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Interacting dynamical systems abound in nature, with examples ranging from biology and

population dynamics, through physics and chemistry, to communications and climate.

Often their states, parameters and functions are time-varying, because such systems

interact with other systems and the environment, exchanging information and matter. A

common problem when analysing time-series data from dynamical systems is how to

determine the length of the time window for the analysis. When one needs to follow

the time-variability of the dynamics, or the dynamical parameters and functions, the

time window needs to be resolved first. We tackled this problem by introducing a

method for adaptive determination of the time window for interacting oscillators, as

modeled and scaled for the cardiorespiratory interaction. By investigating a system of

coupled phase oscillators and utilizing the Dynamical Bayesian Inference method, we

propose a procedure to determine the time window and the propagation parameter of

the covariance matrix. The optimal values are determined so that the inferred parameters

follow the dynamics of the actual ones and at the same time the error of the inference

represented by the covariance matrix is minimal. The effectiveness of the methodology

is presented on a system of coupled limit-cycle oscillators and on the cardiorespiratory

interaction. Three cases of cardiorespiratory interaction were considered—measurement

with spontaneous free breathing, one with periodic sine breathing and one with a-periodic

time-varying breathing. The results showed that the cardiorespiratory coupling strength

and similarity of form of coupling functions have greater values for slower breathing,

and this variability follows continuously the change of the breathing frequency. The

method can be applied effectively to other time-varying oscillatory interactions and carries

important implications for analysis of general dynamical systems.
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1. INTRODUCTION

Dynamical systems are widespread in nature, with examples
including biological, chemical, climatological and social systems.
Often they interact with other systems and the environment,
exchanging information and matter (Winfree, 1980; Haken,
1983; Kuramoto, 1984; Pikovsky et al., 2001; Strogatz, 2001).
This makes their states, parameters and functions time-
varying (Kloeden and Rasmussen, 2011; Stankovski, 2013;
Suprunenko et al., 2013; Lehnertz et al., 2014).

Biological dynamical systems form an important group of
such systems. They are the central focus to medicine and
biomedicine. Different physiological systems reflect the function
of human bodily organs and processes, directly linked to
various states and diseases (Peskin, 1981; Levy et al., 2006).
Understanding and being able to detect certain physiological
characteristics of such systems and functions is thus of great
importance and relevance to science with direct implications for
the human well-being.

Such biological systems are usually not isolated, but interact
between each other (Bashan et al., 2012). The cardiorespiratory
interaction, as central mechanism of the cardiovascular system,
has been studied extensively in relation to different states
and diseases (Schäfer et al., 1998; Stefanovska et al., 2000;
Stankovski et al., 2012; Iatsenko et al., 2013; Kralemann
et al., 2013a; Schulz et al., 2018; Grote et al., 2019).
The cardiac and the respiration signals can be acquired
by non-invasive measurements, making the investigations of
cardiorespiratory interaction easily accessible. Both systems have
periodic oscillatory dynamics, which makes them also very
convenient for modeling in terms of their phase dynamics
(Rosenblum et al., 2002; Stankovski et al., 2012; Kralemann
et al., 2013a; Ticcinelli et al., 2017). Similarly to the other
open biological systems, the dynamics of the cardiorespiratory
system can also be time-varying, including a situation where
the frequency, the coupling strength or the coupling function
are varying in time—which adds a challenging complexity when
analysing such data.

Different aspects of the cardiorespiratory interaction have
been studied, including phase synchronization, coupling
strength/directionality and the coupling functions (Rosenblum
et al., 2002; Paluš and Stefanovska, 2003; Voss et al., 2008;
Stankovski et al., 2012; Kralemann et al., 2013a; Hagos et al.,
2019). The latter describe the functional mechanism of how the
interactions occur and develop (Stankovski et al., 2017). As such,
the coupling functions have attracted much attention recently,
with many publications describing novel aspects of interaction
mechanisms of the cardiorespiratory and other interactions
across different scientific fields (Kiss et al., 2007; Ranganathan
et al., 2014; Stankovski et al., 2014b; Ashwin et al., 2019; Moon
andWettlaufer, 2019; Rosenblum et al., 2019). The main focus of
the current paper will be also on coupling functions and how to
infer optimally their time-variability.

Even though physiological dynamical systems, including the
all-important cardiorespiratory interaction, are of great value
and importance, when analysing their data, inevitable, one faces
a problem of how to determine the length of the time window.

Namely, when analysing the time-series data one needs to be able
to follow the time-variability of the dynamics, i.e., the dynamical
parameters and functions, but in order to do so, one needs to
determine first the length of the time window. Then the data
are usually analyzed through consecutive time windows, i.e.,
data portions of the time-series. Here, the length of the window
will determine the time-resolution of the resulting parameters
and functions. The main requirement for the window length is
usually a tradeoff between (i) long enough time window to have
the required amount of data for the methods to work correctly
and (ii) short enough time window to get as good as possible
time-resolution of the resulting parameters and functions. These
conflicting requirements, (i) and (ii), make the choice for the
window length very difficult and ambiguous, hence, usually, the
time window length is a free parameter and it is chosen based on
the subjective experience and intuition of the expert analyst.

