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Pregnancy and postpartum dynamics revealed by 
millions of lab tests
Alon Bar1†, Ron Moran1†, Netta Mendelsohn-Cohen2, Yael Korem Kohanim3, Avi Mayo1,  
Yoel Toledano4, Uri Alon1*

Pregnancy and delivery involve dynamic alterations in many physiological systems. However, the physiological 
dynamics during pregnancy and after delivery have not been systematically analyzed at high temporal resolution 
in a large human population. Here, we present the dynamics of 76 lab tests based on a cross-sectional analysis of 
44 million measurements from over 300,000 pregnancies. We analyzed each test at weekly intervals from 20 weeks 
preconception to 80 weeks postpartum, providing detailed temporal profiles. About half of the tests take 3 months 
to a year to return to baseline postpartum, highlighting the physiological load of childbirth. The precision of the 
data revealed effects of preconception supplements, overshoots after delivery and intricate temporal responses 
to changes in blood volume and renal filtration rate. Pregnancy complications—gestational diabetes, preeclampsia, 
and postpartum hemorrhage—showed distinct dynamical changes. These results provide a comprehensive 
dynamic portrait of the systems physiology of pregnancy.

INTRODUCTION
During pregnancy, the mother undergoes physiological changes that 
support fetal growth and development. The cardiovascular, respira-
tory, renal, gastrointestinal, skeletal, metabolic, endocrine, and im-
mune systems are all affected by fetal demand and massive endocrine 
secretion by the placenta (1–4). Elevated demand for oxygen and 
nutrients causes an increase in cardiac output and up to 50% growth 
in blood volume (1). The kidneys increase the glomerular filtration 
rate, leading to increased urine production (1). The immune system 
is modulated to prevent rejection of the fetus, and coagulation and 
red blood cells show marked changes (1, 2, 5). Metabolism shifts to 
increased insulin resistance and lipid production to supply energy 
for fetal growth (6).

Delivery marks a profound change as the fetus and placenta exit the 
body and abruptly cease their metabolic and endocrine effects. The 
mother undergoes a series of adaptations in which various physiological 
systems recover with different timescales—from hours to months (7). 
Pregnancy and postpartum periods have an increased risk of complica-
tions including gestational diabetes, postpartum hemorrhage (PPH), 
anemia, depression, and eclampsia (8).

Understanding healthy physiology and pathology is essential for 
both advancing basic science and as a baseline for treatment. This 
understanding of the physiological changes during pregnancy and 
postpartum requires precise temporal data on numerous physiologi-
cal parameters. However, existing studies have a limited number of 
participants, consider only a few parameters, and have low temporal 
resolution, typically of one time point per trimester (9, 10). Knowl-
edge is even more sparse in the postpartum period in which a single 
time point is usually measured. Meta-analyses have collected these 
smaller studies to construct normal ranges for tests in each trimester 

(9, 10). Together, our knowledge of the physiological time course is 
thus limited to low temporal resolution. Here, we harness a large na-
tional health record database (11) to study over 300K pregnancies in 
terms of 76 major lab tests, totaling over 43 million tests. We cross-
sectionally analyzed these test results at weekly time intervals, and 
we present this information as a resource. We identify global dynam-
ical trends in healthy pregnancies and in pregnancy complications.

RESULTS
We composed a dataset of lab tests throughout pregnancy 
and postpartum
We obtained data from Clalit Healthcare, the largest health mainte-
nance organization (HMO) in Israel, with over 5 million members 
as of 2024, with broad socioeconomic and ethnic demographics 
(11, 12). The HMO database includes about half of the pregnancies 
in Israel between 2003 and 2020. We analyzed 313,501 pregnancies 
of females aged 20 to 35 (Methods). The mean and median time of 
delivery was week 39 (Methods). This is an all-comers dataset, with 
stillbirths and multiple deliveries excluded. Demographic charac-
teristics of the participants are presented in Table 1. We removed 
test values from individuals with disease codes or medications that 
statistically affect each test (Methods). Thus, we consider the dataset 
to include only healthy pregnancies.

