for inflammatory processes. IECs
express the NADPH oxidases Nox1 and Duox2, with the Duox2/
DuoxA2 complex being highly responsive to microbial-induced
upregulation. Expression of both Duox2 and DuoxA2 is upregu-
lated by viral and bacterial infections and during inflammatory gut
disease [118,134–136]. Grasberger and colleagues [137] used L-
thyroxine supplemented duoxa� /� mice infected with Helicobacter
felis to characterize the role of Duox2 in stomach infections. Mu-
cosal colonization with H. felis was increased in duoxa� /� mice.
This increased bacterial load resulted in enhanced shedding of
bacterial antigens and virulence factors, leading to severe gastritis
in duoxa� /� mice. These results suggest that the release of H2O2 by
Duox2 at the apical surface of the gastric epithelium controls
growth of H. felis in its niche, the overlying mucus layer [137].

In general, ROS generation by Nox1 can be considered the
earliest engagement of an NADPH oxidase in the GI tract, followed
by Duox2 upregulation and Nox2 activation in recruited neu-
trophils. If rare variants in ROS-generating enzymes associate with
IBD development, one needs to consider NOX1 and DUOX2 as po-
tential susceptibility genes. Indeed, we recently identified the first
functionally altered NOX1 and DUOX2 variants in VEOIBD patients
[138]. Two variants of X-linked NOX1 were identified in VEOIBD
patients (Fig. 6). A patient with severe pancolitis harbored NOX1 p.
P330S, a missense variant located directly upstream of the first
FAD binding domain, which reduced ROS generation by 50–60%,
likely by decreasing binding affinity for FAD. The second variant,
NOX1 p.D360N (rs34688635), was discovered in two patients, both
presenting with severe pancolitis. This sequence change occurred
directly in the second FAD binding domain, leading to a 60–80%
decrease in ROS production in a model cell line and in in vivo
reconstituted crypts of Nox1 knockout mice. The localization of
both Nox1 variants was not altered, but as suggested by our pre-
vious work [139], antimicrobial host defense was severely im-
paired. The same study linked two DUOX2 variants to VEOIBD.
DUOX2 p.R1211C, a missense variant in the third intracellular loop
(Nox D-loop) was present in one patient with recurrent pancolitis,
perforation and colectomy. Reconstitution of the Duox2 R1211C-
DuoxA2 complex in cells revealed intact localization patterns, but
reduced H2O2 generation. Another patient with pancolitis har-
bored DUOX2 p.R1492C (rs374410986), an arginine to cysteine
change in the highly conserved GRP sequence in the third NADPH
binding domain. Despite proper localization and stimulus-depen-
dent translocation, this variant showed a 5-fold decrease in H2O2

release and consequently a 50% increase in bacterial invasion. This
study links for the first time NOX1 variants to human disease, and
identifies the NADPH oxidases Nox1 and Duox2 as risk factors for
IBD. Even though these variants are rare, the importance of Nox1
and Duox2 in mucosal host defense will likely reveal additional
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NOX1 and DUOX2 variants in the future, or even variants in genes
required for assembly of functional oxidase complexes (CYBA,
NOXA1, NOXO1, DUOXA2).

3.3.. Challenges in NADPH oxidase IBD research – from man to
mice. Understanding how NADPH oxidases contribute to the de-
velopment of IBD is hampered by the scarcity of animal models
reflecting human gut disease and the often weak correlation be-
tween phenotypes of genetically modified mice and IBD patients.
The polygenic nature of the disease, the contribution of the mi-
crobial gut community of the host to development of pathogen-
esis, and diet/environment-related influences are likely re-
sponsible and need to be methodically altered to obtain better
suited models. While mice deficient in cybb (Nox2) and ncf1
(p47phox) recapitulate many hallmarks of human CGD, they never
develop CGD-CD. These mice were reported as either protected or
more susceptible to dextran sulfate sodium (DSS)-induced colitis
[140–142], while showing increased weight loss and injury in
acute 2,4,6-trinitrobenzene sulfonic acid (TNBS)-mediated ne-
crosis of the distal colon [38,143]. Deficiency in ncf4 (p40phox), an
integral component of the Nox2 complex, was associated with
exacerbated DSS colitis, which does not reflect the Nox2 knockout
phenotype in the same model [140,144]. Similarly, the suscept-
ibility to VEOIBD in male patients harboring the two inactivating
X-linked NOX1 variants, which exhibited a 60–80% reduction of
ROS generation in transduced crypts [138], seems not to be re-
flected in DSS or TNBS colitis models, where a protective pheno-
type for Nox1 deficiency was observed [145,146]. Only when
combining Nox1 knockout with IL-10 deficiency in mice, a per-
manent colitis phenotype could be obtained [146]. For Duox2
conflicting data indicate higher susceptibility of patients with
functionally inactivating DUOX2 variants for VEOIBD [138], while
analysis of the general population of IBD patients indicated sub-
stantial upregulation of DUOX2 [118,147,148]. While Duox2-defi-
ciency early in life predisposes to VEOIBD, presumably due to
compromised mucosal host defense, the upregulation in adult IBD
may correlate with the involvement of Duox2 in repair mechan-
isms or oxidative stress. This paradox and other inconsistencies
will need to be addressed withdetailed studies in mice by varying
the genetic background and environmental impact, and by in-
troducing other susceptibility genes. The rather intimate connec-
tions between NADPH oxidase genes and prominent IBD sus-
ceptibility genes regulating immune recognition or autophagy are
well documented and supported by patient data and cell-based
assays, suggesting that modulation of the redox balance is indeed
an important determinant in inflammatory intestinal disease, al-
beit predominantly not involving exacerbation of inflammation by
oxidative stress, but by a decline in ROS production.