In this paper, we developed a procedure for determination
of the time window based on data analyses, as opposed
to the previous practice of arbitrary choice. We extend a
method for Dynamical Bayesian Inference of time-varying
dynamics in the presence of noise, to utilize the inferred
covariance matrix in order to determine the best choice of
the time window. The choice is based on the inferred results
as a tradeoff between low parameter error and low noise
strength error. The method is tested and demonstrated on
numerical phase and limit-cycle oscillators and on time-varying
cardiorespiratory interactions.

2. METHODS AND MODELING RESULTS

2.1. Dynamical Bayesian Inference
In the context of the method of interest, the dynamical inference
refers to a model inference that will describe the solution
of a system of differential equations via time series analysis.
When two oscillators interact sufficiently weakly, their motion is
effectively approximated with their phase dynamics (Kuramoto,
1984; Nakao et al., 2014). If we describe the system phase as a
generic monotonic change of the variables, the dynamical process
can be presented as:

ϕ̇i = ωi + qi(ϕi,ϕj)+ ξi, (1)

where ϕi is the phase of the i-th oscillator, ωi is its phase velocity,
qi is the coupling function between the two oscillators, and
ξi is the noise. It is assumed that the noise is white Gaussian
ξi(t)ξj(τ ) = δ(t − τ )Eij, where the symmetric matrix Eij
incorporates the information about the correlation between the
noises of the different oscillators.

The periodic behavior of the system indicates that the coupling
function can be represented by a Fourier decomposition:

qi(ϕi,ϕj) =

∞
∑

k=1

∞
∑

s=1

ci;k,se
i2πkϕiei2πsϕj (2)
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Usually, the dynamics will be well-described by a finite number K
of Fourier terms, hence Equation (1) can be written as:

ϕ̇i =

K
∑

k=−K

ck
i8i,k(ϕi,ϕj)+ ξi(t), (3)

where i = {1, 2},81,0 = 82,0 = 1, c0
i = ωi and the rest 8i,k

and ck
i are the K most important Fourier components (in this

work we used K = 2). If a white Gaussian noise is assumed
〈ξi(t)ξj(τ )〉 = δ(t − τ )Eij, the task is than reduced to inference
of the unknown parameters of the model:

M =
{

ck
i,Eij

}

. (4)

For a given time series of observed phases χ =
{

ϕi,n ≡ ϕi(tn)
}

, (tn = nh, i = 1, 2), the Bayesian statistics
allows us to determine the posterior density, using the prior
density pprior(M) as well as a likelihood function l(χ |M):

pχ (M|χ) =
l(χ |M)pprior(M)

∫

l(χ |M)pprior(M)dM
. (5)

In the Dynamical Bayesian Inference (Smelyanskiy et al., 2005;
Duggento et al., 2012; Stankovski et al., 2012, 2014a) one makes
certain initial assumptions about the parameters of the model
that describes the observed time series. Then, the Bayesian
theorem is successively applied in a recursive stepwise manner
and in each following step of the inference, the inferred model
parameters are getting closer to their real value. With each step of
the inference, one obtains the value of the concentration matrix
4 (which is the inverse of the covariance matrix 4 = 6−1).

2.1.1. The Challenge of the Time Window and the

Propagation Parameter
When using the aforementioned method, the time series of the
phases of the oscillators are acquired by measurements followed
by signal processing. The time series can be considered as time
sequences of blocks of samples. Each block incorporates the
samples in a certain time interval, hence the duration of the
block determines the time window tw. The Bayesian inference
is performed for each block and values for the parameters of
the model and the couplings of the oscillators are obtained. The
output values of the previous block are used as input values for
the inference of the current block.

The method comprises a dynamical inference, so it needs
to follow the time evolution of the set of parameters c and
at the same time to enable separation of the dynamical effects
from the noise. To achieve such separation, in the propagation
sequence of the method, the input covariance matrix for the

following block 6
(n+1)
prior is not taken as simply equal to the

output covariance matrix of the current block 6n
post , but it is

modified by the diffusion matrix 6diff . The diffusion matrix
is defined by the normal diffusion of each of the parameters.
Hence, the input covariance matrix for the following block is a

convolution of the two current normal distributions 6
(n+1)
prior =

6n
post + 6diff (Duggento et al., 2012; Stankovski et al., 2012). The

covariance matrix 6diff describes which part of the dynamical
field defined by the oscillators is changed and the intensity
of those changes. The elements of this matrix are given by
(6diff )(i,j) = ρijσiσj, where σi is the standard deviation of
the diffusion of the parameter ci, after time window tw from
the previous to the next block of samples, and ρ(i,j) gives the
correlation between the changes of the parameters ci and cj. A
special case is investigated, when there is no correlation between
the parameters, i.e., ρ(i,j) = 0, for i 6= j and each standard
deviation σi is a known fraction of the corresponding parameter
ci: σi = pwci, where pw, called the propagation parameter, is
a constant parameter. The index w in pw emphasizes that the
propagation parameter is determined for a time window of length
tw. In this way the propagation parameter defines how much
variability should the method search for and infer. Being an
input in the covariance matrix 6diff it expresses our belief about
which part of the dynamics has changed, and the extent of that
change. This is a tradeoff between inferring correctly the time-
varying parameters and not inferring too much random noise
perturbations. In the earlier works, this propagation parameter
pw was a free parameter chosen arbitrarily.