In the period of 60 weeks before delivery to 80 weeks after deliv-
ery, we identified 44,312,918 test values from 110 lab tests (fig. S1 
and table S1). We filtered out 34 tests due to high noise and/or low 
number of measurements (Methods) and retained 76 tests with a to-
tal of 43,498,258 measurements for analysis. Each test had between 
36,043 and 1,652,191 measurement values. Our ethical agreement 
precluded longitudinal analysis of individual pregnancy trajectories. 
We therefore performed cross-sectional analysis—we aggregated each 
test over weekly intervals and analyzed them for summary statistics 
(Methods) including mean, median, and the (5, 10, 25, 50, 75, 90, 
and 95)th percentiles. For clarity, we highlight one test, alkaline 
phosphatase (ALP), in Fig. 1B and show all 76 profiles in Fig. 1C. Tests 
arranged by physiological systems are discussed in detail in Supple-
mentary Text and fig. S2.
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Dynamic variation in pregnancy scales with 
homeostatic variation
All 76 mean test values varied across pregnancy and postpartum with 
a dynamic range of a few percent to hundreds of percent for different 
tests. The dynamic range of each test rises with its variation within 
the reference population—tests that vary widely between individuals 
also show large dynamic ranges during pregnancy and postpartum 
(Fig. 2A; Pearson correlation coefficient = 0.72, P < 10−5) (Methods) 
with a linear relation. Thus, homeostatic processes seem to remain 
mostly within their physiological range. In the following analysis, we 
therefore use quantiles scores relative to a nonpregnant population. 
Quantile scores varied by 9 to 60 percentile points compared to refer-
ence, with a mean of 36 percentiles (Fig. 2B).

Dynamics show overshoots and undershoots after delivery
To understand the observed dynamics, we clustered tests according 
to their temporal profiles (Methods; Fig. 2, C to F, and fig. S4). We 
found four clusters, which define four profiles. Profile 1 rises during 
pregnancy and drops postpartum, and profile 2 is its mirror image, 
declining in pregnancy and rising postpartum. Profiles 3 and 4 show 
overshoots or undershoots at delivery followed by a return to pre-
conception levels.

To understand the origin of the overshoots, we consider canoni-
cal physiological mechanisms (Supplementary Text). Pregnancy ex-
erts a load on physiological variables to meet the needs of the mother 
and developing fetus. This load pushes physiological variables away 
from their normal set points or adjusts new set points that reflect 
physiological priorities (13, 14). Upon delivery, this load is suddenly 
relaxed (Fig. 2L).

Variables without overshoot can be explained by first-order re-
covery to baseline [Fig. 2K(a)]. Variables are pushed by the load 
away from steady state during pregnancy and recover postpartum 
with a characteristic timescale, which follows the relaxation of the 
gestational load [Fig. 2, K(a) and M]. In this scenario, no over-
shoot occurs.

In contrast, an overshoot can occur when there exists an addi-
tional, slowly varying compensation mechanism [Fig. 2, K(b) and N], 
modeled here by an incoherent feed forward loop circuit (15, 16). 
During pregnancy, the compensatory mechanism intensifies to keep 
the variable from moving too far from its set point. Upon delivery, 
the load is suddenly reduced but the compensation mechanism is still 
strong, causing overcompensation that induces an overshoot. Return 
to baseline of the variable is governed by the return of the compensa-
tion mechanism. An example is the slow growth of the thyroid gland 
during pregnancy that compensates for changes in the demand for 
thyroid hormones (17).

Other models can also provide the observed temporal shapes. For 
example, a load that grows during pregnancy and reduces during 

postpartum can provide alternative explanations for profiles 1 and 2. 
Delivery itself can serve as another source for rebound dynamics by 
forcing a sharp pulse in the opposite direction. 

