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Abstract
Purpose: Glioblastoma (GBM) remains an incurable disease despite extensive treatment with
surgical resection, irradiation, and temozolomide. In line with many other forms of aggressive
cancers, GBM is currently under consideration as a target for immunotherapy. However, GBM
tends to be nonimmunogenic and exhibits a microenvironment with few or no effector T cells, a
relatively low nonsynonymous somatic mutational load, and a low predicted neoantigen burden.
GBM also exploits a multitude of immunosuppressive strategies.
Methods and Materials: A number of immunotherapeutic approaches have been tested with
disappointing results. A rationale exists to combine immunotherapy and radiation therapy, which
can induce an immunogenic form of cell death with T-cell activation and tumor infiltration.
Results: Various immunotherapy agents, including immune checkpoint modulators, transforming
growth factor beta receptor inhibitors, and indoleamine-2,3-dioxygenase inhibitors, have been
evaluated with irradiation in preclinical GBM models, with promising results, and are being further
tested in clinical trials.
Conclusions: This review aims to present the basic rationale behind this emerging complementary
therapeutic approach in GBM, appraise the current preclinical and clinical data, and discuss the
future challenges in improving the antitumor immune response.
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Introduction

Glioblastoma (GBM) is the most common malignant
primary brain tumor in adults and is an aggressive and
invasive malignant neoplasm without a defined tumor
boundary. Around the central core, there is a spread of
infiltrating tumor cells that typically invade multiple
lobes, even into both hemispheres of the brain.1,2 The
current standard of care for patients age <70 years with
newly diagnosed GBM is maximal safe surgical resection,
followed by radiation therapy (RT) and concurrent
chemotherapeutic temozolomide (TMZ). The addition of
TMZ improved the median survival time only slightly (by
approximately 2.5 months),3 and GBM remains one of the
worst cancers in terms of survival rates. The median
overall survival time is approximately 15 months, and the
average 2-year survival rate is approximately 15%, which
drops to a dismal 5% at 5 years.4e6

Ultimately, the tumor recurs, and most of the re-
currences are within the radiation field. The median
progression-free survival rate is approximately 30 weeks
after the initiation of treatment.7 Our current therapeutic
strategy for this disease is clearly inadequate, as are the
predictive markers at our disposal. In fact, the current
treatment protocol was established in 2005 and has
remained unchanged for more than a decade.4 The only
established marker is the methylation status of the O6-
methylguanine-DNA-methyltransferase promoter, which
is a predictor of radiation8 and TMZ resistance.9 Hence,
there is an urgent need for novel therapeutic concepts to
improve local control and survival in this patient
population.

Undeniably, one of the most promising therapeutic
innovations in recent years, immunotherapy, has matured
into a new treatment pillar against cancer with immune
checkpoint blockade and the most successful modality to
date. Immunotherapy is approved to treat several
advanced cancer types and induces long-lasting clinical
responses in a proportion of patients. However, certain
cancers, such as GBMs, exhibit an innate resistance to
most of these immune-modulating approaches.

At the forefront of new technologies that may help
predict responsiveness to immunotherapies is next-
generation sequencing for mutation load and neoantigen
assessment, T-cell receptor sequencing, and multiplex
immunofluorescence. The comprehensive picture that
emerges incorporates genetic, epigenetic, gene expres-
sion, and proteomic information about the tumor with the
immune signature of the tumor microenvironment (TME)
and compiles the immune profile in the periphery.

High nonsynonymous somatic mutational load, high
neoantigen burden, molecular signatures, DNA repair
defects, and preexisting tumor-infiltrating cluster of dif-
ferenciation 8þ (CD8þ) T lymphocytes have all been
correlated to the efficacy of immune checkpoint inhibitors
in different tumor types.10e12 These properties are pre-
sumably indicative of immunogenic tumors, at least those
that are chemically induced.

In contrast, GBM and other poorly immunogenic tu-
mors lack such properties and are unlikely to respond to
single-agent immunotherapy. The question that remains is
how to improve tumor immune recognition in the first
place, and one suggested strategy is a combination of
immune intervention and local irradiation. The rationale is
based on the findings that irradiated tumors trigger an
antitumor immune response better; therefore, immuno-
therapeutic agents are much more likely to enhance T-cell
stimulation and drive antitumor reactivity in the context
of RT.

In this article, we summarize the genetic, molecular,
and immunologic contexture that dictates the lack of
response to immunotherapy in GBM. Next, we detail the
immunomodulatory effects of RT that could help improve
the results of immunotherapies. Lastly, we report on the
preclinical and clinical experimental results of radiation
and immunotherapy combinations.
Genetic Features of Glioblastomas

In their analysis of mutational burden in different
cancers, Alexandrov et al showed that GBM has one of
the lowest burdens among 30 cancer types, with <1 so-
matic mutation per megabase. Yet, GBM clearly presents
a characteristic mutation signature of mainly
cytosine > thymine substitutions, which is probably
associated with age.13 Other teams have conducted an
assessment of global mutational burden or non-
synonymous mutations among GBM samples and have
confirmed the relatively low rate.14,15

The large data set of genetic, gene expression, and
other features of human GBM samples generated by The
Cancer Genome Atlas (TCGA) has led to a clinically
relevant molecular reclassification of the disease. Based
on gene expression profiling for instance, Verhaak et al
defined 4 subtypes of GBM characterized by abnormal-
ities in platelet-derived growth factor receptor-alpha
(PDGFRA), isocitrate dehydrogenase 1 (IDH1), esti-
mated glomerular filtration rate (eGFR), or neurofibromin
1 (NF1): Proneural (amplification of platelet-derived
growth factor receptor-alpha and frequent IDH1 muta-
tion), neural, classic (amplification of eGFR), and
mesenchymal (loss of NF1 locus).16

