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Abstract: Human interferon-gamma (hIFNγ) is a crucial signaling molecule with an important role
in the initialization and development of the immune response of the host. However, its aberrant
activity is also associated with the progression of a multitude of autoimmune and other diseases,
which determines the need for effective inhibitors of its activity. The development of such treatments
requires proper understanding of the interaction of hIFNγ to its cell-surface receptor hIFNGR1.
Currently, there is no comprehensive model of the mechanism of this binding process. Here, we
employ molecular dynamics simulations to study on a microscopic level the process of hIFNγ–
hIFNGR1 complex formation in different scenarios. We find that the two molecules alone fail to
form a stable complex, but the presence of heparan-sulfate-like oligosaccharides largely facilitates the
process by both demobilizing the highly flexible C-termini of the cytokine and assisting in the proper
positioning of its globule between the receptor subunits. An antiproliferative-activity assay on cells
depleted from cell-surface heparan sulfate (HS) sulfation together with the phosphorylation levels of
the signal transducer and activator of transcription STAT1 confirms qualitatively the simulation-based
multistage complex-formation model. Our results reveal the key role of HS and its proteoglycans in
all processes involving hIFNγ signalling.

Keywords: human interferon gamma; human interferon gamma receptor; heparan sulfate; molecular
dynamics simulations; sodium chlorate

1. Introduction

Interferon-gamma (IFNγ) is a pleiotropic signaling molecule with antiviral, antibac-
terial, antiparasitic, antitumor and immunomodulatory activities (for review, see [1,2]).
Nonetheless, its activity is associated with the pathological progression and exacerbation
of numerous autoimmune [3] and neurodegenerative diseases [4,5] and some cancers [6].
In this context, the development of inhibitors of hIFNγ signalling has the potential to offer
a way to manage and treat such conditions. Pursuing such an approach requires detailed
and conclusive understanding of the mechanism of action of hIFNγ on target cells. To date,
there is no consistent model of this mechanism and, specifically, of the cytokine binding to
its cell-surface receptor.

Under physiological conditions, hIFNγ is a homodimer composed of two 143-amino-
acids-long monomers in anti-parallel orientation. It is organized as an α-helical globular
bundle with two long highly positively charged unstructured C-terminal tails of variable
length [7,8]. The cytokine is recognized by its own species-specific receptor (hIFNGR) [8],
which is found on the surface of almost all human cells [2]. It consists of two proteins–
chain-1 (hIFNGR1), responsible for ligand (hIFNγ) binding (Kd = 0.1–1 nM), and chain-2
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(hIFNGR2) [9], necessary for triggering the hIFNγ signal transduction pathway, resulting
in the activation of over 200 different genes [10].

The 3D structure of the free hIFNγ homodimer [7], as well as the hIFNγ in a complex
with the soluble part of the hIFNGR1 receptor [11,12] are determined by X-ray crystallog-
raphy. The receptor binding sites on each side of the hIFNγ molecule are located in three
distinct areas: (i) the loop between the first two N-terminal helices (residues 18–26) of one
of the monomers, (ii) His111, and (iii) a short putative area (residues 128–131) in the flexible
C-terminal domain of the other monomer (see Figure 1a for illustration). In the literature,
there is controversy regarding the role of the C-termini in the cytokine–receptor binding
and in the biological activity of the cytokine in general (see, e.g., [13]).

(a) (b)

(c) (d)
Figure 1. Initial models used to study the binding of hIFNγ to hIFNGR1 in different scenarios:
(a) reference simulation based on the crystallographic structure of the complex; (b) binding of the
full-length hIFNγ to its receptor; binding of the full-length hIFNγ to its receptor in the presence of
HS-derived (c) hexa- or (d) octasaccharides. The cytokine and the receptor subunits are presented
in red, resp. green cartoons. The amino acid residues in hIFNγ and hIFNGR1 molecules, partici-
pating according to [12] in the binding, are shown in blue, resp. orange spheres. The HS-derived
oligosaccharides are colored by atom type and presented as licorice.