Physiological changes show slow postpartum recovery
To study the global temporal trajectories, we reduced dimensional-
ity using principal components analysis (PCA) on the 76 tests at 
all 140-week intervals. The first two principal components capture 
88% of the variation. The trajectory shows hysteresis—tests change 
during pregnancy and return to baseline via a different trajectory 
postpartum, as can be read by moving clockwise from conception 
in Fig. 3A.

Postpartum adaptation has two main phases, which are apparent 
on PC1 (Fig. 3A). Most changes take place in the 10 weeks after de-
livery, followed by a prolonged return to steady state. Many tests 
take months to return to baseline after delivery. To quantify the time 
to return to baseline, we use a measure from control theory called 
“settling time.” The settling time is defined by the time after which 
the test remains within a small margin (here 0.2 SDs) of its postpar-
tum baseline (Methods and Fig. 3B).

Approximately 41% (31/76) of the tests have long settling times 
that exceed 10 weeks (Fig. 3C). Among these are liver functions 
aspartate transaminase (AST) and alanine transaminase (ALT) 
that take about half a year to recover, metabolic factors such as 
cholesterol, and ALP, which settles only after about a year (Fig. 
3C). Approximately 47% (36/76) of the tests settle rapidly within 
the first month. This includes all coagulation tests (Fig. 3C). The 
remaining ~12% of the tests (9/76) settle between 1 month and 
10 weeks after delivery (Fig. 3C).

Slow return to baseline can arise from several factors. Metabolism 
is affected by the body mass index (BMI) that settles over months 
(18). Breastfeeding may also affect some tests, such as ALP, calcium, 
phosphate, parathyroid hormone (PTH), and prolactin (19). The da-
taset does not include information on who breastfed. About 90% of 
Israeli neonates are breastfed for a mean duration of about 70 days, 
and the rate of exclusive breastfeeding drops to about 60% at 2 months 
and to 20% at 6 months after birth (20).

Notably, several tests do not return to their preconception 
baseline after settling, including elevated levels of the inflamma-
tion marker complement-reactive protein (CRP), reduced thyroid-
stimulating hormone (TSH), and reduced mean cell hemoglobin 
(MCH) and iron.

Preconception dynamics reflect health behaviors
We noticed that about a third of the tests (24/76) show dynamical 
trends before conception, in the period of 60 to 38 weeks before 
delivery (Fig. 4, A to C) (Methods). One of the strongest changes is 
a rise in folic acid (Fig. 4A). Folic acid supplements are taken in the 

Table 1. Age and BMI of the study population. Because of privacy concerns, other demographics were not available. Age statistics are for all participants who 
had any of the 76 tests analyzed in the indicated week. Because of the cross-sectional nature of the dataset, each test and weekly interval is drawn from a 
different subcohort of the study population. IQR, interquartile range.

60 weeks before delivery At delivery 80 weeks postpartum

 Age (mean, IQR) 28.2 (25.2–31.3) 28.3 (25.3–31.4) 29.3 (26.6–32.3)

 BMI (mean, IQR) 24.6 (20.7–27.1) 28.8 (25.1–31.7) 26.0 (20.9–29.4)
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Fig. 1. Dataset of lab tests over preconception, pregnancy, and postpartum. (A) Schematic overview of the dataset. (B) Alkaline phsophatase (ALP) test (mean of the 
quantile-transformed values; see Methods) over 140 weeks. Error bars are SEM. Units are the standard for the test (IU/liter). m, months; y, year. (C) Seventy-six test values 
over 140 weeks; the period of pregnancy is in gray. For units and full test names, see table S1. Created with BioRender.
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months before conception by about half of the relevant popula-
tion (21, 22).

Supplements such as folic acid and vitamin B12 can exert physio-
logical effects on other test values. These changes include a reduction 
in CRP (Fig. 4C), an increase in albumin (Fig. 4D), positive effects on 
anemia, anticoagulative effects, and lowering of lipids (23–27).