3.4.. NADPH oxidase variants as risk factor for other diseases. Loss of
or diminished Nox2 NADPH oxidase function is not only connected
to the disorders presented here. A predisposition of CGD patients
for developing mycobacterial infections has been recognized for
some time [149–151], but recently, susceptibility to this disease in
otherwise healthy subjects has been reported [152]. Two CYBB
variants (Nox2 T178P, Nox2 Q231P) were linked to impaired
macrophage NADPH oxidase function and mycobacterial disease,
while ROS generation in neutrophils and monocytes was not af-
fected. This observation reflects not only the critical role of ROS in
the macrophage-mounted defense against Mycobacterium tu-
berculosis, but also how the context of a particular cell type can
shape the (non)-functionality of gene variants. Furthermore, some
CYBA variants in the promoter region (e.g. A-675T, A-930G) have
been associated with hypertension in population-based or animal
studies [1,3,153], although increased oxidative stress by p22phox

overexpression has not been functionally characterized or
attributed to a particular Nox family member.
The development of rheumatoid arthritis has been linked to a

lower copy number of NCF1 [88]. This association has been re-
plicated in p47phox mutant rodents [154–156] and has culminated
in the successful use of oxidative burst stimulants for arthritis
therapy [157]. A strong association of several NCF2 SNPs with
systemic lupus erythematosus (SLE) susceptibility was reported
[158–160]. One of these variants (rs17849502, p67phox H389Q) also
conferred susceptibility to VEOIBD, as discussed earlier [123,158].
Similar to p67phox H389Q, some of the other lupus-associated NCF2
variants (rs13306575, p67phox R395W; rs35937854, p67phox

A297V) are located in protein–protein interaction domains and
may weaken association of oxidase components [125,159]. Func-
tional consequences of these p67phox mutations have not been
verified in model cell systems or in blood-derived cell types. A
protective role for functional Nox2 in SLE was strengthened when
cybb-deficient mice crossed with lupus-prone mice displayed ex-
acerbated disease [161].
4. Hypothyroidism – spotlight on DUOX2/DUOXA2

Congenital hypothyroidism (CH), caused by thyroid hormone
deficiency present at birth, is the most common congenital en-
docrine disorder. CH occurs in approximately 1/3000–4000 births
[162] and can lead to delayed growth and neurodevelopmental
disorders if untreated. With the ease and relative low cost of
screening, most cases of congenital hypothyroidism are caught
early and treated accordingly. The majority of CH cases result from
defects in the development of the thyroid gland [163] with only
15–20% of cases being caused by thyroid dyshormonogenesis. The
production of H2O2 by the NADPH oxidase Duox2 at the apical
membrane of thyroid follicular cells is crucial for the organification
of iodide, the rate-limiting step in thyroid hormone synthesis,
which is catalyzed by thyroid peroxidase (TPO) [164]. Iodide is
transported from the extracellular space to the follicular lumen in
two stages: active transport across the basolateral plasma mem-
brane and passive transport across the apical plasma membrane.
Iodide is easily absorbed from the blood by thyrocytes, which
contain a Naþ/I� symporter on their plasma membrane that acts
as an iodine trap and transports iodide into the cell. Once iodide is
inside the cell, it is transported with thyroglobulin into the folli-
cular lumen and oxidized at the apical membrane by Duox2-TPO.
Pendrin, encoded by the PDS gene, was initially proposed as the
potential iodide transporter responsible for transporting iodide
across the apical plasma membrane [165,166]. However, a recent
study by Twyffels et al. suggested that Anoctamin-1, and not
pendrin, is responsible for the export of iodide into the follicular
lumen [167].

