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Abstract

Positive matrix factorization (PMF) can be used to develop more targeted air quality mitigation 

strategies by identifying major sources of a pollutant in an area. This technique is dependent, 

however, on the ability of PMF to resolve factors that accurately represent all sources of that 

pollutant in an area. We investigated how the accuracy of PMF solutions might be influenced 

by monitoring data characteristics, such as temporal resolution, monitoring location, and species 

composition, to better inform the use of PMF in VOC mitigation strategies. We applied PMF 

to five VOC monitoring programs collected within a four-year period in Colorado and found 

generally consistent factors, which we identified as oil extraction, processing, and evaporation; 

natural gas; vehicle exhaust; and liquid gasoline/short-lived oil and gas. The main determinant 

influencing whether or not a dataset resolved each of these sources was whether the dataset had a 

comprehensive list of VOC species covering key species of each source. Pollution spikes were not 

well-modeled in any of the solutions. Hyperlocal and volatile chemical product factors expected to 

be resolved in the industrialized, urban location were also missing, highlighting three limitations 

of PMF analysis. Wind direction dependence and diurnal trends aided in source identification, 

suggesting that high-time resolution data is important for developing actionable PMF results. 

Based on these findings, we recommend that air monitoring for PMF-informed VOC mitigation 

efforts include high temporal resolution and a comprehensive array of VOC species.

1. Introduction

Volatile organic compounds (VOCs) are a broad category of air pollutants that originate 

from natural and anthropogenic sources. These pollutants affect human health in myriad 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
* Corresponding author. caroline.frischmon@colorado.edu (C. Frischmon). 

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

CRediT authorship contribution statement
Caroline Frischmon: Formal analysis, Visualization, Writing – original draft, Writing – review & editing. Michael Hannigan: 
Conceptualization, Supervision, Writing – review & editing, Funding acquisition.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.aeaoa.2023.100230.

HHS Public Access
Author manuscript
Atmos Environ X. Author manuscript; available in PMC 2024 April 04.

Published in final edited form as:
Atmos Environ X. 2024 February ; 21: . doi:10.1016/j.aeaoa.2023.100230.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


ways, including increased cardiovascular and respiratory conditions and cancer (Kampa and 

Castanas, 2008). VOCs also impact human health indirectly by contributing to secondary 

organic aerosol (SOA) and tropospheric ozone formation (Haagen-Smit et al., 1953; 

Laaksonen et al., 2008).

VOCs tend to have high spatial heterogeneity, even within the neighborhood scale (Okorn et 

al., 2021; Khuzestani et al., 2022). Local industrial emitters drive this spatial heterogeneity 

by creating highly localized VOC hotspots (Khuzestani et al., 2022; Liu et al., 2021; 

Healy et al., 2022). These hotspots are an environmental justice (EJ) concern, as they 

may lead to disproportionate VOC exposure for those living within the hotspots (Wu et 

al., 2012). Advancements in monitoring technology have made it possible to collect VOC 

data with a sufficient spatiotemporal resolution to capture this heterogeneity. As a result, 

VOC monitoring in EJ communities has expanded in recent years to address EJ concerns 

(Johnston and Cushing, 2020).

This monitoring is important for understanding VOC exposure levels, but it does not directly 

lead to mitigation if it is unclear where the pollution is coming from. This is especially 

true in EJ communities that face cumulative impacts from many industrial sources (Johnston 

and Cushing, 2020). Consequently, a number of studies have sought to apportion monitored 

VOC concentrations to specific emissions sources as a way to inform exposure reduction 

strategies.

Source apportionment studies have used numerous receptor models, such as chemical 

mass balance (CMB), principal component analysis (PCA), UNMIX, and positive matrix 

factorization (PMF), to attribute VOCs to sources (Miller et al., 2002; Belis et al., 2013; 

Hopke, 2016; Song et al., 2008; Ethirajan and Mohan, 2012; Lee et al., 2008). PMF, 

the most widely used model, has outperformed other source apportionment methods on 

simulated and actual VOC data (Miller et al., 2002; Ethirajan and Mohan, 2012; Lee et al., 

2008).

PMF has successfully identified major sources of concern both regionally and locally for 

VOCs (Yang et al., 2022). These results have then informed recommendations for VOC 

control strategies (Tan et al., 2020). The source information obtained from PMF has also 

been used to estimate ozone formation potential (OFP) and reactivity control index (RCI), 

demonstrating the valuable insight PMF can provide in ozone mitigation strategies (Fu et al., 

2020; Lyu et al., 2021).