Some of the changes seen in preconception are not easily attributed 
to known effects of supplements. This includes changes in immune cell 
counts, ALT, AST, Na, urea, and urine pH. One possibility is that these 
tests are affected by yet unknown mechanisms by supplements or that 
they are affected by other preconception health behaviors such as re-
duced rates of smoking, alcohol consumption, and improved diet (28).

b

X

Y

X

a
Fig. 2. Lab test dynamics vary during pregnancy and postpartum and can show overshoots and undershoots. (A) Relative dynamic range across the study period 
(Methods). Dynamic range (max-min)/(preconception average) is roughly proportional to the coefficient of variation (CV) of the test value in the reference population. rp 
is the Pearson correlation. The dashed line within the 95% confidence interval has slope 1, R2 = 0.68. (B) Histogram of the dynamic range of quantile scores of the 76 tests. 
(C to F) Four clusters of ranked test dynamical profiles. In gray are ranked individual tests; colored lines are cluster means. (G and H) Theoretical profiles for first-order re-
sponse. (I and J) Theoretical profiles for a system with a slow compensatory mechanism. (K) Physiological circuits governing response to load and recovery. Full model 
found in Supplementary Text. (a) Circuit in which the load of pregnancy affects test X as a first-order system. (b) Circuit in which the load affects test Y with X as a compen-
satory system. (L) Pregnancy load in the theoretical model rises in pregnancy and drops abruptly at delivery. (M) First-order system X responds with no undershoot. 
(N) Compensated system Y shows an undershoot and a rebound effect.
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We conclude that the resolution and precision of the present da-
taset allows the detection of preconception changes that may corre-
late with health behaviors.

Complications of pregnancy show distinct 
dynamical changes
Thus far, we considered healthy pregnancies. To study complications of 
pregnancy, we analyzed data from pregnancies diagnosed with three 
major complications: preeclampsia (5629 pregnancies, 1.8%), gesta-
tional diabetes (7233 pregnancies, 2.3%), and PPH (4566 pregnancies, 
1.5%). The incidence of these complications in the dataset is lower than 
expected (29–31). The lower incidence can be attributed to exclusion of 
risk factors, such as chronic illness (Methods) and maternal age over 
35 years (30, 32, 33). We compared the test dynamics to healthy preg-
nancies during preconception, gestation, and postpartum (Fig. 5).

Preeclampsia is a complex disorder of pregnancy characterized 
by high blood pressure, headaches, and visual disturbances (34). In 
some cases [<2% of preeclamptic patients (35)], preeclampsia devel-
ops into eclampsia, a life-threatening condition usually requiring 
urgent delivery (36).

The causes of preeclampsia are not fully understood; it is believed 
to involve factors related to the placenta, the immune system, and 
genetics (32, 37). We find that seven tests deviated significantly from 
the healthy reference (Fig. 6, A, D, G, and J). These include elevated 
platelets and ALT in the preconception period, elevated gestational 
uric acid, elevated postpartum triglycerides, and high systolic and 
diastolic blood pressure throughout the study period. High blood 
pressure during pregnancy is the main diagnostic tool for pre-
eclampsia coupled with diagnosis of proteinuria (37).

PPH is a major cause of maternal morbidity and mortality charac-
terized by excessive bleeding (≥1000 ml) after childbirth, typically 
within 24 hours after delivery and up to 12 weeks postpartum (38–
40). The primary cause is uterine atony, where the uterus fails to con-
tract adequately after delivery (40). Other causes include retained 
placental fragments, tears in the cervix or vaginal tissues, and coagu-
lation disorders (40). We find that nine tests deviate significantly 
from the healthy reference, including tests before delivery (Fig. 6, B, 
E, H, and K). Platelets are mildly reduced, suggesting altered blood 
clotting even before pregnancy. Other coagulation markers are not 
significantly altered (41, 42). PPH is also associated with a distinctive 