In addition to its cell-surface receptor, hIFNγ is also known to interact with high
affinity with the glycosaminoglycans (GAGs) heparin (H) [14], heparan sulfate (HS) [15] and
chondroitin sulfate (CS) [16]. These GAGs are linear polymers of repeating disaccharides
composed of amino sugars and hexuronic acid. Each monosaccharide can be sulfated



Int. J. Mol. Sci. 2022, 23, 9415 3 of 14

at multiple positions, which determines the high negative charge of these compounds.
By attaching covalently to core proteins, GAGs form proteoglycans (PGs), which are an
integral component of the basement membrane of all mammalian cells [17]. The interaction
of hIFNγ and H or HS affects the cytokine’s activity dramatically, its physico-chemical
properties and the proteolytic processing of its C-terminal domain [18–20].

Here we report our studies by means of molecular dynamics (MD) simulations and
indirect in vitro experiments on the interaction of hIFNγ with hIFNGR1 in different scenar-
ios, probing the viability of a third-party involvement in the complex-formation process.
Based on our findings, we put forward the hypothesis that HSPGs act as co-receptors for
the cytokine and facilitate its binding to its specific cell-surface receptor.

2. Results
2.1. Molecular Modelling

To monitor the process of cytokine–receptor binding, we used the centre-of-mass
(COM) distances between the receptor-binding sites in the molecule of hIFNγ and the
cytokine-binding sites in the hIFNGR1 subunits (Figure 1b), denoted d1 and d2. In the
initial conformations of the binding simulations, these quantities had a value of 4.7 nm. In
the reference simulation of the complex, d1 had an average value of 6.87 ± 0.56 nm, and
d2 = 6.58 ± 0.24 nm.

The interaction of the full-length hIFNγ and the two hIFNGR1 subunits does not lead
to a proper formation of the complex. As seen in Figure 2a, the long unstructured and highly
positively charged C-terminal tails of the two hIFNγ monomers extend downwards and
move away from the globule of the cytokine to bind to two negatively charged protruding
domains in the receptor subunits, which we refer to as “knees” (Figure 2c), located just
below the cytokine-binding site. This keeps the globule at a distance of about 20–25 nm from
the latter and prevents proper interaction of the two binding interfaces (Figure 2b). This is
also reflected in the contact maps between the two hIFNγ monomers (denoted chain A and
B) and the two receptor subunits (denoted chain C and D) presented in Figures 3 and 4.

The contact maps show the frequency of the close contacts between the two molecules.
A contact is considered present if any two heavy atoms of a hIFNγ monomer and a receptor
subunit are within a cutoff radius of 4.5 Å. For this analysis, only the last 150 ns of each
trajectory were employed. The contact maps were generated with the MDTraj package [21].

As seen in Figure 3, the N-terminal part of hIFNγ monomer A does not form any
contacts with chain C of the receptor. Some contacts are formed between the C-terminal
part of the B monomer of the cytokine and receptor subunit C, but they do not include
the crucial His111 and its surrounding residues. As to the other binding interface, the
N-terminal part of hIFNγ monomer B does form some contacts with chain D of the receptor,
but these are not properly populated and are very transient in nature. This is also the case
for the interaction of this receptor subunit and the C-terminal part of hIFNγ monomer A
(Figure 4).

These results indicate that the interaction between hIFNγ and hIFNGR1 falls short for
an efficient and proper formation of a cytokine–receptor complex. A possible reason might
be that the overall negative charge of the hIFNGR1 is insufficient for effective attraction
and strong binding of the hIFNγ molecule. Therefore, one might assume that additional
negative charges in the vicinity of hIFNGR1 are necessary for the formation of a functional
hIFNγ–hIFNGR1 complex.

Based on literature data [14,22], we identified the GAGs heparin and heparan sulfate
as appropriate candidates for molecules contributing with their strong negative charges to
the formation of a functional hIFNγ– hIFNGR1 complex. Moreover, HS participates in the
structure of HSPGs, which are ubiquitous components of basement membranes.



Int. J. Mol. Sci. 2022, 23, 9415 4 of 14

(a) (b)

(c)
Figure 2. (a) Final conformation of the hIFNγ–hIFNGR1 binding simulation. The cytokine and the
receptor subunits are presented in red, resp. green cartoons; (b) time evolution of the COM distances
d1 and d2 between the binding sites in the hIFNγ and hIFNGR1 molecules with no HS-derived
oligosaccharides present; (c) localized negative charge density at the “knees” of the two hIFNGR1
subunits, shown in red wireframe; hIFNγ-binding sites are presented in orange spheres.