Many loss-of-function variants have been identified in several
of the genes implicated in thyroid dyshormonogenesis – thyr-
oglobulin (TG) [168,169], thyroperoxidase (TPO) [170–172], the
sodium-iodide symporter/NIS (SLC5A5) [173–175], pendrin
(SLC26A4) [176,177], iodotyrosine deiodinase (IYD) [178,179],
DUOX2 [180–196] and DUOXA2 [197–200]. All of these genes
possess clearly characterized roles in the thyroid hormone
synthesis pathway [201] with hypothyroidism due to mutations in
the Duox2/DuoxA2 heterodimer being the most common form of
thyroid dyshormonogenesis with an estimated prevalence of 1/
44000 [189]. The importance of Duox2 in thyroid hormone
synthesis grows ever more apparent with the identification of new
DUOX2/DUOXA2 variants and their link to congenital hypothyr-
oidism (CH), most of which ratherdisplay a partial iodide organi-
fication defect (PIOD) than a total iodide organification defect
(TIOD).
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4.1. Duox biochemistry and regulation

The NADPH oxidases Duox1 and Duox2 were originally iden-
tified in thyroid tissue resulting in their initial characterization as
the thyroid oxidases, ThOX1 and ThOX2 [164,202]. However, ex-
pression of Duox1 and Duox2 proteins is not restricted to the
thyroid. Since their initial identification, they have also been found
on the mucosal surfaces of the trachea and bronchi [203], in air-
way epithelial cells [204,205] and in the colon [206]. Furthermore,
recent studies reported that differential upregulation of Duox1 vs
Duox2 occurs in selected tissue types or tumors [207,208]. The
human Duox1 and Duox2 proteins are 1551 and 1548 amino acids
in length, respectively, and share 83% sequence homology. In the
thyroid, TPO oxidizes iodide in the presence of H2O2 generated by
Duox2. Co-immunoprecipitation experiments revealed that Duox
and TPO are located in close proximity on the plasma membrane,
and that their association is upregulated by the protein kinase C
(PKC) pathway and downregulated by protein kinase A (PKA)
[209]. Duox activity seems to be regulated by the local H2O2 levels,
stimulating Duox activity at low concentrations [210], while in-
hibiting it at high concentrations [211]. Low intracellular levels of
H2O2 may support physiological functions such as signal trans-
duction, but an excess may result in mutagenesis, carcinogenesis
or apoptosis [212].

The original term dual oxidases for Duox enzymes transpired
from an additional N-terminal domain that is homologous to
peroxidases including myeloperoxidase (MPO), thyroid peroxidase
(TPO) and lactoperoxidase (LPO) in addition to a Nox2 homology
domain at the C-terminus [213].TheN-terminal domain shares
approximately 20% sequence homology with MPO and as such has
been labeled a peroxidase (PO)-like domain. Linking this extra-
cellular PO-like domain and the Nox domain prototype conserved
in all NADPH oxidases is an additional transmembrane domain
and a cytosolic linker harboring two EF-hand motifs involved in
calcium binding, reminiscent of those found in Nox5 [213]. Al-
though peroxidases are heme-containing proteins, the PO-like
domains of Duox1 and Duox2 lack the conserved histidine re-
sidues, which are present in all other peroxidases [214,215]. This
suggests that the release of H2O2 observed for Duox proteins is
associated with distinct intermolecular features of the Duox/
DuoxA complex. Structurally, the PO-like domain sets Duox apart
from the other members of the NADPH oxidase family, and this
unique region could be directly involved in the conversion of su-
peroxide to H2O2, even though it lacks classical peroxidase activity
[216]. Expression and purification of thehuman and Caenorhabditis
elegans Duox1 peroxidase domains (hDuox1 and CeDuox1, re-
spectively) revealed that heme was associated with CeDuox1, but
not with hDuox1 [216]. Both CeDuox1 and hDuox1 were examined
for peroxidase and superoxide dismutase (SOD) activity. In com-
parison to LPO, hDuox1 exhibited no peroxidase activity, while
only modest activity was observed for CeDuox1. The ability of
Duox1 to act as SOD was also ruled out, as binding of metals re-
quired for SOD activity such as copper, zinc and manganese
[217,218], was absent, and hDuox1 and CeDuox1 PO-like domains
failed to react with superoxide [216]. Conversely, others reported
that IFN-γ treatment of human tracheobronchial epithelial cells
expressing Duox2 induced peroxidase activity that was inhibitable
by sodium azide, suggesting heme peroxidase activity [219]. De-
spite their high level of sequence homology Duox1 and Duox2 are
regulated by different phosphorylation pathways: Duox1 is acti-
vated by protein kinase A (Gs-PKA pathway), while Duox2 acti-
vation occurs through protein kinase C (Gq-phospholipase C (PLC)
pathway) [220]. The transcriptional regulation of Duox1 and
Duox2 by inflammatory cytokines in the lung epithelium suggests
distinct roles for Duox1 and Duox2 proteins in host defense [205].
The Th-2 cytokines IL-4 and IL-13 increased Duox1 expression by
up to 5-fold, while Duox2 was induced up to 25-fold, either with
IFN-γ treatment (a Th-1 cytokine) or with the viral mimic poly-
inosine-polycytidylic acid (poly (I:C)), indicating a role for Duox2
in viral clearance, which was confirmed in several subsequent
studies [136,205,221,222].