Despite the potential of PMF source apportionment, there are still important limitations 

to consider when using the receptor model. High source collinearity increases the error 

in PMF predictions (Habre et al., 2011). PMF also assumes that source compositions 

remain constant, even though the compositions at the receptor site may change based on 

meteorological and photochemical conditions (Yuan et al., 2012). Recent work has shown 

improvements in PMF results by normalizing for dispersion and photochemical processes 

(Dai et al., 2020; Gu et al., 2022).

PMF results are also influenced by the temporal characteristics of the monitoring data. For 

example, PMF fails to capture seasonal variations in sources when the monitoring data 
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does not include an adequate timespan (Xie et al., 2022). When PMF is applied to coarse 

temporal-resolution data, sources with notable diurnal patterns, such as gasoline exhaust, or 

with trace species as markers have not been as well estimated (Li et al., 2020; Wang et al., 

2018).

The sources identified by PMF have also depended on the input species included in the 

analysis. One study resolved four additional factors in the PMF analysis by including VOC 

and main gaseous pollutants alongside aerosol species (Chan et al., 2011). Similarly, Xie et 

al. found PMF results depended on if the pollutants were treated as bulk or speciated (Xie et 

al., 2012). They found that each species option illuminated different aspects of the sources 

present in the study area.

Since input data characteristics, such as temporal resolution and included species, affect 

the PMF source profile outputs, a single data set may not fully represent the VOC 

sources present at a receptor site. Furthermore, the high spatial heterogeneity of VOCs 

means that PMF factors from a single receptor site may not meaningfully represent an 

entire community. These limitations may hinder the usefulness of PMF in VOC reduction 

and ozone control strategies if sources are missing or poorly estimated. Therefore, it is 

imperative to understand the limitations of PMF results when applied to individual VOC 

data sets with varied monitoring characteristics.

Thus far, studies have tested the robustness of PMF by manipulating a single data set and 

analyzing the subsequent changes to the PMF results (Xie et al., 2012, 2022; Li et al., 

2020; Wang et al., 2018; Chan et al., 2011; Tian et al., 2017). Using just one data set 

limits the exploration of PMF robustness, however, because the variation in input data is still 

limited by the initial characteristics. Typically this type of analysis only perturbs the data set 

across one aspect, such as temporal resolution or the number of species. No studies, to our 

knowledge, have taken multiple, disparate data sets from within one community to analyze 

the representativeness of PMF results when varying in more than one of these aspects at a 

time.

VOC monitoring in the Colorado Front Range, especially in Commerce City, has increased 

in recent years, allowing us to investigate the robustness of PMF more fully across multiple 

VOC datasets that feature varying temporal resolution, compounds quantified, and location 

within the community.

Commerce City is a disproportionately impacted community near Denver, Colorado 

(“Colorado enviroscreen tool). The city contains many distinct VOC sources, including 

a petroleum refinery, multiple highways, a railyard, and other manufacturing industries. 

Community concerns over industrial odors and the prevalence of health problems led to 

two concurrent monitoring programs near the refinery (“Suncor and third, 2022). Regulatory 

monitoring near a highway expansion project and in the community also occurred within 

the last four years in Commerce City. These four monitoring programs measured speciated 

VOCs either continuously or temporally aggregated using summa canisters.

PMF analysis has not yet been applied to these Commerce City-based data sets. However, 

prior PMF analysis of VOC monitoring throughout the Colorado Front Range has repeatedly 
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resolved traffic-related and oil and natural gas-related factors (Lyu et al., 2021; Hecobian 

and Jr, 2019; Abeleira et al., 2017; Pollack et al., 2021). Diesel combustion (Lyu et al., 2021; 

Hecobian and Jr, 2019), regional background (Lyu et al., 2021; Abeleira et al., 2017; Pollack 

et al., 2021), biogenic (Lyu et al., 2021; Hecobian and Jr, 2019; Abeleira et al., 2017), and 

secondary factors (Abeleira et al., 2017) have also been identified through PMF analysis.

The high density of VOC monitoring in Commerce City over the past four years provides 

a unique opportunity to compare the PMF results from the same geographic area but 

with varying monitoring characteristics. While we mainly focus on Commerce City-based 

datasets, this study also includes PMF results from monitoring in nearby Greeley, CO as a 

comparison. This investigation will provide insight into the robustness of PMF analysis. We 

will use these insights to develop monitoring recommendations that optimize the usefulness 

of PMF in VOC emission and exposure reduction efforts.