When HS-like oligosaccharides are placed between the two receptor subunits, they
attract the C-termini of hIFNγ electrostatically and pull the whole molecule downward
between the receptor molecules. In the dp6 case, this additional electrostatic attraction
seems to be insufficient to pull the cytokine molecule strong enough; thus only one of
the two binding interfaces comes to a proper contact formation. The hIFNγ globule tilts
to one side so that the other binding site rotates away from the second receptor subunit
(Figure 5a,c). This is also evident in Figures 3 and 4 (third-row panels). While the contact
maps between hIFNγ monomers and receptor subunit D resemble the reference ones
(Figure 4), the interface with hIFNGR1 chain C remains largely inactive (Figure 3).

When octasaccharides are present between the receptor molecules, they manage to
attract the two C-termini of the cytokine much stronger. This interaction is very intense and
speedy. Within the first 100 ns, the whole globule is pulled down between the two receptor
subunits (Figure 5b,d). The contact maps in the lowermost panels in Figures 3 and 4 also
demonstrate that in this scenario the binding interfaces adjust fairly well to each other and
closely resemble the reference contact maps (top panels in Figures 3 and 4).

These results suggest a tripartite model of hIFNγ–hIFNGR1 complex formation we
herewith put forward: HS molecules (at least two octasaccharides per receptor unit) being
located in the “bottom” of the hIFNGR1 receptor unit (corresponding to the basement cell
membrane), attract the hIFNγ unstructured C-termini much stronger than the receptor
itself, thus facilitating the initial stages of cytokine–receptor interaction. As a result, the
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hIFNγ molecule is pulled downwards to the cell surface, which favors the adoption of a
correct (matching the receptor) conformation necessary for the formation of a stable and
functional hIFNγ–hIFNGR1 complex.

Figure 3. Contact maps between the two hIFNγ monomers (chain A and B) and receptor subunit C.

Figure 4. Contact maps between the two hIFNγ monomers (chain B and A) and receptor subunit D.
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(a) (b)

(c) (d)
Figure 5. Final conformation of the hIFNγ–hIFNGR1 binding simulation in the presence of: (a) hexa-;
or (b) octasaccharides. The cytokine and the receptor subunits are presented in red, resp. green
cartoons, while the HS-derived oligosaccharides are colored by atom type and presented as licorice;
time evolution of the COM distances d1 and d2 between the binding sites in the hIFNγ and hIFNGR1
molecules in the presence of: (c) hexa-; or (d) octasaccharides.

2.2. The Reduction of Sulfation of HS Drastically Reduces the Levels of Phosphorylated STAT1

To investigate the effect of NaClO3 on the binding of hIFNγ to its cellular receptor and
the activation of the hIFNγ signal transduction pathway, respectively, we monitored the
level of phosphorylated STAT1 after stimulation of cells with hIFNγ. To this end, WISH
cells were continuously grown in a culture medium to which NaClO3 was added in order
to block the O-sulfation of HS [23]. Initially, the NaClO3 concentration was chosen based
on literature data [23,24]. To ensure that the selected concentrations do not affect the cell
viability, we performed an MTT assay, which is a calorimetric method for assessing the
metabolic activity of cells [25]. The obtained results showed that 30 mM NaClO3 practically
did not affect the cell viability, which allowed us to continue our experiments with this
concentration (Section S2.1 and Figure S1 in the Supplementary Material).

The formation of the hIFNγ–hIFNGR1 complex activates JAK kinases leading to
phosphorylation of transcription factor STAT1 (pSTAT1), which further is translocated
to the nucleus in order to induce the interferon-gamma activated genes. To investigate
the level of STAT1 phosphorylation upon NaClO3 treatment, we performed Western blot
analysis of lysates from WISH cells cultured in a medium supplemented with 30 mM
NaClO3 and stimulated with hIFNγ (Figure S2 in the Supplementary Material Section S2.2).
The hIFNγ-stimulated cells cultured under standard conditions were used as controls. The
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membrane was scanned for 12 min on a C-DiGitr Blot Scanner. The obtained signals were
quantified using ImageJ software [26]. The signals of pSTAT1 and STAT1 for each condition
were normalized to that of β-actin [27]. Then the signal of pSTAT1 was normalized to that
of STAT1 since different experimental conditions may lead to a change in the expression
level of STAT1. The ratio of pSTAT1 to the total amount of STAT1 for the cells cultivated in
NaClO3 was found to be 1.7 compared to 3.14 for the control cells, which points to almost
twice the reduction of the level of pSTAT1 upon NaClO3 treatment.