Noushmehr et al identified another subset of GBMs
that are hypermethylated and defined as glioma-CpG is-
land methylator phenotype, which carries a mutation in
the IDH1 gene and falls within the proneural subtype.
Patients with the glioma-CpG island methylator pheno-
type are usually younger in age and show markedly better
outcomes than the overall GBM population.17 More
recently, Ceccarelli et al performed a multiplatform
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genomic analysis of 1122 diffuse gliomas from TCGA
and identified DNA methylation-based subgroups. A
subtype of IDH mutant glioma manifested relatively
reduced DNA methylation, activation of cell cycle genes,
and an unfavorable clinical outcome.18

eGFR amplification is a molecular characteristic of the
classic subgroup and is observed in approximately 40% of
GBMs. Approximately half of these patients harbor a
subsequent eGFRvIII mutation. Some other genes are
recurrently mutated in GBMs: Telomerase reverse tran-
scriptase promoter (83%), TP53 (34.4%), phosphatase
and tensin homolog (32%), PIK3CA (12%), and PIK3R1
(11.7%).19 Basically, 3 major signaling cascades are
genetically altered in GBMs: receptor tyrosine kinase/
RAS/phosphoinositide 3-kinase pathway (altered in 88%),
TP53 pathway (87%), and cell cycle retinoblastoma
pathway (78%).20

A small number of newly diagnosed GBMs result from
a germline biallelic mismatch repair deficiency and occur
in the childhood. They demonstrate a hypermutator
phenotype and harbor a high neoantigen load, which
should result in increased tumor immunogenicity and
responsiveness to immune checkpoint blockade (at least
in theory). Similarly, genome sequencing in some gliomas
that are recurrent after alkylating agent treatment revealed
higher somatic mutation loads in relation to inactivating
somatic mutations of the mismatch repair MSH6
gene.21,22
Antigenicity of Glioblastomas

The presentation of antigens is a prerequisite for any
immune response, and tumors are no different. CD8þ T
cells recognize antigenic peptides within the Major His-
tocompatibility Complex (MHC) class I on the tumor cell
surface or dendritic cells during cross-presentation. This
subset seems critical for tumor regression, but CD4þ T
cells that recognize antigens in the context of MHC class
II molecules assist in the tumor-specific antitumor im-
mune response, as do other less specific immune effec-
tors. In general, targetable antigens can be classified into 3
categories: tumor-associated antigens (TAAs), which are
normal peptides that are aberrantly overexpressed in
tumor cells; tumor-specific neoantigens (TSAs) expressed
from nonsynonymous mutations; and viral tumor
antigens.

The following TAAs have been tested as immuno-
therapeutic targets in GBM: interleukin (IL) 13Ra2 (testis
antigen expressed nearly universally in malignant glioma
cells)23,24; EphA2 (tyrosine kinase receptor overexpressed
in GBMs)23,25; tyrosine kinase receptor human epidermal
growth factor receptor 2 (overexpressed in up to 80% of
GBMs)26,27; survivin (antiapoptotic protein expressed in a
large number of distinct tumor types)28,29; melanoma-
associated antigen-A1 (testis antigen)26; or gp100 (mela-
nocyte protein).26 One of the main concerns with target-
ing TAAs is that they make relatively weak antigens, and
adverse effects owing to antigen expression on healthy
tissues are possible.

In contrast, TSAs derived from nonsynonymous mu-
tations are exclusively expressed on malignant cells and
therefore keep nontargeted effects to a minimum. Two
critical TSAs have already been identified and targeted in
GBM. eGFRvIII, for instance, is the product of an in-
frame deletion within the extracellular domain of eGFR,
which is present in approximately 30% of GBM, but
usually heterogeneously expressed within a patient’s
tumor.19 The other well-known TSA is the result of
R132H mutation in the IDH1 gene and is found in >70%
of secondary GBMs but only sporadically in primary
GBMs.20 R132H mutation is thought to be a driver mu-
tation, expressed by all tumor subclones, and is likely to
be a good candidate for a targeted immunotherapy.

Lastly, human cytomegalovirus antigens, such as
pp65, have been identified in the majority of primary
GBMs but are undetectable in the normal surrounding
tissue and provide another interesting target for the
development of immunotherapies.30
Immunosurveillance in Glioblastomas

General wisdom dictates that the central nervous sys-
tem (CNS) is immunoprivileged because of the protective
role that the bloodebrain barrier (BBB) plays, but recent
data have challenged this paradigm and indicated that the
peripheral immune system can indeed penetrate the CNS.
The following are 3 potential ports of entry for T cells into
the CNS: (1) postcapillary venules in the CNS paren-
chyma that are surrounded by the perivascular (Virchow-
Robin) space; (2) leptomeningeal venules in the sub-
arachnoid space; and (3) capillaries in the plexus choroid.
For all 3 routes, T cells enter by a 2-step process and must
first cross the vascular endothelium and then penetrate the
glia limitans, which is comprised of astrocytic end-foot
processes and covers the CNS.31

In analogy, CNS-derived antigens are drained into the
deep cervical lymph nodes via 3 distinct pathways. The
first is via the cerebrospinal fluid (CSF) that passes from
the subarachnoid space through channels in the ethmoid
bone to enter lymphatic vessels in the nasal mucosa and
drain to cervical lymph nodes. Alternatively, CSF can
drain to deep cervical lymph nodes via dural lymphatics.
The third route is via the parenchymal interstitial fluid,
which enters basement membranes in the walls of capil-
laries and arteries of the brain to once again reach the
regional lymph nodes.32

Furthermore, GBMs are characterized by a compro-
mised BBB owing to breaks in tight junctions and
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decreases in BBB-associated pericytes. This loss of
integrity of the BBB presumably facilitates the in-
teractions between immune cells and GBM
celleassociated antigens. Of note, the disruptive effect
that brain tumors have on the BBB are further amplified
by local irradiation, as demonstrated as early as 1990 by
99MTc-GH imaging,33 which can be enhanced by
radiation-induced vascular changes that encourage im-
mune cell transexudation. Clearly, the dynamic to-and-fro
of immune cells and the CNS is not something the
concept of immune privilege can accommodate anymore.

Tumor-Infiltrating Lymphocytes in
Glioblastomas

CD8þ cytotoxic effector T cells have the ability to
directly kill target cells and are key for immune-mediated
tumor regression. Upon tumor antigen recognition, they
release cytotoxic molecules such as granzyme and per-
forin and secrete effector cytokines such as interferon
(IFN) g and tumor necrosis factor (TNF) a. Not surpris-
ing, tumor infiltration by CD8þ T cells tends to be a
favorable prognostic factor in many malignancies34e36

and a potential predictive biomarker for immune check-
point inhibitors responsiveness.