Fig. 3. Postpartum recovery times of tests range between days and a year. (A) Dimensionality reduction of test mean values as a function of time using PCA shows 
that the trajectory during pregnancy (blues) differs from the postpartum trajectory (orange and red). Each point is a week interval, progression clockwise from 60 weeks 
before delivery, through conception and delivery, to the end point 80 weeks after delivery. (B) Settling time is defined as the time after which the test remains within 0.2 
SDs of its baseline. (C) Settling time of the tests in the dataset.
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pattern of decreased MCHC (mean corpuscular hemoglobin concen-
tration) and elevated MCV (mean corpuscular volume) before con-
ception and during gestation (Fig. 6K). This agrees with a longitudinal 
study where a higher MCV and MCH toward the end of pregnancy 
were associated with higher likelihood of PPH (43).

Gestational diabetes is characterized by high blood glucose that 
develops during pregnancy in females who did not previously have 
diabetes (44). It usually appears in the second or third trimester and 
can affect the health of both mother and fetus (45, 46). We find that 
20 tests deviate significantly from the healthy reference (Fig. 6, C, F, 
I, and L). This includes high glucose and HbA1c, elevated GGT liver 
damage test, and elevated triglycerides before and after pregnancy. 
These values are associated with obesity and inflammation, both 
causes of insulin resistance that contributes to gestational diabetes.

In all three complications, some of the significant changes are seen 
before conception or after delivery rather than during gestation (Fig. 6, 
J to L). In gestational diabetes, 17 of the 20 significantly different tests 
are different during preconception, of these 12 are statistically different 
solely in the preconception period. In other words, during gestation, 
the dynamical profiles are generally similar to healthy pregnancies. This 
is interesting given that tests for diagnosing pathologies such as gesta-
tional diabetes and preeclampsia are done during gestation (47, 48).

DISCUSSION
We present a cross-sectional dataset of 40 million lab test mea-
surements from 300,000 pregnancies during a 140-week period 
spanning preconception, gestation, and postpartum. The dataset is 

Fig. 4. Tests affected by health behaviors show preconception dynamics. (A to C) Folic acid, CRP, and albumin are examples of a strong preconception change. Mean 
conception time is indicated by a dashed line. The inset highlights the preconception period, red is regression with 95% confidence intervals. (D) Temporal slope of test 
values during preconception from linear regression. Tests are arranged by physiological system; tests in bold color have significant nonzero slope (>0.11 in absolute value 
and P < 0.05 adjusted for multiple comparisons, Benjamini-Hochberg). Error bars are 95% confidence intervals of slope.
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Created with BioRender

Fig. 5. Dynamics of lab tests in complications of pregnancy. Tests with significant differences from healthy pregnancy (green) are marked by Pe for preeclampsia 
(blue), PH for PPH (purple), and GD for gestational diabetes (orange). The y axis is different between tests; for units, see table S1. For the same figure with quantile scores, 
see fig. S5. Created with BioRender.
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unprecedented in terms of number of participants and time inter-
vals and covers all major laboratory tests. About half of the tests 
take on the order of months to a year to return to baseline after 
delivery, highlighting the physiological aftermath of pregnancy. 
During gestation, all tests show sizable changes, and about half 
show large overshoots after delivery. The precision of the dataset 
allows detection of intricate dynamical changes, including the 
impact of preconception supplements and the deviations from 
healthy pregnancy in preeclampsia, gestational diabetes, and 
PPH. This study thus provides a resource for understanding preg-
nancy and the postpartum period and demonstrates how it may be 
used to understand mechanisms in systems physiology.

This study greatly expands our knowledge of the postpartum pe-
riod because most postpartum studies considered only one or a few 
time points. Rather than a “fourth trimester” with rapid return to 
baseline, there is a slow recovery of between 10 and 50 weeks for 
31/76 of the tests. Examples of such slowly adapting tests are ALP, 
albumin, AST, and ALT as well as sodium and uric acid.

We find that the postpartum return of the tests to baseline occurs 
by a trajectory that differs from the trajectory of change during 
pregnancy, a phenomenon called hysteresis. Postpartum adaptation 
is a distinct physiological process and not merely the reverse of 
pregnancy dynamics.