Both Duox1 and Duox2 are highly glycosylated with five pu-
tative N-glycosylation sites in the PO-like domains of both proteins
(N94, N342, N354, N461 and N534 in Duox1; N100, N348, N382,
N455 and N537 in Duox2) [223], and it appears that glycosylation
is important for transport to the plasma membrane and cell sur-
face expression of the active protein [223,224]. In a recent study by
Wang et al. [193], a mutation in one of these glycosylation sites,
N100D, was identified in a young Chinese patient. However, the
patient was too young to assess the clinical outcome and type of
CH. Deglycosylation experiments revealed two N-glycosylation
states of both Duox1 and Duox2, corresponding to 190 and
180 kDa proteins [224]. Treatment of canine thyrocytes and
Duox1/2-expressing Cos7 cells with N-glycosidase F or en-
doglycosidase H resulted in a drop in molecular mass to 160 kDa.
Only the 190 kDa form of the protein was resistant to treatment
with endoglycosidase H, indicating that this form is completely
processed and capable of cell surface expression [224]. Early stu-
dies showed that many model cell lines when transfected with
Duox cDNA were incapable of expressing active Duox at the
plasma membrane [224], pointing to the presence of an uni-
dentified component required for Duox maturation. Using data
mining, Grasberger and Refetoff [225] identified two genes,
DUOXA1 and DUOXA2, required for Duox maturation and escape
from the endoplasmic reticulum (ER).

4.2. DUOX2 variants in hypothyroidism

To date, over 40 Duox2 mutations have been described that
directly affect thyroid dyshormonogenesis, resulting in transient to
severe congenital hypothyroidism (Fig. 7, Table 2). In an initial
study by Moreno et al. [180], four DUOX2 variants were identified
in a cohort of CH patients. One patient with severe and permanent
CH carried a homozygous inactivating mutation in Duox2 R434X,
while the other patients were heterozygous for inactivating mu-
tations (Duox2 Q686X, R701X and S965fsX994) and showed a less
severe, transient form of CH. It was concluded that biallelic in-
activating mutations in Duox2 abolish the functional protein
leading to the absence of proper thyroid hormone synthesis and
permanent congenital hypothyroidism, while monoallelic in-
activation of Duox2 result in the milder transient form of CH [180].
This initial hypothesis on biallelic vs monoallelic mutations and
their outcome has since been challenged with the identification of
patients with transient CH harboring compound heterozygous
mutations in Duox2 [185,190]. It is conceivable that the transient
or late-onset nature of CH in these patients is either due to the
nature of the DUOX2 variant present, or to the pairing of a null
mutation with a partially functional mutation, thereby alleviating
the defect as in the Duox2 E327X/H678R mutant [190], or to pa-
tients harboring additional, gain-of-function variants or genetic
modifiers that alter ROS generation. The VEOIBD patients harbor-
ing inactivating heterozygous DUOX2 variants showed normal
thyroid function at diagnosis. One needs also to take into con-
sideration that the entire Duox promoter region on chromosome
15q15 is prone to epigenetic modifications [226], which alter
Duox/DuoxA expression levels.

More than 20 Duox2 mutations have been described in the PO-
like domain. Several are nonsense mutations – E327X [190], R434X
[180,192], K530X [185] – or frameshifts – G418fsX482 [182],
L479SfsX2 [185], Q202RfsX93 [194] – which generate a premature
stop codon resulting in a truncated Duox2 protein witha partial
PO-like domain. Functionally, these mutations were deficient in



Fig. 7. DUOX2 variants associated with hypothyroidism or VEOIBD. Mutations in Duox2 and DuoxA2 are prevalent in congenital hypothyroidism (CH). To date, over 40
DUOX2 variants and 4 DUOXA2 variants have been characterized. Duox2 CH mutations span the entire protein and are depicted as red dots, while DuoxA2 CH mutations are
shown in green. Two DUOX2 variants, recently identified as risk factors for VEOIBD, are indicated by black dots. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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H2O2 production. The Duox2 R434X mutant was associated with
severe permanent CH in patients harboring the variant on both
alleles [180,192]. Duox2 K530X was identified in two sisters from a
Japanese cohort of patients with transient CH and was present as
compound heterozygous Duox2 E876K:S1067L mutant [185]. Ele-
vated TSH levels were recorded at birth, which returned to the
normal range following two years of L-T4 supplementation. It is
still unresolved why heterozygous Duox2 mutations cause either
complete deficiency in H2O2 generation or result in transient CH.
One might speculate that the closely related Duox1 enzyme, which
is expressed in the thyroid at much lower levels [164], is capable of
generating sufficient H2O2 to compensate for inadequate Duox2
activity. The recent development of Duox1 vs Duox2 specific an-
tibodies might shed light on potential compensatory co-localiza-
tion of Duox1 with TPO in patient tissue [227,228].