Estimation of tumor-infiltrating lymphocytes (TILs)
can be achieved via immunophenotyping techniques
(immunohistochemistry or flow cytometry) or via T-
cellespecific gene signatures analysis. In that respect,
GBMs exhibit some of the lowest basal and preexisting
TIL-associated genetic signatures across different solid
tumor types.15 For instance, using RNA-sequencing data
from different TCGA tumor types, Rooney et al measured
transcript levels of granzyme A and perforin and found
that they were lower in GBMs than in other cancers.37

Earlier, in 2013, Rutledge et al analyzed 171 GBMs
from the TCGA and revealed that approximately half had
no detectable lymphocytes at all, and one-third had lym-
phocytes in <50% of tumor tissue. Only 11% of GBMs
had significant lymphocyte infiltration (ie, �50% of
tumor tissue).38

For the most part, increased CD8þ TILs still positively
correlated with survival in GBM,39e41 but not in all
cases.42 Perhaps one of the most compelling aspects of
this comes from the fact that immune infiltration appears
to be different for different molecular subtypes of GBM.
For instance, a strong positive correlation between TILs
and survival was found in the case of mesenchymal
transcriptional classebearing mutations in the NF1 and
retinoblastoma 1 genes, but much less so in the classic
transcriptional class and in GBMs with eGFR amplifica-
tion and homozygous phosphatase and tensin homolog
deletion. This suggests that tumors that belong to the
mesenchymal subtype are more immunogenic than those
that belong to the classic one, but their response to
checkpoint inhibitors is unknown. Future studies will
have to examine effector and regulatory lymphocyte
subsets in these tumors in more depth, including the
functional activity of CD8þ lymphocytes.38
Glioblastoma-Associated Immunosuppression

High-grade gliomas profoundly modulate the immune
system at both the systemic and intracerebral level. For
one, GBMs are infiltrated by immunosuppressive im-
mune cells. Approximately half of human GBM samples
have detectable regulatory T cells (Tregs) coming in,43,44

which is probably the result of the production of che-
mokine C-C motif chemokine ligand 2 (CCL2) by GBM-
infiltrating macrophages and the increased expression of
CC chemokine receptor 4 (CCR4) on other Tregs.45,46

Intratumoral Tregs from GBM specimens strongly sup-
press effector T-cell proliferation and in turn reduce their
ability to release proinflammatory cytokines IFNg and
IL-2.47 However, the impact of GBM-infiltrating Tregs
on survival remains controversial with both poor prog-
nosis48 or no impact on outcomes.43,44

Thirty to fifty percent of all cells in human GBMs are
tumor-associated macrophages (TAMs), either intrinsic
resident (microglia) or bone marrow-derived.49 Glioma
cells release several factors that attract TAMs to the tumor
site, in particular SDF-1,50,51 CCL2,52 CSF-1,53,54 and
periostin.55 In the TME, TAMs can acquire a tumor-
promoting phenotype, designated as the alternative M2
phenotype that produces anti-inflammatory and immu-
nosuppressive molecules (IL-10, TGFb, arginase 1).56e58

Other studies describe a continuum between the M1
proinflammatory phenotype and M2 immunosuppressive
phenotype, including nonpolarized M0 macrophages and
even monocytic myeloid-derived suppressor cells
(MDSCs).59,60

STAT3 activation of TAMs appears to play a role in
M2 phenotype polarization. Indeed, STAT3 inhibition can
reduce the expression of immunosuppressive cytokines
while stimulating the production of proinflammatory
TNFa61 and upregulating the expression of costimulatory
molecules CD80 and CD86.62 TAMs are also critical for
glioma cell invasion and tumor growth, notably through
the release of TGFb and the activation of matrix metal-
loprotease-2.63,64 The high proportion of TAMs in GBM
and their protumoral properties make them an attractive
therapeutic target. Different strategies are under investi-
gation to prevent the recruitment of bone
marrowederived monocytes (eg, inhibition of SDF-1/
CXCR4 signaling,51 inhibition of CSF-1 signaling,53 or
converting protumorigenic TAMs into the tumor-
attacking M1 phenotype).

MDSCs are increased in GBM tumor tissue and the
peripheral blood of GBM patients, with a predominance
of the CD15-positive granulocytic MDSC subpopulation
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in the tumor tissue.65 They express a high level of argi-
nase, which inhibits immune responses mediated by T
cells.66 Moreover, glioma-infiltrating MDSCs upregulate
programmed cell death-1 (PD-1) on infiltrating CD4þ T-
effector memory cells and drive their functional
exhaustion.67

Second, GBM cells express membrane-bound factors
that directly inhibit the immune response. For instance,
the majority of human GBMs are positive for immune
checkpoint protein programmed death-ligand 1 (PD-
L1),68 although sometimes the level reported is as low as
3%.69 PD-L1 confers immunosuppressive effects by
promoting T-cell apoptosis, blocking T-cell activation,
and inducing Tregs.69 Its impact on survival in GBM is
controversial, correlating with poor prognosis69 or being
unrelated to outcome.68 Inhibiting the PD-1 axis has been
shown to control tumor growth, generate long-term sur-
vivors, and induce a tumor-specific memory immune
response, at least in syngeneic orthotopic murine GBM
models,70 but their relevance to the clinic can be ques-
tioned. There are several ongoing clinical trials that target
the PD-1/PD-L1 pathway in newly diagnosed or recurrent
GBMs (NCT02017717, NCT02617589, NCT02667587,
NCT02311920, and NCT02336165).