2. Methods

2.1. Data collection

2.1.1. CW: Commerce City - West—Commerce City - West (CW) monitoring was 

conducted by Boulder A. I.R. and occurred outside a home near the location shown in 

Fig. 1. Data included in this analysis is from 3/14/22 to 6/7/22. VOCs were separated 

using a gas chromatograph and then identified and quantified using a flame ionization 

detector (FID) and mass spectrometer (MS) detectors. The time resolution of the data is 

one measurement every 10 min. Wind speed and direction were recorded using a Campbell 

Scientific MetSENS500 and RM Young 05305-PT wind monitor.

Carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were monitored with a 

Picarro G-2401 cavity ring-down spectrometer. NOx was monitored using a Teledyne Model 

API T200UP chem-iluminescence analyzer. These pollutants were included in the PMF 

analysis to aid in source identification. Additional information on this monitoring program is 

available from Boulder A.I.R. (“Commerce city current air conditions, 2022).

2.1.2. CS: Commerce City - south—For the Commerce City - South (CS) monitoring, 

the Denver Department of Public Health and Environment (DDPHE) and Colorado 

Department of Transportation (CDOT) measured C6–C12 VOCs at Swansea Elementary 

school in the Elyria-Swansea neighborhood using a Chromatotec Airmo C6–C12 analyzer. 

Monitoring began in 2017 and is ongoing as of January 2023. However, due to power 

outages and other issues, data is only used from 11/14/18 to 8/31/19. The monitoring had 

a time resolution of one measurement per 30 min. Wind speed and direction were recorded 

using an RM Young 05305 V wind monitor. Additional information on this monitoring 

program is available from the Denver Department of Public Health and Environment 

(“Swansea ambient air monitoring station).

2.1.3. CD: Commerce City - dispersed—Two separate datasets were examined from 

Montrose Air Quality Services: one from canister sampling and another from mobile 

monitoring. We refer to the canister sampling dataset as Commerce City - Dispersed (CD) 

and the mobile monitoring dataset as CD - Mobile Monitoring (CD-MM).
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Canister data was collected using Entech Instruments Silonite™ CS1200E Passive Canister 

Samplers connected to a 6-L Summa canister. 1-hour samples were collected quarterly 

across approximately 10 locations shown in 1 from 7/13/21 to 9/12/22. Scheduled canister 

samples at three additional reference locations outside of Commerce City were also included 

as a comparison in this dataset. These locations were the E470-I25 Junction (JUNC), the 

Brighton Fire Department (BFD), and the CDPHE CAMP air monitoring station (CAMP) in 

downtown Denver.

Triggered 1-h canister samples were also collected at individual Commerce City sites when 

a continuous photo-ionic detection (PID) VOC sensor at a site measured over 1 ppm of total 

VOCs for over 1 min. A total of 66 scheduled canisters and 16 triggered canisters were 

available for PMF analysis. Of the 16 triggered canisters, two canisters had to be excluded 

from the analysis due to highly elevated VOC levels, which did not allow for a converged 

PMF solution. This is discussed further in section 4.1.

The canister sampling and analysis followed the United States Environmental Protection 

Agency (USEPA) Compendium Method TO-14 A “Determination of Volatile Organic 

Compounds (VOCs) in Ambient Air using Specially Prepared Canisters with Subsequent 

Analysis by Gas Chromatography” and the TO-15 entitled “Determination of Volatile 

Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed 

by Gas Chromatography/Mass Spectrometry (GC/MS) (EPA, 1999a; EPA, 1999b).” 

Analysis was completed by Enthalpy Analytical in Durham, North Carolina.

Mobile monitoring was conducted using a Mercedes 2500 Sprinter Van equipped with an 

Ionicon Model 6000-X2 proton transfer reaction time-of-flight mass spectrometer. The van 

followed a route throughout a three-mile radius of the refinery in Commerce City, driving 

at approximately 10 miles per hour with a sampling rate of one measurement per second. 

Additional information on the CD and CD-MM monitoring programs is available from 

Montrose Air Quality Services (“Quality Assurance Project Plan Suncor, 2021).