In addition to the peroxidase homology domain, a large num-
ber of Duox2 mutations have been described in the first cytosolic
loop containing the EF-hand motifs. Two particular mutants,
Duox2 R842X and E879K, reside within the EF-hand domains and
were identified in patients with compound heterozygosity (Duox2
R376W/R842X, Duox2 K530X/E879K), leading to transient CH
[181,185]. It is likely that mutations occurring in these domains
reduce calcium binding and thus diminish Duox2 activity; how-
ever no functional studies were undertaken. De Marco et al. [188]
described five Duox2 mutations within this cytosolic region
(H678R, R701Q, A728T, S965fsX994 and P982A) in Italian patients
with CH or subclinical hypothyroidism (SCH). Functional studies
revealed that the Duox2 S965fsX994 and A728T mutants were
defective in H2O2 production, while Duox2 H678R, R701Q and
P982A were functional in model cell lines upon transfection. The
Duox2 H678R mutant, located between the first transmembrane
helix and the first EF hand domain, is a common variant found
among the Japanese population and appears to occur with high
frequency in transient CH [185,189,190,195]. Cell-based studies
revealed that Duox2 H678R is a functional SNP retaining ap-
proximately 80% of its H2O2-generating capacity [189]. A case of
pseudodominant inheritance (the inheritance of an autosomal
recessive trait imitating an autosomal dominant pattern) in tran-
sient CH was reported in a Japanese family, where the patient and
her two siblings presented with the compound heterozygous
mutation Duox2 H678R/Y1347C [195]. The mother presented with
SCH due to a biallelic Duox2 H678R mutation, while the father was
symptom-free, harboring a monoallelic Duox2 Y1347C mutation.
The replacement of Tyr1347 with Cys may affect FAD binding in
Duox2. While expression levels of Duox2 Y1347C were comparable
to wild type protein, this mutant generated 40% less H2O2, sug-
gesting a partial defect in electron transfer [195]. One explanation
for the occurrence of pseudodominant inheritance is a high carrier
frequency for the autosomal recessive trait. Interestingly, Japanese
individuals who are homozygous for Duox2 H678R are not ne-
cessarily affected by CH, since the frequency of the genotype (1/
820) is higher than the prevalence of CH [189].

Although it is evident that Duox2 mutations play a prominent
role in CH, the extent to which other factors (epigenetics, iodide
status of the mother during pregnancy) may influence the onset of
the disease is still uncertain. Wang et al. [193] reported two pa-
tients with the same monoallelic Duox2 mutation, A1206T, located
in the last intracellular loop (termed D-loop in Nox). Both were
diagnosed with CH after neonatal screening, however, upon
treatment with L-T4 and subsequent withdrawal of this treatment,
one patient was diagnosed with transient CH, while the other
patient was diagnosed with permanent CH. Although TPO and TG
mutations were not detected, it cannot be ruled out that a second
loss-of-function mutation in the other allele may have occurred
[193]. The first adult case of Duox2-associated CH was described
by Ohye et al. [184], identifying a novel R1110Q mutation in the
second intracellular domain of Duox2 (termed B-loop in Nox). The
patient was homozygous for Duox2 R1110Q and, although biallelic
mutations are believed to result in total organification defect, the
onset of the disease did not occur until the patient was in her 40s
and the perchlorate discharge test, performed at age 56, was
suggestive of PIOD. Although no functional analysis was per-
formed on Duox2 R1110Q, a previous study by von Lohneysen et al.
[74] indicated that ROS production by Nox2 and Nox4 was de-
pendent on the respective Nox B-loops. Thus, it is plausible that
any mutation in this region of Duox2 could have a dramatic effect
on the H2O2-generating ability of the protein. The Duox2 missense
mutant R1334W, located in the second FAD-binding motif of
Duox2, was identified in a cohort of Korean families, who pre-
sented with CH in conjunction with eutopic thyroid glands [194].



Table 2
Summary of Duox2 mutations in congenital hypothyroidism.

Duox2 mutation ROS production Protein expression Hypothyroidism (permanent/
transient)

Literature

Q36H N.D. N.D. Persistent Varela et al.
N43Y Decreased N.D. Permanent Jin et al.
A72S Decreased N.D. Permanent Jin et al.
P96L Decreased N.D. Permanent Jin et al.
N100D N.D. N.D. N.D. Wang et al.
P138L Mildly increased N.D. Permanent Muzza et al.
L171P Unchanged N.D. Permanent Muzza et al.
Q202TfsX99 Decreased N.D. Permanent Jin et al.
G206V Mildly decreased N.D. Permanent/transient Jin et al.
P303R Mildly decreased N.D. Permanent Muzza et al.
ins602g-fsX300 N.D. N.D. N.D. Pfarr et al.
E327X N.D. N.D. Transient Kasahara et al.
P341S Decreased N.D. N.D. Muzza et al.
R376W N.D. N.D. Persistent mild Vigone et al.
G418fsX482 N.D. N.D. Persistent Varela et al.
R434X N.D. N.D. Permanent Moreno et al., Cangul et al.
L479fsX2 N.D. N.D. Transient Maruo et al., Yoshizawa et al.
G488R Decreased N.D. Transient Narumi et al., Jin et al., Yoshizawa et al.
D506N N.D. N.D. N.D. Pfarr et al.
T522PfsX64 N.D. N.D. Permanent Muzza et al.
K530X N.D. N.D. Transient Maruo et al.
Q570L Decreased N.D. Permanent Muzza et al.
K628RfsX10 N.D. N.D. Transient Maruo et al.
A649E N.D. N.D. Transient Maruo et al.
S660L N.D. N.D. Permanent Wang et al.
H678R Mildly decreased Unchanged Permanent/transient Maruo et al., Abe et al., De Marco et al., Narumi et al., Jin et al.,

Kasahara et al., Muzza et al.
Q686X N.D. N.D. Transient Moreno et al.
R701X Mildly Decreased Unchanged Transient Moreno et al., Muzza et al., De Marco et al.
A728T Decreased Decreased at cell

surface
Transient De Marco et al.