T-cell immunoglobulin mucin 3 (TIM-3) is another
immune-inhibitory molecule expressed on CD4þ and
CD8þ effector T cells. TIM-3 is activated by its ligand,
galectin-9, which leads to T-cell exhaustion and
dysfunction.71 TIM-3 expression has been observed in
human GBM.72 Interestingly, Liu et al showed that TIM-3
expression on CD4þ and CD8þ TILs and galectin-9
expression on tumor cells were higher in grade 4 than
in grade 2 to 3 gliomas and that the level of both galectin-
9 and TIM-3 correlated side-by-side.73

CD47 is expressed on GBM cells, and functions as a
ligand for signal regulatory protein-a (SIRPa) on mac-
rophages and dendritic cells. CD47 transmits a “don’t eat
me” signal. Willingham et al have shown that patients
with GBM and increased CD47 expression had worse
survival rates. They also demonstrated that anti-CD47
antibodies inhibited tumor growth and prevented metas-
tasis in a murine model.74

Glioma cells also express other molecules that may
inhibit immune effector cells, such as Fas-ligand that
binds to its receptor on TILs and induces their
apoptosis,75 or lectin-like transcript-1 that represses nat-
ural killer (NK) cell activity.76

Third, GBMs produce various immunosuppressive
factors. TGFb is a versatile and powerful immunosup-
pressive cytokine that is highly expressed in GBM tumors
and confers a poor prognosis.77 TGFb suppresses CD8þ
T-cell activation and drives naive CD4þ T-cell differen-
tiation into Tregs. TGFb is produced by Tregs and TAMs
in high quantities. Several anti-TGFb therapeutic agents
with different modes of action have been developed in
GBM: TGFb receptor I kinase inhibitor,78e80 humanized
anti-TGFb monoclonal antibody fresolimumab,81 and
trabedersen (antisense oligonucleotide of TGFb that
downregulates the production of TGFb at the translational
level).82 However, TGFb biology is very complex, and its
inhibition has so far led to disappointing results, possibly
because no account has been taken of its receptor and
other pathway mutations. Nevertheless, the inhibition of
TGFb may be a beneficial complementary approach to
other immunotherapies under defined circumstances.83

Indoleamine-2,3-dioxygenase (IDO) is strongly
expressed in GBM.84 This enzyme catabolizes tryptophan
to kynurenine, and is involved in the establishment of
immune tolerance. In cancer, IDO contributes to an
immunosuppressive microenvironment through the
recruitment of Tregs85 and suppression of effector CD8þ
T cells. Not surprisingly, its expression is inversely
correlated with survival in patients with GBM.86 A few
preclinical studies of IDO inhibitors against GBM have
shown promise.87,88 A phase 1 and 2 clinical study is
ongoing to assess an IDO-inhibitor (indoximob) in pa-
tients with recurrent, TMZ-resistant GBMs
(NCT02052648).

CCL2 is a chemokine that is secreted by GBM cells
and GBM-infiltrating macrophages. CCL2 induces the
recruitment of Tregs and MDSCs through CCR4 and
CCR2 receptors, respectively, and contributes to immu-
nosuppression in the TME. Low intratumoral CCL2 gene
expression is associated with better survival in patients
with GBM. In fact, the administration of a small-molecule
CCR4 antagonist or CCL2-blocking monoclonal anti-
bodies improved survival in orthotopic syngeneic mouse
models and in an orthotopic human xenograft model.45,89

Type 1 IFN also affects the immunogenicity of GBM
tumors. Silginer et al recently reported chronic constitu-
tive autocrine IFN/STAT1 signaling in glioma cells and
demonstrated that IFN/STAT1 impairs glioma immuno-
genicity and likely drives adaptive immune resistance.
IFN drives PD-L1 and MHC class I and II expression
alongside effects that are abolished by the disruption of its
signaling. Glioma cells actually became more susceptible
to NK cell-mediated lysis upon silencing of the IFN
pathway, perhaps partly owing to compromised MHC
expression.90 Importantly, overexpression of an IFN/
STAT1 pathway gene signature predicted poor outcome
in the proneural GBM subtype.91

Although constitutive IFN signaling in glioma cells
may impair their immunogenicity and confer a bad
prognosis, IFN-I may also promote an antitumor immune
response by bridging innate and adaptive immune re-
sponses. Using a preclinical model, Ohkuri et al showed
that the production of IFN in the TME through stimulator
of IFN gene (STING) activation allowed for the matura-
tion of glioma-infiltrating CD11c þ DCs and the subse-
quent activation of CD8þ T cells while decreasing the
infiltration of Tregs. Equally, the intratumoral adminis-
tration of STING agonists in glioma-bearing mice
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enhanced tumor infiltration by effector cells and pro-
longed survival.92 IFN is also a radiosensitizer but has a
poor toxicity profile when administered extrinsically with
RT.

Additional molecular factors are involved in glioma
immune modulation. Glioma cells secrete other immu-
nosuppressive cytokines, including IL-6,93 IL-10,94 and
PGE-2.95

Lastly, systemic immune imbalances may additionally
drive an immunosuppressive state. The blood neutrophil-
to-lymphocyte ratio is one fundamental readout for sys-
temic immune suppression, and when reaching levels >4
at the time of pretreatment, the results can be an inde-
pendent prognostic indicator for poor overall survival in
patients with GBM.96 Similarly, circulating levels of
MDSCs are often increased65,66,97; MDSCs express
arginase, which diminishes the L-arginine level that is
required for proper T-cell function.97

Patients with GBM usually present with lymphopenia
that affects CD4þ T-cell subsets in particular and is often
further negatively affected during RT and TMZ treatment.
Patients continue to have low CD4 counts for at least the
first full year of follow-up.98 Tregs frequently represent an
increased fraction of the CD4þ compartment in the
blood, which results in an imbalance of Tregs relative to
effector T cells.99,100 This CD4þ lymphopenia affects
clinical outcomes if CD4þ counts drop below 200/mm3

2 months after the initiation of treatment, and CD4þ
lymphopenia is associated with early death from tumor
progression.98

Moreover, peripheral blood CD4þ T cells exhibit
functional abnormalities, such as decreased proliferative
responses, defective IL-2 production, and Th2-skewed
cytokine profile.101 Fecci et al showed that Treg removal
from the peripheral blood of patients with GBM ex vivo
eradicated T-cell proliferative defects and reversed Th2
cytokine shifts. Likewise, the systemic delivery of Treg-
depleting anti-CD25 antibody allowed for the tumor
rejection of established murine malignant astrocytoma
SMA-560 in the absence of additional therapeutic
intervention.99
Failure of Current Immunotherapeutic
Strategies in Glioblastomas

Many immunotherapeutic agents are under active
investigation in GBM, and yet no single agent has proven
its efficacy to date. A case in point are the number of
clinical studies that assess immune checkpoint blockade,
mostly anti-PD1 and anti-PDL1, in newly diagnosed or
recurrent GBMs. Available results are limited to date but
do not seem to demonstrate any potential. CheckMate
143, a randomized phase 3 study comparing nivolumab
(anti-PD1) to bevacizumab (anti-vascular endothelial
growth factor) in patients with recurrent GBM, failed to
show a survival benefit.