In the method of Dynamical Bayesian Inference (Duggento
et al., 2012; Stankovski et al., 2012) the time window and
the propagation parameter are free parameters and they are
arbitrarily selected. The purpose of this research is to propose a
method to determine the values of these two parameter in order
to optimize the inference of the parameters and the noise.

As an indicator of quality of the inference the covariance
matrix 6 is used. By definition, this is a matrix whose element
in the (i, j) position is the covariance between the i-th and j-
th element of a multidimensional random vector. The elements
on the main diagonal of the covariance matrix are the variances
of the variables, i.e., the covariance of each element with itself.
Since the square of the variance is the standard deviation, by
minimizing the sum of squares of the elements of the covariance
matrix we are minimizing the standard deviations of the inferred
model parameters. Therefore, we use the sum of squares of all
the elements of the covariance matrix Q6 = Sumi,j(6i,j

2), called
quadrature covariance matrix, as an indicator of deviations of the
inferred parameters from the real intrinsic parameters.

2.2. Determination of the Time Window
In order to developed and present the procedure for
determination of the time window we investigate first two
coupled phase oscillators in presence of noise:

ϕ̇1 = ω1(t)+ a1sin(ϕ1)+ a3(t)sin(ϕ2)+
√

E11ξ11(t)

ϕ̇2 = ω2 + a2sin(ϕ1)+ a4sin(ϕ2)+
√

E22ξ22(t).
(6)

Here, ω1 and ω2 are parameters for the angular frequency of
the corresponding oscillators, a1 and a4 are the parameters of
their own dynamics, and a2 and a3 are the coupling parameters
for the direct influence from the other oscillator. Two of the
parameters are varied periodically in time, the frequency ω1(t)
and the coupling parameter a3(t). Uncorrelated Gaussian white
noises are used. In this way the true values of the parameters of
the oscillatory systems are known in advance.
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From these oscillatory systems we generate numerical signals
which we then introduce as input data for the Dynamical
Bayesian Inference. As a result we obtain the inferred values of
the parameters and the noise, as well as the quadrature matrix
Q6 for each block of the inference. Apart from Q6 , we evaluate
the error difference between the inferred parameters ci and their
true values c̃i:1ci = ci− c̃i, and the same was done with the noise
strengths 1Ei = Ei − Ẽi. We investigate the dependance of Q6 ,
1ci and 1Ei on the time window tw, for different values of the
propagation parameter pw.

For the system of two coupled phase oscillators (Equation 6)
we simulated multiple time series of 2,000 s each, with sampling
step h = 0.01, corresponding to a 10 ms step. These time series
are the input data for the Dynamical Bayesian Inference. In the
study the parameters a1, a2, and a4 are constant: a1 = 0.8, a2 = 0,
and a4 = 0.6. The frequency ω2 was varied in the interval from
0.785 to 31.4. The time-varying parameters are given by:

ω1 = ω1,const − 0.5sin2π f1t

a3 = a3,const − 0.3sin(2π f3t + π/2),
(7)

where a3,const was either 0.8 or 1.3, ω1,const was varied in the
interval 0.785–62.8, and the oscillator frequencies f1 and f2 were
changed in the interval 0.001–0.02. For the noise (E11, E22)
values in the interval (0.01, 10) were taken. For these values we
investigated the dependence of Q6 , 1ci and 1Ei on the time
window tw and the propagation parameter pw.

The typical look of the dependance ofQ6 on the time window
tw and the propagation parameter pw is given in Figure 1A. The
function of the quadrature matrix Q6 on the time window tw
shows a maximum that depends on the value of the propagation
parameter pw. We have determined that the maximum is
obtained for the value of the time window tw,max = 1/pw. As the

relationship shows, with decreasing value of pw, the maximum is
shifted to greater values of tw (as shown on Figure 1B).

The performed analysis showed that for all combinations of
tw and pw that place the inference on the left of the maximum
(tw < tw,max) of the corresponding curve Q6(tw), the inference
does not follow the time change of the parameters—shown on
Figure 1C. It appears that such combinations of tw and pw do
not allow the inference to reach the amplitude of change of
the time-varying parameter. We will call this behavior as the
delayed-inference regime.

For tw > tw,max, the value of Q6 steadily decreases (as shown
in Figure 1) and the deviations of the inferred parameters from
their true values also decrease. However, values for the time
window that are too large also prevent appropriate inference of
the time changes of the parameters simply because there are too
few blocks for their representation.