W734X N.D. N.D. Permanent Wang et al.
R842X N.D. N.D. Persistent mild Vigone et al.
gIVS19-2A4C N.D. N.D. Persistent Varela et al.
M866R Abolished N.D. Permanent Muzza et al.
E879K Decreased N.D. Permanent/transient Jin et al.
R885Q Decreased N.D. Permanent/transient Maruo et al., Jin et al.
S911L Decreased Decreased et cell

surface
Mild persistent Tonacchera et al.

S965fsX994 Decreased Decreased at cell
surface

Permanent/transient/Subclinical Moreno et al., Varela et al., De Marco et al.

P966SfsX29 N.D. N.D. Muzza et al.
P982A Unchanged Unchanged Permanent/transient De Marco et al., Muzza et al.
C1052Y Decreased Decreased at cell

surface
Subclinical Tonacchera et al., Muzza et al.

S1067L Mildly increased N.D. Mild persistent/transient Maruo et al., Muzza et al.
R1110Q Decreased N.D. Transient Ohye et al., Narumi et al., Wang et al., Jin et al.
I1080T Decreased N.D. Late-onset/permanent Narumi et al.
A1123T Decreased N.D. Transient Jin et al.
A1131S N.D. N.D. Permanent Wang et al.
Y1150C Decreased Decreased at cell

surface
Permanent De Marco et al., Muzza et al.

L1160del Decreased N.D. Subclinical Narumi et al.
W1181G N.D. N.D. Transient Wang et al.
A1206T N.D. N.D. Transient Wang et al.
R1267W N.D. N.D. Transient Wang et al.
A1323T N.D. N.D. N.D. Satoh et al.
R1334W Decreased N.D. Normal thyroid at birth Jin et al.
L1343F N.D. N.D. Permanent Satoh et al.
Y1347C Decreased Unchanged Normal thyroid at birth Abe et al.
G1518S Abolished Decreased at cell

surface
Transient Hoste et al.

E1546G Decreased N.D. Transient Muzza et al.
Permanent

*N.D.¼not determined.
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Functionally, this Duox2 mutation generated approximately 50%
less H2O2 than wild type Duox2. Recently, a second Duox2 variant
affecting the first FAD-binding domain has been identified [196].
This Duox2 A1323T mutation was found in association with a
second Duox2 mutation (L1343F) on the same allele, and a
heterozygous mutation for TSHR (R450H) on the second allele.
This patient developed CH at the age of 20 months and required a
dose of L-T4 usually administered to children with permanent CH
to keep serum TSH levels within the normal range [196]. It is likely
that the combination of Duox2 and TSHR variants contributed to
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the severity of the phenotype in this particular case.

4.3. DuoxA2 biochemistry and DUOXA2 variants in hypothyroidism

Both DUOX and DUOXA genes are located in a head-to-head
orientation on chromosome 15, with each of the DUOXA genes
sharing the core promoter region with their respective partner
DUOX gene, enabling co-expression of Duox/DuoxA complexes
[225]. Co-expression of DuoxA2 with Duox2 was critical for the
exit of Duox2 from the ER and allowed surface expression of the
protein [225]. Although the DuoxA proteins were initially char-
acterized as ER-resident proteins allowing the transition of Duox
from the ER to the Golgi [225], later studies showed that DuoxA1
and DuoxA2 could escape the ER and translocate as heterodimers
with their matched Duox partner to various membrane compart-
ments [227,229]. In both studies, Duox1 and Duox2 were co-ex-
pressed with DuoxA1, DuoxA2 and several DuoxA1 splice variants
to explore their ability to form stable complexes, thereby facil-
itating targeting to the cell surface and catalytic activity. Of the
four DuoxA1 splice variants investigated (DuoxA1-1, DuoxA1-2,
DuoxA1-3 and DuoxA1-4), Duox1/DuoxA1-3 formed the preferred
heterodimer for optimal Duox1 activity. Both DuoxA2 and
DuoxA1-3 were capable of targeting Duox2 to the plasma mem-
brane, albeit to different membrane subdomains. Dependent on
the cellular context, H2O2 generation was somewhat more efficient
for the Duox2/DuoxA2 complex [227,229]. The mismatched pairs,
Duox2/DuoxA1-3 and Duox2/DuoxA1-4 generated low levels of
superoxide, suggesting that forced formation of mismatched het-
erodimers leads to superoxide leakage due to incorrect complex
formation [229]. A recent study using truncated and chimeric
DuoxA1 and DuoxA2 constructs [230], revealed that in the Duox1/
DuoxA1 complex, the C-terminus of DuoxA1 was crucial for H2O2