Vaccine-based approaches encompass a broad range of
strategies, including peptide vaccines based on a single
tumor-specific mutant protein (eGFRvIII; R132H mutant
of IDH1) or on a panel of TAAs (autologous patient-
derived dendritic cells [DC]) pulsed with autologous
tumor lysate, peptide TAAs, tumor cell DNA or RNA,
and viral-based vaccines, such as the CMV pp65-loaded
DC vaccine. In the recent ACT IV randomized phase 3
trial, rindopepimut, an eGFRvIII peptide vaccine admin-
istered with standard treatment, failed to show a survival
benefit among patients with newly diagnosed, eGFRvIII-
positive GBM,102 perhaps owing to antigenic modulation
or loss.

The first results from a large international randomized
phase 3 clinical trial of an autologous tumor lysate-pulsed
DC vaccine (DCVax-L) added to TMZ maintenance
therapy in patients with newly diagnosed GBM have been
published.103 Of note, all patients were allowed to receive
the vaccine upon recurrence; as a result of this crossover
trial design, nearly 90% of the patient population received
DCVax-L. The vaccine was well tolerated, with a median
overall survival of 23.1 months from surgery for the
whole intent-to-treat population and an encouraging
34.7 months for patients with methylated O6-methyl-
guanine-DNA-methyltransferase. However, OS is not
comparable between the 2 individual arms because of the
study design.

Moreover, progression-free survival (primary
endpoint) remains to be reported. In addition, phase 1
trials (notably GAPVAC-101 [NCT02149225] and Neo-
Vax [NCT03422094]) have been investigating personal-
ized neoepitope vaccine approaches, which is a
compelling but highly complex therapeutic approach that
requires the clonal tumor neoantigens for each patient to
be identified.

Adoptive cell therapy with cytotoxic T cells are also
being developed in the context of GBM in addition to
genetically modified T cells that express a chimeric an-
tigen receptor (CAR), bind to tumor antigens, and elicit T-
cell responses in an MHC-unrestricted fashion. Different
CAR T cells that target eGFRvIII,104 IL-13Ra2,105,106

human epidermal growth factor receptor 2,107 and
EphA2108 are currently undergoing clinical testing, both
with systemic administrations and intracranial infusions,
but toxicity may be exacerbated in the brain, mainly
owing to increased edema. They also may be toxic against
normal tissue if they target nonetumor specific antigens.

Potential of Radiation to Improve the Success
of Glioblastoma Immunotherapy

In addition to its direct cytotoxic effects, radiation can
also generate T-cell tumor infiltrates in certain
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circumstances. Most data are preclinical and indicate that
RT might increase the immunogenicity of malignant cells.
A plethora of mechanisms for this effect have been pro-
posed: cell death and the release of TAA, upregulation of
MHC I expression,109 epigenetic modifications that lead
to the re-expression of TAAs, and even genetic instability
to increase the mutational load and the generation of
neoantigens. Irradiation can also trigger an immunogenic
cell death by releasing damage-associated molecular
patterns. Immunogenic cell death is characterized by
calreticulin translocation to the surface of the dying cells
that acts as an “eat-me” signal for DCs110; the release of
high-mobility group box 1 that binds to toll-like receptor-
4 on DCs, promoting their maturation111; and the release
of adenosine triphosphate that activates the inflammasome
in DCs.112

In addition, the detection of DNA fragments in the
cytosol after irradiation feeds into the cyclic GMPeAMP
synthase STING pathway and stimulates the production
of IFN type I, which is essential for the recruitment and
activation of antigen cross-presentation.113 The extent to
which these multiple possible mechanisms are effective in
human GBM is unknown, but current knowledge has
certainly fed the notion that RT might prime and activate
tumor antigenespecific immunity with effector T cells
that traffic to the tumor.114 There is a report that the T-cell
receptor repertoire of TILs in a murine 4T1 mammary
carcinoma model is broadened after irradiation.115 RT can
also increase the susceptibility of tumor cells to lysis by
cytotoxic T and NK cells, in particular by upregulating
Fas116 and NKG2D-L.117 Upregulation of several
NKG2D ligands in irradiated mouse and human glioma
cells rendered these more susceptible to NK cell-mediated
cytolysis.118 In other preclinical studies, in vitro and
in vivo irradiation of glioma tumor cells increased their
antigenicity by upregulating MHC I expression, which is
associated with an concomitant increase in TILs119 or
ICAM-1 and CXCL16 levels.120

On the basis of these data, RT has been suggested
repeatedly to generate a personalized endogenous anti-
tumor vaccine in situ, and thus improve the clinical results
of many immunotherapeutic agents, in particular immune
checkpoint therapies,121 but this is largely based on pre-
clinical murine studies with highly immunogenic tumors
and often using immune checkpoint inhibitors. However,
some clinical case reports and a few retrospective studies
do indicate synergistic effects of the RT and immuno-
therapy combination (again mostly using checkpoint
inhibitors).122
Therapeutic Combination Strategies

In GBM, various strategies combining RT with agents
that drive antitumor immune responses are being evalu-
ated preclinically and clinically.
Preclinical Experience in Radiation Plus
Immunotherapy Combinations

Removing the brakes
Stereotactic 10 Gy irradiation with PD-1 blockade

produced durable complete tumor response and long-term
survival in mice with intracranial gliomas when neither
PD-1 blockade alone nor RT alone were able to. The
authors demonstrated that a tumor influx of CD8þ T cells
was the determining immunologic mechanism that
mediated the combined treatment effect.120 The same
group investigated anti-CTLA4 monoclonal antibodies in
the same experimental model and again found prolonged
survival in the RT and immunotherapy combination arm
without major impact of treatment timing.123