Based on these results we conclude that the time window
should have a value as high as possible, in order for Q6 to
be as low as possible, but at the same time a value that is
still low enough to be able to accurately represent the dynamic
of the parameter that is changing with the highest frequency.
Therefore, in the analysis, we performed an initial estimation of
the time change of the parameters of the model by using a small
arbitrary value for the time window and an initial value of the
propagation parameter pw = 0.2. We use small time window
in order for inferred parameters to be able to describe the fast
changes of their true values. Then we performed a fast Fourier
transform on the initial estimation of the parameters from which
we determined the highest frequency of the time-varying change
of the parameters. We denote this frequency as fmax and the
corresponding period as Tmin = 1/fmax. From our analysis of
the time-varying ability we concluded that the minimal number
of blocks needed to accurately describe this fastest changing

FIGURE 1 | (A) Typical look of the dependance of Q6 on the time window tw and the propagation parameter pw for coupled phase oscillators (Equation 6). (B) Q6 as

a function of the time window tw for two different values of the propagation parameter pw. (C) The inferred value of a parameter ω1,inferred and the known value of the

same parameter ω1,known.
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parameter is eight blocks, i.e., the time window should be taken

as tw,opt = Tmin
8 = 1

8fmax
. That will give a resolution of eight

points to describe the fastest oscillating inferred parameter. For
all the other parameters there will be more points describing
their oscillations.

2.3. Determination of the Propagation
Parameter
From the numerical analysis we determined that the inferred
covariance matrix Q6 increases with the increase of the
propagation parameter pw up to saturation for very big values
of pw (pw > 7 in our simulations). Hence, in order to get
the best possible inference, we should use the smallest possible
propagation parameter. However, as we have shown in Figure 1,
for small propagation parameter, smaller than pw,min = 1/tw,max

the inference does not follow the time change of the parameters
and is in the delayed-inference regime.

To determine the optimal value of the propagation parameter
we have investigated the difference between the inferred
parameters and their known value. We have evaluated this
difference in two different ways.

One was to look at the graphs like the one shown in Figure 1C

for different values of the time window tw and by evaluating the
difference between the inferred parameter and its known value
to determine the minimal value for tw for which the inferred
parameter starts to follow the change of the known parameter.
This will be the tw value when the 1ci stops manifesting periodic
changes in time.

The second way was to calculate the mean square error (MSE)
between the time series of the inferred parameter and the time
series of its known value (excluding the first two blocks of the
inference). The mean square error was calculated for different

values of the propagation parameter and a graph MSE = f (pw)
was constructed for different tw = tw,opt values. These graphs
showed a minimum that gives the pw value for which the
correspondence between the inferred and the known value of the
parameters is the best.

We have performed this evaluation for different frequencies
of change of the parameters of the model and for different
noises. The time window values used in these simulations were
the optimal values (tw,opt). From these analysis we have found
that the optimal value for the propagation parameter depends
both on the frequencies of the changes of the parameters (i.e.,
on the optimal time window) and on the noise. Further, we
have found that the optimal value of the propagation parameter
is approximately linearly dependent on the frequency of the
fastest changing parameter fmax (Figure 2A). The slope and
the intercept of the linear function were found to depend on
the noise. This dependence can approximately be described by
inverse power law (Figure 2A).

From the numerical analysis we have determined that we can
relate the optimal propagation parameter, pw,opt , to the optimal
time window, tw,opt . As a rule, the optimal propagation parameter
needs to be greater than the reciprocal optimal time window
pw,opt > 1/tw,opt . Further more, in the interval of frequencies and
noises that we investigated, which are of interest and corresponds
to cardiorespiratory interactions, the propagation parameter in
the Dynamical Bayesian Inference can be selected as follows. For
slow dynamics, when the optimal time window is >40 s, one can
use the value pw,opt = 0.1 as optimal propagation parameter.
For optimal time windows in the interval tw,opt ∈ (10s, 40s),
one can use the value pw,opt = 0.2 as optimal propagation
parameter. For fast dynamics, when the optimal time window is
<10 s, the optimal propagation parameter should be calculated
as pw,opt = 2/tw,opt . We emphasize that these values can be used

FIGURE 2 | (A) Optimal propagation parameter pw,opt as a function on the maximal frequency of the parameter change. (B) Optimal propagation parameter as a

function of the maximal frequency of parameter change and the noise for coupled phase oscillators and coupled Poincaré oscillators.
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for cardiorespiratory interactions when the noise is not too small.
With decreasing noise, one needs to take increasingly higher
values for the optimal propagation parameter.

2.4. Algorithm for the Optimization of Time
Window and Propagation Parameter
Values
Based on the results obtained in sections 2.2 and 2.3 we propose
the following algorithm for determining of the optimal time
window tw,opt and propagation parameter pw,opt .