2.1.4. CE and G: Commerce City - east and greeley—A Gas Chromatography–

Mass Spectrometry (GC/MS) instrument was used by the Colorado Department of Public 

Health and Environment (CDPHE) at Eagle Pointe Community Center in Commerce City, 

CO to collect speciated VOC measurements from 5/17/21–7/17/21 (CE). The instrument 

was also used at Bella Romero 4–8 Academy in Greeley, CO from 8/12/20 to 10/8/20 

(G). The time resolution for this data is one measurement per 45 min. Wind speed and 

direction were measured using a Gill MaxiMet GMX501 meteorological station. Monitoring 

at these sites also included a cavity ring-down spectrometer for measuring CH4 levels and 

a Teledyne T200U monitor for measuring NOx levels. These compounds were included in 

the PMF analysis to aid in source identification. Additional information on the CE and G 

monitoring programs are available from CDPHE (“Oil and gas activity monitoring).

2.2. PMF model

Positive matrix factorization (PMF) is an advanced multivariate factor analysis tool used 

widely in the source apportionment of environmental pollutants. The mathematical theory 

and principles of the model are described in detail elsewhere (Paatero and Tapper, 1994; 
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Paatero, 1997). As an overview, PMF decomposes the pollutant concentration matrix into a 

factor profile matrix (f) and a factor contribution matrix (g) according to Eq. (1).

Xij = ∑
k = 1

p
gikfkj + eij

(1)

where Xij represents the pollutant concentration of the sample i of chemical species j . gik

is the kth factor contribution to sample i and fkj is the factor profile of species j in the kth 

factor. eij represents the residuals. In PMF, gik and fkj are constrained to greater than or equal 

to 0.

PMF uses a weighted least square method to minimize the objective function Q, shown in 

Eq. (2), where sij is the sample uncertainty. The PMF solution is that with the lowest value of 

Q.

Q = ∑
i = 1

n
∑

j = 1

m eij
2

sij
2

(2)

2.3. PMF implementation

We used the EPA PMF 5.0 for the source apportionment of VOCs (Norris et al., 2014). 

Not all of the VOC species measured in the monitoring programs were included in the 

PMF analysis. Species that are highly reactive (Maximum Incremental Reactivity > 4 were 

excluded to not bias the model (Brown et al., 2007; “Tables of maximum incremental 

reactivity). However, following other PMF research efforts, we elected to include some 

reactive species in the model if they are key marker species for a factor (ethylene and 

propylene for vehicle exhaust and isoprene for biogenic), or if they are important for 

public health considerations (xylenes, ethylbenzene) (Brown et al., 2007; Zheng et al., 2018; 

Guo et al., 2011). Species that were often missing in the specific dataset or that had a 

signal-to-noise ratio of less than 0.5 are also excluded. Species with a signal-to-noise of 

less than 1 and greater than 0.5 were ran as ”weak,” which triples the provided uncertainty 

(Norris et al., 2014). Finally, some species were omitted due to presumed contamination or 

other monitoring-related issues. A full list of species and the parameters influencing their 

inclusion in the PMF model is available in the supplementary information (Tables S1–S5).

Background levels of carbon dioxide, carbon monoxide, and methane, approximated as 

the 5th percentile concentration in each dataset, were subtracted from the samples when 

these species were included in the PMF analysis. Actual background levels will vary with 

location, wind direction, and other factors. We approximate constant background levels 

because each dataset has different time averaging, and there were no concurrent background 

measurements collected. Future studies could seek to include background measurements to 

more accurately subtract background pollutant levels.
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For each data set, samples with missing values were removed, while values below the 

method detection limit (MDL) were replaced with half the value of the MDL. Samples 

where more than 85% of the measurements were below the MDL were removed. 

Uncertainty values for each measurement were set as 15% of the measurement value if 

the measurement was above the MDL. For values at or below the MDL, the uncertainty 

was set at 5/6 of the MDL. For samples that were flagged with additional uncertainty, the 

uncertainty value was set as 50% of the measurement.

All of the monitoring datasets include multi-point calibration and blank subtraction. One 

of the potential limitations of this study is that the measurements were not conducted 

by the authors, and therefore we are not able to fully vet the uncertainties of the 

measurements. This is why our study used a universal 15% uncertainty factor. Other studies 

have investigated the impact of uncertainty estimations on PMF solutions (Christensen and 

Schauer, 2008; Kim and Hopke, 2007); however, this was not the focus of our work here. 

Further information on data quality assurance is available directly from the monitoring 

programs (“Commerce city current air conditions, 2022; “Swansea ambient air monitoring 

station; “Quality Assurance Project Plan Suncor, 2021; “Oil and gas activity monitoring).