Pushing the accelerator
D137 (4-1BB) is a costimulatory receptor that is

expressed by activated CD4þ and CD8þ T cells. Upon
ligand binding, CD137 enhances the expansion, survival,
and effector functions of antitumor T cells. Driving this
pathway in the context of low-dose whole-brain RT
(4 Gy � 2) can lead to significantly better survival than
either modality alone, at least in mice, often pushing
protective memory responses against a tumor rechallenge.
CD8þ and CD4þ TIL density and the tumor-specific
IFNg production by splenocytes were much higher in
mice that were treated with the combination therapy.124

Glucocorticoid-induced, TNF receptorerelated protein is
another transmembrane costimulatory receptor, constitu-
tively expressed on Tregs and inducible on CD4þ and
CD8þ Teff cells. Binding of its ligand can provide dual
benefits, namely inhibiting Treg activity while stimulating
the Teff arm. Therefore, not surprisingly, a
glucocorticoid-induced, TNF receptor-related protein
agonist antibody given with 10 Gy irradiation induced
significant tumor regression and prolonged survival in a
murine intracranial glioma model. Of note, CD4þ Teff
activation and skewing of macrophage polarization to-
ward the M1 phenotype were some of the most obvious
immune alterations.125

Betting on more than one horse
There is increasing evidence that glioma RT is best

combined with immunotherapy that targets multiple
pathways at once. A case in point is the success of the
“triple bullet,” which comprises RT with anti-CTLA4 and
anti-CD137. This treatment not only resulted in prolonged
survival, but also durable tumor-free survival in 50% of
the mice.123 Similarly, Kim et al demonstrated that only
an aggressive triple glioma attack with 10 Gy RT with
anti-PD1 and anti-TIM3 (another coinhibitory receptor)
led to 100% long-term survival in the orthotopic murine
GL261 glioma model. Both CD4þ and CD8þ T cell
populations were shown to be critical for this response.
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Long-term survivors demonstrated increased brain im-
mune cell infiltration and activity and an immune
memory.72
Intercepting complex immune-suppressive and protu-
mor networks

Two preclinical studies have provided evidence that
LY2109761, a specific inhibitor for TGFb receptor I ki-
nase, enhances the antitumor efficacy of fractionated ra-
diation (5 � 2 Gy) in human GBM xenografts that grow
intracranially79 or subcutaneously.78 On the other hand,
the pharmacologic inhibition of IDO has been shown to
synergize with chemoradiation and significantly prolong
survival in the syngeneic orthotopic murine GL-261 gli-
oma model compared with chemoradiation alone. Sur-
prisingly, this effect was lost in mice deficient in
complement component C3, which led the authors to
conclude that IDO is masking a potent complement-
dependent antitumor pathway that can be elicited by
chemoradiation as long as IDO is blocked.126

Targeting vasculogenesis and myeloid recruitment
may provide an additional therapeutic advantage when
added to brain tumor RT. An HIF-1 inhibitor, small
molecule inhibitor of the SDF-1/CXCR4 axis (plerixafor),
and CXCR4 neutralizing antibody were all effective
against an orthotopic GBM xenograft model when com-
bined with RT. An influx of bone marrow-derived
monocytes into the irradiated tumors, vasculogenesis,
and tumor recurrence were all blocked by this treatment.51

Radiation and peripheral vaccination
Using the orthotopic murine GL261 glioma model,

Newcomb et al found superior responses to low-dose
whole-brain RT (4 Gy � 2) when administered with a
peripheral vaccination with 25 Gy-irradiated, granulocyte-
macrophage, colony-stimulating factor, transduced tumor
cells compared with either treatment alone. Endpoints
such as survival, immunologic memory, tumor MHC-I
expression, and CD4þ and CD8þ lymphocytes infiltra-
tion were all measurably improved.119

Radiation and chimeric antigen receptor T cells
Weiss et al tested adoptive immunotherapy with

chimeric antigen receptor (CAR) T cells engineered to
express a chimeric NKG2D receptor in orthotopic, synge-
neic, murine GBM models. They first demonstrated that
NKG2D CAR-T cell treatment resulted in a significant
proportion of surviving mice with long-term tumor control
owing to the persistence of these cells at the tumor site. In
light of previous data that indicate upregulation of NKG2D
ligands on the glioma cell surface upon irradiation,118

Weiss et al tested the combination of low-dose RT
(4 Gy � 1) with NKG2D CAR-T cell transfer, which
resulted in a synergistic antitumor activity, a prolonged
survival, and reduced tumor volume in comparison with
NKG2D CAR-T cells alone. Mechanistically, the authors
observed improved trafficking of intravenously injected
CAR-T cells to the tumor site and increased IFNg expres-
sion by tumor-infiltrating CAR-T cells upon irradiation.127

Perhaps the biggest limitation of these preclinical
studies is the lack of suitable murine models for GBM
other than the GL-261 glioma, which is probably immu-
nogenic and hence not representative for most GBMs in
the clinic. Of note, many doses of RT are very low
compared with what would be considered in the clinic,
showing a more favorable tumor response.
Clinical Experience in RT and IT Combination

Several clinical studies are currently investigating RT
in the context of immunotherapeutic agents (Table 1), and
so far results are available from only a single study,
namely the phase 2 clinical trial assessing RT with con-
current and adjuvant polyinosinic:polycytidylic acid
(poly-ICLC) for adult patients with newly diagnosed
GBM. Unfortunately, the trial was prematurely terminated
after 31 patients were enrolled because of a change in the
standard of care for GBM and the incorporation of TMZ
into the treatment regimen. Compared with an appropri-
ately matched historical group, the poly-ICLC plus RT
treatment (without TMZ) appeared better, with a median
survival time of 65 weeks, which suggests that poly-ICLC
might have clinical activity against GBM. Moreover, the
therapeutic combo was well-tolerated.128

Generally speaking, designing any clinical trial that
combines RT and immunotherapy in GBM is challenging.
The main goal is to improve local tumor control by
leveraging the immunostimulatory properties of RT and
enhancing the antitumor function of the immune system.
Patient selection may be based on GBM subtype, and
inflammatory or immune biomarkers should be tailored to
the immunotherapeutic target.