Using a small arbitrary value for the time window and an
initial value for the propagation parameter of pw = 0.2 we
perform an initial inference. The arbitrary value for the time
window can be the smallest value at which the method gives
an output. For values smaller than this arbitrary value of tw
the Bayesian inference will not work (the execution of the code
will give a “Singular matrix error”, because the concentration
matrix will be too small). In this way we will obtain the initial
inferred parameters cij and noises Eij that describe the model.
This inference will have the best information on the parameter
dynamics in terms of time-variation, but the parameter noise
will be quite large. Then we perform a fast Fourier transform
of the inferred parameters cij. By observing both the dynamic
of each of the parameters and their fast Fourier transform, we
are able to determine what the highest frequency of change
of the parameters is. We denote this frequency as fmax. The
corresponding period is Tmin = 1/fmax. By assuming the
minimal number of blocks needed to accurately describe this
fastest changing parameter, the time window should be taken
as tw,opt = Tmin/8 = 1/8fmax. This will give a resolution of
eight points to describe the fastest oscillating inferred parameter.
For all the other parameters there will be more points describing
their oscillations.

Based on the value of the optimal time window, for the case
scaled around the frequencies in the cardiorespiratory range,
when the noise is not too small, we can determine the optimal
propagation parameter as:

pw,opt =











0.1, tw,opt > 40

0.2, tw,opt ∈ [10, 40]
2

tw,opt
, tw,opt < 10.

(8)

With these values for tw,opt and pw,opt we perform a second,
optimized inference. In this inference the covariance
matrix will have smaller value, thus resulting in an
improved inference.

2.5. Analysis of Coupled Limit-Cycle
Oscillators
To test the proposed algorithm for determination of the time
window and the propagation parameter, we investigate a system
of two coupled limit-cycle oscillators – Poincaré oscillators

FIGURE 3 | Typical look of the dependance of quadrature matrix Q6 on the

time window tw and the propagation parameter pw for coupled

Poincaré oscillators.

subject to white noise:

ẋ1 = −
(

√

x21 + y21 − 1
)

x1 − ω1(t)y1 + ε1(x2 − x1)+ ξ1(t)

ẏ1 = −
(

√

x21 + y21 − 1
)

y1 + ω1(t)x1 + ε1(y2 − y1)+ ξ2(t)

ẋ2 = −
(

√

x22 + y22 − 1
)

x2 − ω2y2 + ε2(t)(x1 − x2)+ ξ3(t)

ẏ2 = −
(

√

x22 + y22 − 1
)

y2 + ω2x2 + ε2(t)(y1 − y2)+ ξ4(t),

(9)

where periodic time-variability is introduced in the frequency of
the first oscillator ω1(t) = 1 − 0.4sin(2π f1t) and in the coupling
parameter from the first to the second oscillator ε2(t) = 0.2 −

0.1sin(2π f2t). The noises are again white and Gaussian, with no
correlations between them and were changed in the interval Ei ∈
[0.005, 0.05], i = {1, 2, 3, 4}. The other parameters are ω2 = 4.91
and ε1 = 0.05. The frequency of the time-variability was changed
in the interval fi ∈ [0.0015, 0.02], i = {1, 2}.

In Figure 3 we show the quadrature covariance matrix as a
function of the time window and the propagation parameter.

As in the case of the coupled phase oscillators, here as well
we see a maximum in the function of the quadrature covariance
matrix Q6 on the time window tw that depends on the value
of the propagation parameter as tw,max = 1/pw. Again, the
performed analysis showed that for values of tw smaller than the
value for the maximum of the curve, tw,max, regardless of the
value of the propagation parameter, the inference does not follow
the time change of the parameters.

The results for the propagation parameter also showed
increase in the inferred quadrature matrix Q6 with the increase
of the propagation parameter pw and by implementing the same
analysis as in the case of coupled phase oscillators, we found
that the optimal propagation parameter increases linearly with
the increase of the maximal frequency change of the parameters.
Again the slope and the intercept of the line pw,opt = k ∗

fmax + n showed decrease with increasing noise and the decrease
can be approximated with inverse power law. As expected, we
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determined different values for the coefficients of the inverse
power laws. However, these coefficients always yielded values
for the propagation parameter pw,opt smaller than the one for
the coupled phase oscillators, as shown in Figure 2B, hence the
determination of the propagation parameter according to the
Equation (8) will give satisfactory results.

3. APPLICATION TO
CARDIORESPIRATORY INTERACTION

It is well-appreciated that the cardiac and respiration dynamics
are oscillating, while being part of the multi-system body they are
not isolated, but they are open systems where their parameters
and functions are time-varying (Glass, 2001; Stankovski et al.,
2012; Kralemann et al., 2013b; Rosenblum et al., 2019). The
oscillatory nature makes them suitable to be represented with
the phase dynamics (Kuramoto, 1984; Nakao, 2016). These two
aspect of the cardiorespiratory dynamics, the oscillatory phase
dynamics and their time-variability, make the proposed method
of dynamical Bayesian inference with adaptive time window very
good fit for such analysis.

In order to demonstrate the potential of the method on
experimental data, we analyzed cardiorespiratory measurements
conducted on one male subject, age 35, non-smoker without
cardiovascular health issues. The study was reviewed and
approved by Ethical Committee, Faculty of Medicine, Saints
Cyril and Methodius, Skopje, Macedonia and the participant
provided written informed consent that the collected data might
be used and published for research purposes. The respiration
followed a predetermined pattern by following a visual and audio
computer simulation in which a ball was moved along a sine
line on a computer screen. The frequency of the movement of
the ball, together with the sine line, was changing according to
the law that we wanted the respiration to follow. When the ball
was reaching the maximum and minimum of the sine line, a
short sound beep was also generated. The measurements were
performed using Biopac equipment with the subject in supine
position. The respiration was measured by placing a respiratory
transducer on the chest of the subject measuring the changes in
the chest circumference, while the cardiac function was recorded
by performing a three-lead ECG measurement.