Several tests show a difference between their preconception val-
ues and their values 80 weeks postpartum. These postpartum differ-
ences include elevated levels of the inflammation marker CRP and 
reduced corpuscular hemoglobin (MCH) and iron. The differences 
could result from postpartum behavioral changes and/or from last-
ing physiological effects of pregnancy. Telling these factors apart is a 
major question for future research.

The lab tests show two types of stereotypical profiles, either a 
smooth rise-and-fall, where delivery redirects the direction of 
change back to baseline, or jump-like, where delivery causes a sharp 
overshoot or undershoot. Rebounds and sharp reversals have not 
been systematically characterized previously because studying them 
requires many temporal intervals, which were lacking in most pre-
vious studies.

These profile shapes can be rationalized based on general physi-
ological principles. Overshoots are consistent with a compensatory 
mechanism that grows during pregnancy and remains high after 
delivery causing overcompensation. An example of such compensa-
tion occurs in the thyroid axis, where thyroid functional mass grows 
during pregnancy under the control of TSH and hCG (human cho-
rionic gonadotropin), increasing the capacity to produce thyroid 
hormones. This extra mass takes months to recover postpartum 
given the slow turnover of thyroid cells, causing overshoot dynamics 

Created with BioRender

Fig. 6. Tests with significant deviations from healthy pregnancies in preeclampsia, gestational diabetes, and PPH. (A to I) Volcano plots of −log P value (FDR cor-
rected) versus effect size for each test at each time point. See full test names in table S1. Significant tests are marked with a red dot and their name (Methods). (J to L) Venn 
diagrams showing the significant tests in the preconception (blue), gestation (green), and postpartum (red) periods for each complication. Created with BioRender.



Bar et al., Sci. Adv. 11, eadr7922 (2025)     26 March 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 12

in thyroid hormones. The ability of endocrine glands to change 
mass has important beneficial functions, such as dynamic compen-
sation of variation in physiological parameters (49). Gland mass 
changes add a timescale of months to hormone dynamics and con-
tribute to hormone seasonality (50), explain subclinical endocrine 
diseases (17), and cause extended dysregulation after chronic stress 
is relieved (51).

Pathologies of pregnancy showed distinct temporal profiles in 
specific tests. These differences from healthy pregnancies were more 
pronounced before conception and after delivery than during gesta-
tion for many of the tests. Several aberrations were shared between 
two pathologies—gestational diabetes and preeclampsia—suggesting 
the possibility of a pan-complication signature.

This study presents detailed cross-sectional temporal trajectories 
of pregnancy and postpartum physiology. These trajectories reveal 
prolonged recovery times and overshoot effects of many tests after 
delivery, preconception dynamics of many tests, and perturbed tests 
in pregnancy complications at unprecedented detail. It suggests pro-
cesses that allow the mother’s physiology to adapt to the multisys-
temic load of pregnancy and to navigate the abrupt effects of delivery. 
The power of this dataset stems from having delivery as a well-
defined temporal signpost, t = 0. A similar approach might be useful 
for understanding other temporal transitions such as growth and de-
velopment in childhood, puberty, menopause, and the course of spe-
cific diseases (diagnosed at t = 0) and their recovery processes. We 
hope that the present dataset will lead to a better understanding of 
pregnancy and postpartum biology and inspire similar studies of other 
crucial physiological processes that unfold over time.

Limitations of the study
This study has limitations associated with the use of medical datas-
ets, including the effects of ascertainment bias. This study considered 
pregnancies in a single country; future work can consider effects of 
different locales. The study is cross-sectional and should be tested by 
future longitudinal studies that can assess subtypes of pregnancy tra-
jectories. Thyroid tests are known to show low ergodicity (52, 53), in 
the sense that an individual’s test values vary over a small part of the 
population range. As a result, it is challenging to draw reliable con-
clusions about an individual’s health by using population-wide refer-
ence values (54, 55) because cross-sectional analysis could mask the 
changing trends of individuals.