The radiation treatment scheme and planning must be
well defined to provide an optimal radiotherapeutic
response while integrating the possibility of generating an
immune response, which is not a trivial undertaking. For
one, the radiation target volume must be limited because
standard irradiation of a large GBM volume can induce
severe lymphopenia. Yovino et al created a typical GBM
radiation plan (8 cm tumor, 60 Gy/30 fractions) and
estimated that the mean dose to the circulating lympho-
cytes was approximately 2 Gy, which is approximately
lethal dose 50% of the radiosensitive blood cells.129

Second, concurrent TMZ chemotherapy and possibly
the use of glucocorticoid agents to counter brain edema
and neurologic symptoms can potentiate lymphodeple-
tion. A study has shown that >40% of patients with GBM
developed severe and persistent treatment-related lym-
phopenia (CD4þ lymphocytes <200/mm3), which was
significantly associated with poor overall survival.98



Table 1 Clinical trials that combine radiation and immunotherapy in glioblastoma

Immunotherapeutic
target

Agent New or
recurrent
glioblstoma

Tumor
characteristic

Radiation scheme Other associated
treatment

Clinical trial
identifier

Status

PD-1 Nivolumab New MGMT-
unmethylated

Normofractionated None NCT02617589 Recruiting

PD-1 Nivolumab New MGMT-
methylated

Normofractionated Temozolomide NCT02667587 Recruiting

PD-1 Nivolumab New None Normofractionated Temozolomide þ
GMCI (oncolytic
adenovirus)

NCT03576612 Active, not
recruiting

PD-1 Pembrolizumab New MGMT-
unmethylated

Normofractionated Temozolomide þ/-
HSPPC-96 (heat
shock protein)

NCT03018288 Recruiting

PD-1 Pembrolizumab New None Normofractionated Temozolomide NCT03197506 Recruiting
PD-1 Pembrolizumab New None Normofractionated Temozolomide NCT02530502 Active, not

recruiting
PD-1 Pembrolizumab Recurrent None Hypofractionated Bevacizumab NCT02313272 Active, not

recruiting
PD-1 Pembrolizumab New None Normofractionated Temozolomide

þ Vorinostat
(HDAC
inhibitor)

NCT03426891 Recruiting

PD-1 þ CTLA-4 Nivolumab þ
Ipilimumab

New MGMT-
unmethylated

Hypofractionated None NCT03367715 Recruiting

PD-L1 Durvalumab New MGMT-
unmethylated

Normofractionated None NCT02336165 Active, not
recruiting

PD-L1 Durvalumab Recurrent None Hypofractionated None NCT02866747 Recruiting
PD-L1 Atezolizumab New None Normofractionated Temozolomide NCT03174197 Recruiting
PD-L1 Avelumab New IDH mutant grade

II or III glioma
transformed to
gioblastoma
after
chemotherapy

Hypofractionated None NCT02968940 Recruiting

PD-L1 Avelumab New None Normofractionated Temozolomide NCT03047473 Recruiting
GM-CSF GM-CSF New None Hypofractionated Temozolomide NCT02663440 Recruiting
GM-CSF þ TLR3 GM-CSF þ

poly I:C
Recurrent None Not specified None NCT03392545 Not yet

recruiting
TGF-b LY2157299 New None Normofractionated Temozolomide NCT01220271 Completed
IDO Indoximod Recurrent None Hypofractionated Temozolomide NCT02052648 Active, not

recruiting
CXCR4 Plerixafor New None Normofractionated Temozolomide NCT01977677 Active, not

recruiting
CSF1-R PLX3397 New None Normofractionated Temozolomide NCT01790503 Active, not

recruiting
TLR3 Poly ICLC

(Hiltonol)
New None Normofractionated None NCT00052715 Terminated,

has
results

Abbreviations: CTLA4 Z cyototoxic T-lymphocyte-associated protein 4; CSF1-R Z colony-stimulating factor 1-receptor; CXCR4 Z C-X-C
chemokine receptor type 4; GM-CSF Z granulocyte-macrophage colony-stimulating factor; GMCI Z gene-mediated cytotoxic immunotherapy;
HDAC Z histone deacetylase; HSPPC Z heat shock protein peptide-complex; IDH Z isocitrate deshydrogenase; IDO Z indoleamine-pyrrole 2,3-
dioxygenase; Poly ICLC Z polyinosinic:polycytidylic acid; TGF-b Z transforming growth factor b; TLR3 Z toll-like receptor 3; MGMT Z O6-
methylguanine-DNA methyltransferase; PD-1 Z programmed cell death protein 1; PD1 Z programmed death-ligand 1.
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Treatment-induced lymphopenia can obviously also be a
major barrier to the antitumor immune response; there-
fore, an RT strategy with a relatively small planning target
volume is of interest, as in a hypofractionated scheme.

Regarding the best fractionation regimen to stimulate
the antitumor immune response, preclinical data are
controversial and favor anything between a hypofractio-
nated,130 single, very high dose131 or conventional frac-
tionated strategy.132 However, recent data suggest that
radiation administered in repeated high doses but below
12 Gy to 18 Gy optimally stimulates IFN-I production
and adaptive immune responses.133 The ideal timing of



Table 2 Potential immunotherapeutic agents to combine with irradiation in glioblastoma

Elimination of immune suppression Checkpoint inhibitors anti-CTLA4
anti-PD1
anti-PDL1
anti-LAG3
anti-TIM3
TIGIT inhibitor
anti-VISTA
anti-NKG2A

Anti-KIR
TGF-b receptor inhibitors
IDO inhibitors
MDSC recruitment inhibition anti-HIF1a

CXCR4 antagonist
SDF-1 inhibitor
CXCR2 antagonist
CCR2 antagonist
anti-CCL2
anti-VISTA