A significant decrease of the amount of pSTAT1 indicates a decrease in the formation
of the hIFNγ-hIFNGR1 complex. In our experiments, this is a result of the reduction of HS
sulfation after treatment of the cells with NaClO3, thus demonstrating the key role of HS
sulfation in the cytokine–receptor complex formation.

2.3. Disrupting HSPG Sulfation Decreases the Antiproliferative Activity of hIFNγ

Cell-surface sulfation is mainly due to the presence of proteoglycans on the cellular
membrane, in particular heparan sulfate proteoglycans. Therefore, a comparative study
of the antiproliferative activity of hIFNγ in a normal cell and in cells depleted of HSPG
sulfation would be indicative of the possible role HS might play in the process of cytokine–
receptor binding, which is the first step in the induction of the hIFNγ signal-transduction
pathway. For this purpose, we measured the antiproliferative activity of hIFNγ in treated
with NaClO3 versus non-treated cells by a modified kynurenine bioassay [28].

For the treated cells, cultured in a medium containing NaClO3, we observed a signif-
icant reduction of the hIFNγ signal, indicating an 86% lowered biological activity of the
cytokine (Figure 6). The optical density at 490 nm for the untreated cells was 0.377 ± 0.031,
while for the treated cells it was 0.051 ± 0.008. The difference is statistically significant with
a p-value < 0.0001 (T = 59.99, df = 18). This observation provides further evidence for the
importance of the cell surface sulfation for the interaction of the cytokine with its cellular
receptor, thus supporting the MD simulation data and confirming qualitatively our hy-
pothesis regarding the co-receptor role of HSPGs in the formation of the hIFNγ–hIFNGR1
complex.

Figure 6. Effect of NaClO3 on the hIFNγ signal. After subtraction of the blank value, the absorbance
obtained from cells treated with hIFNγ and cultivated in a culture medium containing 30 mM NaClO3

is related to that obtained from cells treated with hIFNγ only, taken as 100%. The figures shown are
based on 10 independent experiments and are represented as mean ± standard error of the mean
(error bars). **** p-value < 0.0001.

3. Discussion

Note that hIFNγ is a signaling molecule, which is essential for both innate and adaptive
immunity. It plays a crucial role in the modulation of the immune response against various
pathogens, including viruses, bacteria and parasites. However, the activity of hIFNγ is also
associated with the pathological development and progression of various autoimmune
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and neurodegenerative diseases, inflammation and cancer [29]. The development of thera-
peutic agents controlling the pathogenic effects of its aberrant actions necessitates proper
understanding of how this cytokine actually binds to its extracellular receptor.

The extensive structure–functional studies do not shed much light on the biological
functions of the unstructured 21 aa long C-terminal tail of the hIFNγ. One reason for this is
the lack of X-ray diffraction data for this part of the molecule [7,11,12]. Three main strate-
gies have been employed so far to study the structure–function relation of the C-terminal
part of hIFNγ: (i) blocking of selected areas by sequence-specific monoclonal antibodies
(MAB) [30,31]; (ii) truncation of selected regions using sequence-specific proteases [32,33];
and (iii) deletion/substitution of one or more aminoacid residues by site-directed muta-
genesis [34,35]. The conclusions drawn from all these studies (in terms of significance of
the unstructured C-terminal domain) vary from “extremely important” to “totally dispens-
able”. The hIFNγ C-terminal region is highly positively charged, which makes it highly
susceptible to proteases [36]. The basic amino acids are concentrated in two domains: the
first one (denoted D1) encompasses amino acids 125KTGKRKR131 and the second one (D2)
includes the sequence 137RGRR140. The proteolytically sensitive segment D1 is assumed to
greatly contribute to the high affinity binding of hIFNγ to the receptor and consequently
to its capacity of triggering multiple cell responses [37]. Complete removal of the flexible
C-terminus inactivates the cytokine. This, however, cannot explain the modulating effect
of the length of the C-terminal tail on hIFNγ activity, i.e., the gradual increase in activity
on removal of up to nine C-terminal amino acids (which includes D2) and the subsequent
decrease in biological activity following further deletions, which renders D1 functionally
more important [13].