Three different patterns of respiration were studied and
compared: spontaneous free breathing, time-varying breathing
following a sine wave and time-varying breathing following a-
periodic signal. The average respiratory rates of the investigated
respiratory patterns were 14.7 BrPM (Breaths per Minute) for
the spontaneous free breathing, 15.5 BrPM for the respiration
following a sine law and 17.0 BrPM for the breathing following
the aperiodic signal. These average respiratory rates correspond
to average respiratory frequencies of 0.245, 0.258, and 0.283
Hz, respectively. The corresponding average heart rates were
found to be 68.3 BPM (Beats per Minute), 69.0 and 77.4
BPM for the spontaneous free breathing, periodic and aperiodic
respiration, respectively.

In Figure 4 we show first in detail the cardiorespiratory
measurements for a time varying respiration following a simple

sine law. The frequency of respiration is varied according to
the law f = 0.3 + 0.2sin(2π t/560), [Hz]. The time-varying
perturbed respiration signal is shown in Figure 4A and its
wavelet transform is given in Figure 4B. On Figure 4C we give
the corresponding ECG signal and on Figure 4D the wavelet
transform of the cardiac signal.

In Figure 5 we show the signals and their wavelet transforms
for the three different patterns of respiration that the subject
followed: (a) respiration signal recorded during free breathing,
(b) time-frequency wavelet transform of the free breathing
respiration, (c) wavelet transform of time varying respiration
following a simple sine law (the same as depicted in Figure 4B for
comparison), (d) wavelet transform of time varying respiration
following an a-periodic behavior and the signal itself (e). The
a-periodic signal was taken to be the z-component of a chaotic
Lorenz system (Lorenz, 1963).

After the wavelet power inspection of the measurements we
performed the phase extraction procedure. For robust phase
extraction, the oscillating intervals were estimated by standard
digital filtering procedures, including a FIR filter followed by
a zero-phase filtering procedure (filtfilt) to ensure that no time
or phase lags were introduced by the filtering. The boundary
of the interval for the respiration signal was r = 0.145–0.6 Hz;
and boundary of the interval for the heart activity from the
ECG signal was h = 0.6–2 Hz (Kralemann et al., 2008; Shiogai
et al., 2010; Stankovski et al., 2016). The phases of the filtered
signals were estimated by use of the Hilbert transform, and the
protophase-to-phase transformation Kralemann et al. (2008) was
then applied to the resultant protophases to obtain invariant
observable-independent phases.

In the case of free breathing, as can be seen in Figure 5B,
there was no single frequency dominating the time variance of
the parameters. Therefore, when we did the first inference of
our algorithm, higher frequencies emerged in the variance of the
parameters and in their Fast Fourier Transform. Since we wanted
to include the higher frequencies in the consequent investigation
we had to use smaller time windows, as our algorithm suggests
(tw,opt = 9s). This increased the covariance matrix, but at the
same time faster changes were included in the inference and we
were able to follow better the time evolution of the parameter
change and of the coupling functions. In the case of time varying
respiration according to the sine law, as is the case of Figure 4,
the frequency of change of the respiration dominated the first
inference. This led to higher optimal time window (tw,opt = 62s)
and to a second inference with reduced covariance matrix. In
the case of time varying respiration according to a-periodic law,
as is the case of Figures 5D,E, again the algorithm gave smaller
values for the optimal time window (tw,opt = 15.6s), that enabled
inclusion of different frequencies of change of the parameters at
the cost of increased covariance matrix.

Finally we present the application results of our method
for the cardiorespiratory coupling. Once we have determined
the optimal values for the time window and the propagation
parameter we can proceed with the inference of the parameters of
the model ci, from which we can calculate the coupling quantities
and characteristics. We evaluated the coupling functions on a
2π × 2π grid using the relevant base functions, i.e., Fourier
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FIGURE 4 | Cardiorespiratory measurements for a time-varying respiration following a sine law, (A) respiration signal, (B) wavelet transform of the respiration signal,

(C) ECG signal, (D) wavelet transform of the ECG signal.

components scaled by their inferred coupling parameters. We
calculated the coupling strength CPLi(t) as the Euclidian norm
of the inferred parameters for a particular coupling. Importantly,
we also calculated the index for similarity of coupling functions
ρ(t) which quantifies the similarity of the forms of two coupling
functions irrespectively of their coupling strength amplitudes.
The similarity index is unique measure of coupling functions
and it is calculated as correlation index between the vectors ci of
two coupling functions (Kralemann et al., 2013a; Ticcinelli et al.,

2017). It is important to note that the coupling strength and the
similarity index present two different dimensions of a coupling
function (Stankovski, 2017). In our analysis we calculated the
similarity index between the time-average coupling function and
every coupling function calculated from each time window—in
this way we got the time-variability of the form of the coupling
function as compared to the average coupling function.