METHODS
Study population
The study population consisted of individuals from the Clalit Health-
care database (11, 56). We considered all pregnancies of females aged 
20 to 35 between 2003 and 2020. For more information, see “stats.csv” 
and the “README.md” files in the GitHub repository.

Data collection
Medical records were pseudonymized by hashing of personal iden-
tifiers and randomization of dates by a random number of weeks 
uniformly sampled between 0 and 13 weeks for each patient and 
adding it to all dates in the patient diagnoses, laboratory, and medi-
cation records. This randomization does not affect timing relative to 
delivery. Retrospective test results were aggregated, and only statis-
tical information was kept. Our ethical agreement with Clalit does 
not require informed consent for publication of this aggregated data.

We examined the time frame of 60 weeks before delivery to 
80 weeks after delivery for all documented deliveries within our study 
population. We identified deliveries by ICD9 code V27 and con-
firmed a childbirth record for the individual. We excluded preterm 
deliveries (<37 weeks, ICD9 code 644), stillbirths, and deliveries 
with more than one newborn.

To mitigate ascertainment bias, for each test, we removed data 
from individuals with chronic disease that affects the test if the onset 
of the disease was up to 6 months after the test. We also removed data 
from individuals who purchased drugs, which affected the tests in 
the 6 months before the tests. Chronic diseases are defined as nonpe-
diatric ICD9 codes with a Kaplan-Meier survival drop of >10% over 
5 years. A list of chronic diseases can be found under “excluded_icd9_
codes.csv” in the GitHub repository. Drugs that affect a test were defined 
as drugs with significant effect on the test [false discovery rate (FDR) 
< 0.01]. This step allowed us to focus on a relatively healthy subset of 
the pregnant population, reducing the confounding effects associ-
ated with the specific health conditions listed above or medication 
usage (12).

To exclude the potential effect of follow-up pregnancies in the 
80 weeks following delivery, we excluded lab values from individuals 
with another delivery within 60 weeks following the measurement.

For each pregnancy, we gathered all available test values includ-
ing standard blood count, kidney and liver function tests, blood co-
agulation tests, lipid panel, inflammation markers, and hormones 
(table S1). We then discretized test values into time points relative to 
the time of birth in weekly intervals for each test. In addition to test 
values, we also extracted data on patients including age (at measure-
ment, mean, and interquartile range) and BMI (the most proximal 
BMI measurement in medical records before pregnancy, mean, and 
interquartile range, if available).

Quantile transformation
We transformed each measurement into a quantile score, normalized 
between 0 and 1. Quantiles were computed from cumulative distribu-
tions of test values from a reference population of age-matched non-
pregnant females (Ftest,age). The nonpregnant reference population 
included healthy nonmedicated females according to the R package 
LabNorm (12), including individuals in the study cohort during 
the time periods that they were not pregnant. The transformation is 
summarized as

Data aggregation
Each individual test result included the age, latest BMI (if available), 
week postpartum (with 0 being delivery), and the quantile score. We 
aggregated the data into summary statistics: For each weekly inter-
val per lab test, we calculated the mean, SD, and (5, 10, 25, 50, 75, 90, 
and 95)th percentiles of all the abovementioned data types. To ob-
tain a test value at the mean quantile score for Figs. 1 and 5, we 
performed a back-transformation by transforming mean quantiles 
into test level values. The back-transformation uses a sparsely sam-
pled cumulative distribution function per test (denoted F−1 below) 
and linear interpolation between the quantiles. The values for F−1 
were queried using LabNorm and can be found in the attached git 
repo in a file named “Labnorm.csv.” Tests without such a reference 
were filtered (see Data filtering below). Age parameterizing the back- 
transform is the median age of the population at the same week 
(week i below) as the mean quantile back-transformed

quantile_score = Ftest,age(value)
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Error bars are quantile SEM likewise back-transformed to test 
values (table S2). Fluctuations between neighboring points suggest 
additional errors on the order of 40 to 180% of SEM.