Although numerous studies undoubtedly prove the modulating effect of the unstruc-
tured C-terminal region on hIFNγ activity, they fail to explain the molecular mechanism of
its action [13]. Lortat-Jacob and collaborators were the first to realize that the role of hIFNγ
C-terminus could not be explained simply by considering the hIFNγ–hIFNGR1 interaction
as a protein–protein event. They published a series of papers clarifying the role of a third
non-protein molecule (highly sulfated oligosaccharides) in this interaction [18–20,22]. In
another study [38], a catch-and-release mechanism mediating a long-lived hIFNγ signalling
was associated with a different negatively charged molecule, part of the cell membrane and
reportedly serving as an anchor for the free cytokine molecules in the blood flow—the phos-
phatidylserine. The findings in [38], while supporting the idea for a third-party involvement
in the signalling initiation, do not discuss the cytokine–receptor-complex formation, which
is the canonical path of hIFNg signaling. It is this process and the circumstances that might
facilitate or impede its flow that focus our attention in the present study.

Although hIFNγ bears four basic clusters (55KLFKNFK61, 86KKKR89, 125KTGKRKR131

and 137RGRR140) that could potentially function as HS binding sites, the specific interaction of
the cytokine with HS is entirely related to the last two of them—D1 and D2 that are located
within the C-terminus [15,39]. The binding constant (Kd) of hIFNγ to HS is 1.5 × 10−9 M [20].
The domains in HS interacting specifically with these two parts of the cytokine are highly
negatively charged N-sulfated HS hexa- or octasaccharides, separated by a less charged
N-acetylated-HS region [40].

Here we showed computationally that the full-length hIFNγ was unable to form a
proper complex with its cell-surface receptor. The above experimental findings paved the
way for the present theoretical study on the formation of the hIFNγ–hIFNGR1 complex
with HS oligosaccharides being involved in this process next to the cytokine and its receptor.
It should be noted that cell-surface HSPGs are known to serve as co-receptors for various
signaling molecules and growth factors. HSPGs enhance their ligands’ activity by increasing
their local concentration, controlling their destination and affecting their conformation,
oligomerization state or stability [41].

The computer simulations described above demonstrate that the formation of a stable
hIFNγ–hIFNGR1 complex is a tedious process unless an additional negatively charged
molecule is present in the vicinity of the hIFNγ receptor. The minimal charge of this
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molecule should be comparable with the charge of the sample octasaccharide dp8 used
in the simulations (−16e), and it must be located in the basement of the hIFNγ receptor
unit. We hypothesize that these additional molecules are HSPGs, which are present on
almost all cell membranes. The results reported here suggest that the formation of the
cytokine–receptor complex is a multistage tripartite process. In the early stage, the flexible
positively charged C-termini of the hIFNγ homodimer navigate the cytokine towards
the receptor, being attracted by both negatively charged hIFNGR1 and HSPGs. When in
close proximity to the receptor, the cytokine C-termini fall under the stronger influence
of the HS electrostatic field that prevents their binding to the hIFNGR1 “knees”. At this
stage, the flexible C-termini bend and pull the globular part of hIFNγ downward. When
the positive charges of D1 and D2 are neutralized by HS chains, and the globular part
of hIFNγ is properly situated in the cliff of the hIFNGR1 receptor, the cytokine–receptor
binding interfaces are positioned close to each other, which provides for proper formation
of the complex.

Our experimental data also indirectly supports this hypothesis. Inhibition of HSPG
sulfation by sodium chlorate leads to reduction of hIFNγ biological activity by more
than 80% and to high reduction of the level of phophorylated STAT1. We speculate that
these effects are due to a hindered receptor binding because of the damaged co-receptor
structure. In [42], it was experimentally confirmed that hIFNγ also interacts with another
GA—chondroitin sulfate and its proteoglycans. Chondroitinase treatment of cells led to a
more than 50% reduction in hIFNγ binding, and pretreatment with the enzyme significantly
reduced cellular response to the cytokine. Recently, it was found that coating cells with
heparin/collagen layers increases cellular response to hIFNγ, especially when the top layer
was heparin [43]. These findings provide further basis for the asserted key role that HS
chains play in the formation of the hIFNγ-hIFNGR1 complex.