In Figures 6A–D we present the results for the
cardiorespiratory interaction when the respiration varies
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FIGURE 5 | Time-varying nature of the respiration measurements. (A) Respiratory signal recorded during free breathing. (B) Wavelet transform of the free breathing

respiration. (C) Wavelet transform of time-varying respiration following a simple sine law (for comparison the same as depicted in Figure 4B). (D) Wavelet transform of

time-varying respiration following an a-periodic behavior, (E) the same recorded signal of time-varying respiration following an a-periodic behavior.

according to sine law. In Figure 6A we give the wavelet
transform of the respiration for comparison. In Figure 6B

the time-variation of the coupling strength from the first
oscillator (the respiratory system) to the second one (cardiac
system) is presented. We can see here that the coupling
strength has a minimum where the frequency of respiration
is maximal and a maximum where the frequency of the
respiration is minimal, i.e., the time-variability of the coupling
strength resembles an inverse of the sine wave respiration. This
confirms known results that the cardiorespiratory coupling
strength is higher on slower breathing (Stankovski et al.,
2012, 2013). In Figure 6C we present the time-variation of
the index for similarity of form of coupling functions, which
again follows the inverse of the sine wave respiration. This

demonstrates that the form of the coupling function, and thus
the underlaying cardiorespiratory mechanism, is time-varying
and is following the deterministic perturbation we induced
on the respiration. Again the higher similarity is associated
with lower respiration frequencies and slower breathing. In
Figure 6D we give the coupling functions at specific time
points that correspond to maximal and minimal frequencies
of respiration. Here we can also follow the time evolution
of the coupling function close to the minimal frequency of
respiration. The qualitative 3D representation of the coupling
functions in Figure 6D shows visually consistent values of the
coupling strength amplitude and similarity of the form of the
functions as compared to the quantitative values presented
in Figures 6B,C.
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FIGURE 6 | (A) Wavelet transform of time-varying respiration following a simple sine law, (B) the time variation of the coupling strength CPL2(t) from the first oscillator

(the respiratory system) to the second one (cardiac system), (C) time variation of similarity of form of coupling functions ρ(t), (D) coupling functions q2(φr ,φh) at specific

time points, indicated by the gray arrows, that correspond to maximal and minimal frequency of respiration, and (E) the mean, i.e., time-averaged coupling functions

for all three breathing patterns under investigation.

Finally, in Figure 6E we present the form of the time-
averaged coupling function for all three breathing patterns
under investigation. By comparison, we see that the form
of the three functions is qualitatively similar, with larger
deviations for the a-periodic breathing in comparison to the
free and sine breathing. From Figure 6 we can see that the
reconstructed cardiorespiratory coupling functions are described
by complex functions whose form changes quantitatively over
time and with the change of frequency of respiration. This
implies that the interactions of the cardiorespiratory system can
themselves be time-varying processes. In particular, the form
of the coupling function indicates that when it is high for the
respiration phase between 3π/2 and π/2 (Figure 6E), then the

respiration accelerates the cardiac oscillations. Similarly, when
the coupling function is low for respiration phase between
π/2 and 3π/2 (Figure 6E), then the respiration decelerates the
cardiac oscillations. These inferred coupling functions describe
in detail the cardiorespiratory interaction mechanism.

4. DISCUSSION AND CONCLUSION

In this study we have tackled the longstanding problem
of choosing the right size of time window when analyzing
dynamical time-series. We proposed new methodology for
determination of the time window and the propagation
parameter within the framework of the Dynamical Bayesian
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Inference method. We tested the method first on the case of
coupled phase oscillators and then for the case of coupled
limit-cycle oscillators. We then applied the methodology on
cardiorespiratory interaction for three cases of respiration—free
breathing, controlled breathing following sine law and controlled
breathing following an a-periodic time-variation. We obtained
the coupling functions and confirmed their complex form that
changes quantitatively over time.

To some extent the problem of time window determination
is an ill-posed question, especially in experimental analysis,
because in theory it is very hard to find a general solution.
There can be very different systems, with very different types
of time-variabilities acting on different parts of the systems.
Nevertheless, the reality is that often there is time-variability
and one needs not to ignore, but to do something about it. For
this reasons, the solution we proposed is modeled and scaled
to an important, albeit specific and not general, problem of
cardiorespiratory interaction. In particular we took the systems to
be oscillatory, hence we used the phase dynamics representation,
and we assumed that the time-variation are slowly changing in
respect to the oscillating frequencies. This allowed us to model
a dynamic situation often encountered in the cardiorespiratory
interaction. Additionally, by using second order Fourier
expansion for the model base functions, we encountered
limitations in inferring highly non-linear dynamics and very
slow trends.