Data filtering
The original dataset included 110 tests. We excluded 31 tests with a 
small number of test results. If the SEM at any weekly interval, or the 
mean across all intervals, exceeded a threshold, the test was consid-
ered noisy. Three more tests were discarded with this procedure. For 
filtered tests and thresholds, see tables S2 and S3.

Data analysis
Unless otherwise stated, the mean quantile values were used for 
each test and weekly interval. See Quantile transformation and Data 
aggregation above for more details.

Averaging consecutive time points (smoothing)
In Fig. 1C, we smoothed the curves for tests with smaller sample 
sizes by using averaged consecutive weekly intervals. This process 
was performed for visualization and was not used for data analysis. 
See fig. S3 for the data without smoothing.

Dynamic range
We assessed the dynamic range across pregnancy by comparing the 
time intervals with the minimum and maximum values for each test. 
We performed a two-sample t test for each test between these time 
intervals with correction for FDR by the Benjamini-Hochberg meth-
od with a threshold of 0.05 using the “statsmodels” Python package.

Clustering
We performed clustering to group together tests with similar profiles. 
Tests were clustered (ward) using a distance metric of 1 − rs where rs 
is the Spearman correlation and “fcluster” from the python module 
“scipy.clustering.hierarchy.” Each test is a vector of the quantile score 
at each of the 140-week intervals. For more information, see fig. S4.

Principal components analysis
We performed PCA using the python package “sklearn.”

Settling time
We define the postpartum baseline using the quantile values in the 
last 10 weeks of the dataset, namely, weeks 70 to 80 after delivery, 
and define SDs using the average of the SDs of test values in these 10 
bins. We next smoothed the mean test value data using a Gaussian 
kernel smoother, using the “gaussian_filter” function of the python 
“scipy.ndimage” module with sigma = 1 and mode = “nearest”. The 
settling time is the time after which at least 90% of the smoothed 
time points remain within 0.2 SDs of the baseline values. The cutoff 
of 0.2 SDs was chosen by a visual inspection of the data. In Fig. 3, 
settling time was computed from quantile scores.

Preconception dynamics
We used linear regression to model the relationship between the test 
mean quantile score and time (in weeks) in the preconception peri-
od (60 to 38 weeks before delivery). We considered a test to have a 
notable dynamical trend if the absolute value of the regression line 

slope was greater than 0.1 and the P value was less than 0.05 after 
controlling for FDR. Linear regression was performed using “curve_
fit” from python “scipy.optimize.”

Data processing (pregnancy complications)
The methodology mentioned above was used to create a dataset of preg-
nancies with diagnosis of preeclampsia, gestational diabetes, and PPH 
using the ICD9 codes 642.4-9 excluding 642.8, (648.83 and 648.81) ex-
cluding 250 (diabetes), and 666, respectively. The measurement was in-
cluded if the diagnosis was made not more than 140 weeks before/after 
the measurement was taken, and if the diagnosis was made in the [−42, 
+3] week where 0 denotes delivery. The test results were aggregated at a 
4-week interval due to a lower number of measurements. Filtering as 
mentioned above yielded a subset of 50 tests, for a list, see table S1.

Data analysis (pregnancy complications)
Test results for each condition (preeclampsia, gestational diabetes, 
and PPH) were compared against the unaffected dataset aggregated 
at a 4-week interval. We performed a paired t test and separated the 
weekly intervals to preconception, gestation, and postpartum. We 
corrected for multiple comparisons using the Benjamini-Hochberg 
method with a threshold of <0.05, and Cohen’s d as the effect size 
for a paired t test. We set effect size thresholds corresponding to 
large effect sizes (57, 58) by visual inspection, as follows: preeclamp-
sia ≥ 3.0, PPH ≥ 1.3, and gestational diabetes ≥ 3.0.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S5
Tables S1 to S3
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