generation, whereas in Duox2/DuoxA2 the N-terminal domain of
DuoxA2 was involved in promoting the catalytic activity of the
complex. Therefore, if Duox2 is capable of forming a functional
complex with both DuoxA1 and DuoxA2, it seems plausible that
Duox2 can be present, for example in the thyroid, in two different
active conformations, generating superoxide if it is matched with
DuoxA1 and H2O2 when preferentially paired with DuoxA2.
Ueyama et al. [231] recently identified the first extracellular loop
of Duox proteins as an area that prevents superoxide leakage, with
the Duox1 loop being more effective. This superoxide leakage
seems to occur when the stabilization and maturation of the Duox/
DuoxA complex is disrupted. Additionally, three N-glycosylation
sites (N84, N109 and N121), located in the large first extracellular
loop between transmembrane domains 2 and 3 have been iden-
tified in both DuoxA1 and DuoxA2, but their contribution to
complex formation with Duox1/Duox2 is unknown [225].

As heterodimerization is essential for the correct localization
and catalytic activity of the Duox2/DuoxA2 complex, it is not
surprising that DUOXA2 variants have been identified in CH. So far,
four mutations associated with congenital hypothyroidism have
been identified in DuoxA2-I26M, Y131X, C189R and Y246X
[197,199,200]. The first mutation, DuoxA2 Y246X, was identified in
a Chinese patient with CH due to PIOD, leading to a truncated
protein lacking the fifth transmembrane region and C-terminal
cytoplasmic domain [200]. Cell-based studies suggested that the
mutant DuoxA2 Y246X protein may undergo rapid turnover at the
site of synthesis, leading to lower steady-state expression com-
pared to the wild type protein. Analysis of DuoxA2 Y246X revealed
diminished protein expression and loss of DuoxA2 function upon
co-transfection of Duox2 in model cell lines. N-glycosylation of the
mutant DuoxA2 protein was not altered, as determined by im-
munoblot analysis, suggesting that the remaining protein was
correctly inserted into the membrane [200]. Although the patient
was homozygous for the DuoxA2 Y246X nonsense mutation, a
milder form of CH was observed, possibly indicating that DuoxA1
may compensate for DuoxA2. Co-expression of Duox2 with
DuoxA1 supported this hypothesis, since Duox2 was shown to be
partially rescued by DuoxA1, although superoxide instead of H2O2

was generated [200]. The Y246X mutation is described in 3 out of
4 studies examining DuoxA2 mutations [197,198,200], indicating
that this specific variant may occur at a high frequency in Chinese
cohorts with congenital hypothyroidism. Liu et al. [198] recently
described a novel heterozygous missense DuoxA2 mutation, I26M,
in a patient with mild transient CH, where the steady-state ex-
pression of the protein was comparable to wild type DuoxA2 de-
spite complete deficiency in H2O2 generation. It is conceivable that
replacement of DuoxA2 Ile26 with Met introduces an alternative
start site, deleting the N-terminus of DuoxA2, which is important
for activity of the Duox2/DuoxA2 complex.

Cysteine residues play a key role in the structure and function
of proteins by promoting stability and in some cases by reversible
deactivation mechanisms through the formation of disulfide bonds
[232]. Mutations of certain Duox2 cysteine residues caused ER
retention [232,233]. Similarly, mutating Cys579 in Duox1 and the
corresponding Cys582 in Duox2 completely blocked trafficking to
the membrane [234]. Examining the role of specific cysteine re-
sidues in the PO-like domain revealed an intramolecular disulfide
bond between Cys124 in the PO-like domain and Cys1162 in the
second extracellular loop of the Nox domain, which was crucial for
structure and functionality of Duox2 [235]. The formation of this
disulfide bond in the ER appears to be a key step in transporting
the Duox2/DuoxA2 complex to the membrane. An additional pair
of cysteines, Duox2 Cys568 and Cys582, also located in the PO-like
domain, were part of intermolecular disulfide bridges with Cys167
and Cys233 in the extracellular loops of DuoxA2, once again pro-
moting the stability of the overall complex [235]. Interestingly,
Cys167 is conserved in both DuoxA1 and DuoxA2, possibly also
permitting linkage of DuoxA1 to Duox2 as this complex is func-
tionally active [227,229]. These studies did not address the im-
portance of Cys189, although replacing this conserved cysteine
with arginine (DuoxA2 C189R) caused mild CH in a patient [199].
Functional cell-based experiments revealed the absence of protein
expression or ROS generation when DuoxA2 C189R was co-trans-
fected with Duox2 in HeLa cells, suggesting that the Duox2 C189R
protein is unstable and rapidly degraded, preventing complex
formation [199].