On the analysis of a predefined interacting phase oscillators
we developed detailed conditions for the time window
determination. These could not be determined exactly in
an unknown system of coupled limit-cycle oscillators (like the
example of the Poincaré oscillators in section 2.5), however,
based on the phase oscillator acting as a limiting model, the
analysis showed that one can find the boundaries and inequalities
from which the time window can be determine in these cases.
The use of the inferred covariance matrix as an indicator of the
goodness of fit may become too strict and imprecise if there are
large variations arising from the noise. In such case one should
apply other stochastic methods in combination with this method
to determine the effect of the noise and to ascertain the role of the
covariance for determination of the time window. When dealing
with biological open oscillatory systems, one might encounter a
case where there is time-variability of the time-variability. In such
case, the presented methodology may be applied recursively, for
the different levels of time-variability observed.

The application to the cardiorespiratory interaction lead to
some novel results, some were extended, and some results were
consistent with previous findings. Namely the change of the
coupling strength with slower breathing is known, and now we
extended this to show that this variations appear continuously
and were following the sine perturbation. A new insight is that
the index for similarity of cardiorespiratory coupling functions is
also higher with slower breathing andwas following continuously
the sine perturbation. In fact, in this analysis set up of the
cardiorespiratory interaction, it was found that both the coupling
strength and the similarity index were changing similarly, and
in accordance with the perturbation (which is not the case in

general). The inferred form of the cardiorespiratory coupling
function, in the three types of breathing observed, was found to
be consistent with what has been observed in previous studies.
Interestingly, even though the window length determined for the
three different types of breathing was quite different in length
(free tw,opt = 9s, sine tw,opt = 62s and a-periodic tw,opt = 15.6s),
the form of the coupling functions (Figure 6E) were qualitatively
very similar.

During slower breathing, the form of the coupling functions
changes predominantly along the respiration phase axis and is
relatively constant along cardiac phase axis. The latter suggests
that this coupling is predominately determined by the direct
influence of respiration on the heart. This is most visible
on the coupling function during low frequency parts of the
breathing following sine law (Figure 6D) and not so visible
for the aperiodic breathing which is at higher respiration
frequencies. In physiology, this influence of the respiration
frequency to the variability of the heart rate has been attributed
to Respiratory Sinus Arrythmia (RSA) (Hirsch and Bishop,
1981), and various studies have linked the cardio-respiratory
coupling with RSA (Iatsenko et al., 2013; Schulz et al., 2013;
Kralemann et al., 2013a). Recent physiological studies discussed
that the main function of the RSA is to improve cardiac
efficiency while maintaining physiological levels of arterial CO2

(Elstad et al., 2018). Our findings confirm these previous
findings that RSA is more pronounced during slow deep
breathing (Hirsch and Bishop, 1981).

Needles to say, even though this study was presented for
oscillatory interactions and in particular for cardiorespiratory
interaction, its implications span much widely. Some of the
solutions proposed with this methodology for time window
determination are relevant and can be used for other oscillatory
interactions, for other methods of time-series analysis, and for
other dynamical systems with time-variability, more generally.
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and Ribarič, S. (2000). Reversible transitions between synchronization

states of the cardiorespiratory system. Phys. Rev. Lett. 85, 4831–4834.

doi: 10.1103/PhysRevLett.85.4831

Strogatz, S. (2001). Nonlinear Dynamics And Chaos. Boulder, CO: Westview Press.

Suprunenko, Y. F., Clemson, P. T., and Stefanovska, A. (2013). Chronotaxic

systems: a new class of self-sustained nonautonomous oscillators. Phys. Rev.

Lett. 111:024101. doi: 10.1103/PhysRevLett.111.024101

Ticcinelli, V., Stankovski, T., Iatsenko, D., Bernjak, A., Bradbury, A.,

Gallagher, A., et al. (2017). Coherence and coupling functions reveal

microvascular impairment in treated hypertension. Front. Physiol. 8:749.

doi: 10.3389/fphys.2017.00749

Voss, A., Schulz, S., Schroeder, R., Baumert, M., and Caminal, P. (2008). Methods

derived from nonlinear dynamics for analysing heart rate variability. Philos.

Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 277–296. doi: 10.1098/rsta.2008.0232

Winfree, A. T. (1980). The Geometry of Biological Time. New York, NY: Springer-

Verlag.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lukarski, Ginovska, Spasevska and Stankovski. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physiology | www.frontiersin.org 13 April 2020 | Volume 11 | Article 341

https://doi.org/10.1098/rsta.2015.0186
https://doi.org/10.1103/PhysRevLett.85.4831
https://doi.org/10.1103/PhysRevLett.111.024101
https://doi.org/10.3389/fphys.2017.00749
https://doi.org/10.1098/rsta.2008.0232
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction
	1. Introduction
	2. Methods and Modeling Results
	2.1. Dynamical Bayesian Inference
	2.1.1. The Challenge of the Time Window and the Propagation Parameter

	2.2. Determination of the Time Window
	2.3. Determination of the Propagation Parameter
	2.4. Algorithm for the Optimization of Time Window and Propagation Parameter Values
	2.5. Analysis of Coupled Limit-Cycle Oscillators

	3. Application to Cardiorespiratory Interaction
	4. Discussion and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