Another cytokine, interleukin 10 (IL-10), which has a very similar structure to hIFNγ [44]
and its cellular receptor (IL-10R), is in the same receptor family as hIFNGR1 and was also
found to bind with high affinity to the GAGs heparin and heparan sulfate [45]. Moreover, it
was demonstrated that soluble sulfated GAGs, including H, HS, CS and dermatan sulfate,
inhibit IL-10 activity, similar to results on hIFNγ [46]. At the same time, inhibition of cell-
surface sulfation by sodium chlorate led to a 60% decrease in the cytokine’s activity [45],
which undergirds the hypothesis “that hIL-10 requires the presence of sulfated PG at the
cell surface, which may in turn facilitate its interaction with high-affinity hIL-10 receptors
on these cells”.

The proposed model explains the inhibitory effect of exogenous sulfated octasaccha-
rides (such as dp8) on hIFNγ activity considered in a certain context in [47], as well as
the decrease or complete loss of biological activity in constructs containing very short un-
structured C-termini [35]. In the first case, the negatively charged molecules neutralize the
C-terminal positive charges (i.e., they compete with the endogenous sulfated oligosaccha-
rides fixed on the cell membrane). In the second case, the deep truncation of the C-terminus
is accompanied by removal of positive charges, which are necessary for the early stages
of the hIFNγ–hIFNGR1 interaction. The negative effect of the C-terminal shortening on
hIFNγ biological activity is better expressed when the truncation affects the positively
charged domain D1.

As mentioned above, the gradual truncation of the hIFNγ C-terminus has a two-phase
effect on hIFNγ activity. We are tempted to explain the (up to 10 times) higher biological
activity of hIFNγ constructs containing 6–7 aa shorter C-termini by some advantages of the
shorter unstructured C-terminal tail [13]. Even after removal of 6–7 aa (including domain
D2), the hIFNγ C-terminus still carries enough positive charges (mainly on account of
domain D1) to recognize the hIFNGR1 receptor, to initiate hIFNγ–hIFNGR1 binding, and
to decrease the probability for interaction of the C-terminus with the hIFNGR1 “knee”. The
smaller size of partly truncated C-termini (probably) fits the limited space of the hIFNGR1
cliff better, thus favoring the adoption of a better hIFNγ conformation, necessary for the
formation of a more stable hIFNγ–hIFNGR1 complex as compared to the full-size (143 aa)
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hIFNγ. We tend to disagree with Lortat-Jacob et al. [40] explaining the higher activity of
truncated hIFNγ preparations with the competition of the two D1 and D2 domains for the
same binding site in the hIFNGR1 subunit.

4. Materials and Methods
4.1. Molecular Dynamics Simulations
4.1.1. Input Structures

The 3D structures of hIFNγ and hIFNGR1 were extracted from the Protein Data
Bank [48] under PDB ID 1FG9 [12]. The 1FG9 complex was used as input for the reference
simulation of the hIFNγ–hIFNGR1 complex (Figure 1a).

To study the formation of the cytokine–receptor complex, a configuration was set
up in which the hIFNγ molecule was translated a few nanometers along the z-axis to
distance it from the two receptors (Figure 1b). Since the 1FG9 structure does not provide
information about the coordinates of the unstructured C-terminal domain, the last 18
missing aa residues were added to the protein structure, as described in [49,50]. In addition,
the missing segment 141EVDYDP146 in the hIFNGR1 molecules was reconstructed using
the macromolecular model building toolkit Coot [51]. The last two C-terminal amino acid
residues of the two hIFNGR1 molecules were constrained to mimic reduced flexibility due
to membrane attachment of the receptors.

To investigate the influence HSPGs could exert on the interaction between hIFNγ and
its receptor, two models were built in which two HS-derived hexasaccharides (Figure 1c),
respectively, two HS-derived octasaccharides (Figure 1d) were placed between the two
receptor molecules. The 1HPN PDB entry [39] was used to develop structural models of
HS-like chains with a given degree of polymerization—six (dp6), resp. eight (dp8). The
Glycan Reader and Modeler module [52] of the CHARMM-GUI server [53] was used for the
generation of a 3D structure, corresponding to the chosen carbohydrate sequence, as well
as a topology using the latest version of the CHARMM36 carbohydrate force field [54]. The
topology was converted to a GROMACS-compatible topology using the parmed module of
Ambertools 16 [55]. The first monosaccharide was constrained to model immobilization of
the HS chains at the cell surface.