Mutation or deletion of Duox2 and/or DuoxA2 in mice mi-
micked human disease by causing congenital hypothyroidism
[236,237]. Grasberger et al. [237] reported that mice deficient in
DuoxA1 and DuoxA2 (duoxa� /�) showed severe delays in post-
natal development, impaired linear growth of long bones and
considerably enlarged thyroid glands. These traits, taken together
with decreased T4 and serum T3 levels, and markedly elevated
TSH, were indicative of severe hypothyroidism in duoxa� /� mice.
Daily L-T4 replacement treatment of these mice completely re-
versed this phenotype, with bone growth, weight gain, fertility
and circulating levels of T3 in duoxa� /� mice indistinguishable
from that of wild type littermates. Functionally, deletion of DuoxA
in these mice led to a maturation defect of Duox proteins, with
mice expressing both Duox proteins in the immature, ER-resident
form. As expected, deficiency in H2O2 production in the thyroid
tissue of duoxa� /� mice was observed, reiterating the necessity of
DuoxA for functional expression of Duox and the role of Duox in
thyroidal H2O2 generation [237]. Studies in duox2thyd/thyd mice
harboring aDuox2 V674G mutation have provided a genetic model
for studying Duox2 function in the thyroid [238]. Mice homo-
zygous for the thyd mutation showed reduced weight (50% less)
and thin bones. The thyroid glands of mutant mice were goitrous
and contained few normal follicles, with serum T4 levels ap-
proximately 10-fold lower than wild type controls and
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significantly increased TSH levels [238]. Transfection of theDuox2
V674G mutant into a DuoxA2-containing model cell system
showed complete loss of catalytic activity [236]. This loss of ac-
tivity was due to a combination of factors such as decreased pro-
tein expression and insufficient targeting to the plasma mem-
brane. However, when Val674 was mutated to either Leu or Thr,
ROS production returned to levels comparable to Duox2 wild type,
suggesting a need for bulkier aliphatic and/or hydrophobic amino
acids at the Duox2 Val674 site [236]. Only Duox2, but not Duox1, is
required for thyroid hormone synthesis, as Donko et al. [239] re-
ported normal growth and serum thyroxin levels in Duox1
knockout mice.

Since the first description of DUOX2 variants as genetic cause of
congenital hypothyroidism, it has become apparent that additional
factors influence the degree of disease progression associated with
individual mutations. In some cases, mutations in other genes
associated with CH, such as TPO or TSHR, have been identified
[189,194]; in others, the iodine status of the mother at the time of
birth may have played a role in the nature of CH observed [190].
Similarly, epigenetic factors cannot be excluded in the determi-
nation of whether certain Duox2 mutations lead to permanent or
transient congenital hypothyroidism in individual cases. Regard-
less of additional contributing factors, it is apparent that deficiency
in ROS production due to the absence or inefficiency of Duox2
catalytic activity, results in the manifestation of congenital
hypothyroidism.
5. Discussion

Pathologies causally linked to ROS deficiency due to loss-of-
function mutations in genes encoding for various NADPH oxidase
complexes demonstrate not only the importance of ROS for spe-
cialized functions (microbial killing, thyroid hormone synthesis),
but also indicate hyperinflammation as result of reduced or absent
ROS generation. This rather unexpected phenotype is connected to
ROS due to their role as a key intracellular signaling molecule,
controlling redox-regulated pathways and transcription factors,
and altering the activity of kinases, phosphatases and GTPases by
oxidative modification. Other enzymes capable of generating ROS
as a byproduct of their principal functions will cause disease when
disabled by mutational events, but variants of these enzymes often
produce even more ROS, and directly associating increased ROS
levels causally with the observed pathology is challenging. For
example, mtDNA mutations in NADH dehydrogenase subunit
6 cause deficiency in the activity of the respiratory complex I (CI),
leading to overproduction of ROS. These mutations were con-
nected to an increased metastatic potential of tumor cells in mice
[240], although other studies connected CI mutations to modula-
tion of tumor proliferation via stabilization of hypoxia-inducible
factor 1α and not by ROS involvement [241].

If disrupting the redox balance is linked to inflammatory dis-
ease, one might expect that genetic polymorphisms in antioxidant
genes constitute a risk factor. Only very little information is cur-
rently available in this regard. For rheumatoid arthritis (RA),
common polymorphisms in SOD2, SOD3 or CAT were either not
associated with risk or severity of RA [242,243], or showed a lower
mean disease activity score [243]. The same CAT promoter region
polymorphism (C-262T) was proposed to be a risk factor for ul-
cerative colitis, although the patient cohort was rather limited
[244]. The over 170 SOD1 variants associated with familial amyo-
trophic lateral sclerosis (ALS) may not lead to disease due to their
loss of the enzyme's antioxidant function. Recent studies highlight
changes in localization, folding and subsequent aggregation as
unfavorable SOD1 alterations reflecting theclinical phenotypes of
ALS [245,246]. In contrast to the genetic association of Nox2 and
Duox2 oxidases to disease (CGD, hypothyroidism), which is re-
flected in experimental mouse models, the observed susceptibility
to disease due to inherited or private polymorphisms or mutations
in redox-associated genes will necessitate interrogating other risk
genes or environmental factors, as IBD genetics indicate beyond
doubt. Knowledge regarding the interplay between these factors is
steadily increasing, and will inform future therapeutic options.
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