MDSC depletion LXR agonist
M2-M1 macrophage repolarizing agents CSF1-R inhibitors

anti-CSF1
PI3K-g inhibitor
anti-VISTA

STAT3 inhibitors
NFkB inhibitors
Inhibition of adenosine production anti-CD39

anti-CD73
A2AR antagonists

Innate immunity:
Enhancement of APC function & maturation

TLR, RIG-I, MDA5 agonists
STING agonists
Type 1 interferons
GM-CSF
Anti-CD40 agonist
“Don’t eat-me signal” inhibitors anti-CD47

SIRPa antagonists
Enhancement of effector cells activity Costimulatory agonistic antibodies anti-CD137

anti-OX40
anti-CD27/anti-CD70
anti-GITR
anti-ICOS

Cytokines Interleukine-2
Interleukine-12

Immunization Active Vaccine
Passive CAR-T cells

Abbreviations: A2AR Z adenosine A2A receptor; APC Z antigen-presenting cells; CAR-T cells Z chimeric antigen receptor T cell;
CCL2 Z Chemokine (C-C motif) ligand 2; CD Z cluster of differentiation; CTLA4 Z cyototoxic T-lymphocyte-associated protein 4; CSF1-R:
Colony-stimulating factor 1-receptor; CXCR2: C-X-C chemokine receptor type 2; CCR2: Chemokine (C-C motif) receptor type 2; CXCR4Z C-X-C
chemokine receptor type 4; GITR Z glucocorticoid-induced TNFR-related protein; GM-CSF Z granulocyte-macrophage colony-stimulating factor;
HIF1a Z hypoxia-inducible factor 1 alpha; ICOSZ inducible T-cell co-stimulator; IDO Z indoleamine-pyrrole 2,3-dioxygenase; KIR Z killer-cell
immunoglobulin-like receptor; LAG3 Z lymphocyte-activation gene 3; LXR Z Liver X receptor; MDA5 Z melanoma differentiation-associated
protein 5; MDSC Z myeloid-derived suppressor cells; NFkB Z nuclear Factor kappa B; NKG2A Z inhibitory receptor expressed on natural
killer cells and CD8þ T-lymphocytes; OX40 Z tumor necrosis factor receptor superfamily, member 4; PD-1 Z programmed cell death protein 1;
PD-L1 Z programmed death-ligand 1; PI3K- g Z phosphoinositide 3-kinase-gamma; RIG-I Z retinoic acid-inducible gene I; SIRPa Z signal
regulatory protein alpha; STAT3 Z Signal transducer and activator of transcription 3; STING Z stimulator of interferon genes; TGF-
b Z transforming growth factor b; TIGITZ T cell immunoreceptor with Ig and ITIM domains; TIM3 Z T-cell immunoglobulin and mucin-domain
containing-3; TLR Z toll-like receptor; VISTA Z V-domain Ig suppressor of T cell activation.
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immunotherapy and radiation must also be defined and
may vary with the mechanism of action of the immuno-
therapy applied. Therapies that promote cancer antigen
presentation and T-cell activation should probably be
administered starting before irradiation because available
evidence suggest that later administration is ineffective.
This may sound counterintuitive, but the aim is to develop
systemic immunity with recirculating memory lympho-
cytes that can migrate to the tumor. Hypofractionated RT
somewhat spares the lymphophenic effects and should be
employed. Single fractions that are useful for the treat-
ment of metastases are likely less effective for GBM.

Another clinically important topic is the appropriate
imaging assessment of local tumor response and the
distinction between pseudoprogression and real tumor
progression. A transient increase in tumor volume is often
observed after brain irradiation owing to an acute in-
flammatory and edematous reaction. On the other hand, a
subset of patients who received immunotherapy also
appeared to develop pseudoprogression, probably because
of the infiltration of immune cells into the tumor site. To
incorporate these considerations into imaging assess-
ments, the immunotherapy Response Assessment for
Neuro-Oncology criteria were established.134

Finally, monitoring the safety and tolerability of new
combination strategies according to the Common Termi-
nology Criteria for Adverse Events, version 4.03, is
crucial. Immune-related adverse events are well known,
and their management is standardized. These are likely
increased in the proposed combination therapies, and
there is also a possible enhanced risk of radionecrosis,
which requires close monitoring by neurologic examina-
tion and imaging.
Conclusions and Future Challenges

To date, clinical trial data suggest that a single
immunotherapeutic approach is unlikely to be sufficient to
overcome the immune resistance of most solid tumors,
and compared with other solid tumors, this topic remains
largely underinvestigated in the context of brain cancer
and especially GBMs. Cancer RT has significant immu-
nomodulatory potential in its own right; therefore, com-
bination radiation and immunotherapy has a strong
rationale. Indeed, the results of preclinical studies are very
encouraging in this regard, and data from ongoing clinical
trials are eagerly awaited. Clinically, antitumor immunity
will probably have to be tackled from multiple angles to
really make a difference for irradiated GBM (Table 2).

Future clinical trials that combine immunotherapy with
RT will need to incorporate an assessment of baseline
immunity at the tumor site and in the blood to identify
predictive biomarkers and tumor subtype. These correla-
tive studies of immune monitoring should also schedule
collections of blood and tissue specimens at various time
points before, during, and after treatment to determine
how effective treatment is at inducing specific immune
responses and identify biomarkers correlated with clinical
outcome. Lastly, a comprehensive immunobiologic anal-
ysis at recurrence or progression is also relevant to
identify potential adaptive mechanisms.

Through the development of large databases, such as
TCGA, our knowledge of recurrent genetic alterations in
GBM has improved. Subsets of GBMs have been defined
based on genetic profiles and have prognostic signifi-
cance. More studies addressing the influence of tumor
genotype on immunophenotype are now required to
develop personalized treatment combinations. Immuno-
therapy clinical trials should also incorporate molecular
subclass and determine treatment responses at least within
the proneural, neural, classic, and mesenchymal subtypes.

In the upcoming years, we anticipate that new omics
technologies (ie, genome/exome, transcriptome, prote-
ome, epigenome, miRNome, metabolome, and micro-
biome), high-throughput data extraction and processing,
multifactorial bioinformatics analyses, and collaborative
multi-institutional efforts will allow for the identification
of new biomarkers of radiation and immune response, the
definition of new immune-related therapeutic targets, and
the development of innovative personalized therapeutic
strategies.
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