4.1.2. MD Simulation Protocol

All simulations were performed with the molecular dynamics simulation package
GROMACS, version 2021.1 [56]. The protein was parameterized with the CHARMM36
protein force field [57] and the oligosaccharides with the CHARMM36 carbohydrate force
field [54]. The systems were solvated in rectangular boxes with a minimal distance to the
box walls of 2 nm under periodic boundary conditions. Counterions were added to all
systems to neutralize their net charge. The neutralized systems were energy minimized
using the steepest descent method with a maximum force tolerance of 100 kJ/(mol nm).
The minimized structures were equilibrated by a short 50 ps canonical simulation at a
temperature of 310 K, followed by a 200 ps isothermal-isobaric simulation at a temperature
of 310 K and a pressure of 1 atm with the Berendsen thermo- and barostat [58].

For the production MD simulations, temperature and pressure were maintained
by v-rescale thermostat [59] with a coupling constant of 0.25 ps and Parrinello-Rahman
barostat [60] with a coupling constant of 1 ps. The leapfrog integrator [61] was used with
a time-step of 2 fs, with constraints imposed on the bonds between heavy atoms and
hydrogens with the help of the PLINCS algorithm [62]. Van der Waals interactions were
smoothly switched off from a distance of 1.0 nm and truncated at 1.2 nm. Electrostatic
interactions were treated using the smooth PME method [63] with a direct PME cut-off of
1.2 nm. Trajectory frames were recorded every 200 ps, and the simulations had a duration
of 650 ns.
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4.2. In Vitro Experiments
4.2.1. Cell Culture and Phosphorylation of STAT1 after Cell Treatment with
Sodium Chlorate

For the in vitro experiments, human amniotic WISH cell line (ATCCr CCL-25™) was
used. This cell line is used as a standard for determination of the antiviral activity of
hIFNγ [64] as its epithelioid cell type [65] is a prerequisite for IFNGR enrichment, meaning
high sensitivity to hIFNγ treatment. WISH cell line was propagated in Eagle’s Minimum
Essential Medium (EMEM, ATCCr 30-2003™) supplemented with 10% fetal bovine serum
(Gibco™) and sodium chlorate (NaClO3, Sigma, Tokyo, Japan) to a final concentration of
30 mM. NaClO3 was used as a supplement throughout the whole experimental procedures
in order to ensure the reduction of O-sulfation of heparan sulfate [23].

To test the cytotoxic effect of NaClO3 concentrations on WISH cells, MTT assay [25]
was performed using Cell proliferation kit I, Roche (Section S1.1 in the Supplementary
Material). The effect of NaClO3 on the phosphorylation of STAT1 was studied by Western
blot analysis (Section S1.2 in the Supplementary Material).

4.2.2. Biological Activity of hIFNγ after Treatment with Sodium Chlorate

WISH cells were cultured in 25 cm2 flasks (ThermoScientific™ Nunc™, Waltham, MA,
USA) in a humidified atmosphere at 37 ◦C and 5% CO2, as described above. After overnight
incubation, the cells were trypsinised and re-plated with a density of 1.5 × 106 per well on
a 96-well plate (Corningr) in a culture medium containing 30 mM NaClO3. On the next
day, the cells were stimulated with 15 ng/mL recombinant hIFNγ, purified as described
in [66]. Further, the antiproliferative activity of hIFNγ was measured by a kynurenine
bioassay [67] modified as described in [28] (Section S1.3 in the Supplementary Material).

4.2.3. Statistical Analysis

The in vitro data was collected by at least three independent measurements of each
data point. As presented in the Section 2, the experimental numbers and figures are based
on the mean value ± the standard deviation. Statistical significance was estimated using
Student’s t-test for independent pairs.

5. Conclusions

Molecular dynamics simulations were carried out to investigate the intimate mech-
anism of hIFNγ–hIFNGR1 interaction. As a result, a multistage tripartite model of the
hIFNγ–hIFNGR1 complex formation is proposed, with heparan-sulfate proteoglycans
playing a key process-promoting role as a hIFNγ co-receptor. The negatively charged
sulfated oligosaccharides bind the positively charged C-termini, thus facilitating the proper
positioning of the globular part of hIFNγ with respect to hIFNGR1. The experimental data
presented fully supports the proposed model.
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