The number of factors for each solution was determined by investigating a combination 

of species residuals, factor interpretability, and error estimations. Three error estimations 

in the EPA PMF program were used for this process: displacement (DISP), bootstrapping 

(BS), and BS-DISP. Detailed descriptions of these error estimations are described elsewhere 

(Norris et al., 2014). PMF solutions were considered interpretable if the decrease in Q was 

less than 1% and no swaps occurred for the smallest dQmax in DISP and BS-DISP. Over 

80% of factors also had to map in BS to be considered interpretable. FPEAK values from 

−1 to 1 were tested to explore the rotational stability of the solutions. None of the PMF 

solutions showed significant differences with FPEAK values in this range, so all solutions 

shown in this paper are FPEAK = 0.

3. Results

Two factors were identified in all converged PMF solutions: oil extraction, processing, and 

evaporation, and liquid gasoline/short-lived oil and gas (OG). A natural gas factor was 

identified in all solutions except CS, and a vehicle exhaust factor was identified in all 

solutions except G.

Fig. 3 shows some consistency in factor contributions across solutions, even though species 

vary between datasets. Overall, there are high total measured VOCs (tmVOC) contributions 

from natural gas and oil extraction, processing, and evaporation. The liquid gasoline/short-

lived OG and the vehicle exhaust factors typically contributed the majority of observed 

benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations. Relatively high levels 

of ethane resolved in the vehicle exhaust factors, even though ethane is not associated with 

vehicle exhaust. This likely weights the tmVOC contributions of vehicle exhaust to be higher 

than the true contribution in Fig. 3.
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3.1. Mobile monitoring

PMF could not converge on a solution for CD-MM data. The number of sources contributing 

to pollutant concentrations in a sample may change as the mobile monitor moves through 

a community. Factor profiles may also change as the mobile monitor moves closer to or 

further away from sources in a community, which varies the impacts of photochemical decay 

and dispersion. We believe the added source variability implicit in mobile monitoring did 

not allow PMF to converge on a solution, since the model assumes constant factor profiles 

and the number of factors. For PMF to succeed in future mobile monitoring campaigns, it’s 

likely that PMF will need to account for this added variability in order to converge on a 

solution.

3.2. Oil extraction, processing, and evaporation factor

Oil extraction, processing, and evaporation factors in CW, CD, CE, and G were mainly 

identified by their elevated levels of ethane, propane, butanes, and pentanes (Fig. 4). C2–C5 

alkanes have been attributed to oil and gas activity within Colorado, and prior PMF studies 

have used these key species to identify refinery emissions and oil and gas activity factors 

(Lyu et al., 2021; Pollack et al., 2021; Thompson et al., 2014; Buzcu and Fraser, 2006). 

When compared to EPA speciate profiles, the high concentrations of butanes and pentanes, 

along with isoprene in the CC factor, suggests this factor may also include some evaporative 

and biogenic emissions (Harley et al., 1992; Sadeghi et al., 2022; Sharkey et al., 2008).

CS monitoring did not quantify the key C2–C5 alkanes used to identify the other oil 

extraction, processing, and evaporation factors. The CS factor was instead identified by 

comparing its predominantly C6–C7 alkane composition with the apportionment of C6–C7 

alkanes in the other PMF solutions. These species resolved a high percentage of their 

species sum into the oil extraction, processing, and evaporation factor. This intercomparison 

of solutions and related identification of the oil extraction, processing, and evaporation 

factor in the CS solution is only possible through the availability of multiple data sets 

within Commerce City. Without the key species, it would be difficult to identify this 

important source within the region if CS was analyzed alone. As such, it is important 

when conducting PMF with an individual dataset to ensure the dataset includes a full array 

of VOC compounds with key species of each of the likely VOC sources within an area. 

Otherwise, major sources might be missed or misinterpreted.

Wind direction analyses of the CE and CW solutions indicate that the factor originates in 

the direction of the refinery and fuel storage tanks in Commerce City (Fig. 5), indicating 

possible sources of oil processing and/or fuel evaporation. In the G solution, the factor 

shows less obvious wind dependence, which is likely because the factor originates from the 

many disparate extraction sites surrounding the monitoring location in Greeley, CO. The 

average total measured VOC concentration is much higher in the G factor compared to the 

Commerce City-based datasets (Fig. S1).

3.3. Natural gas

The natural gas factors in CW, CD, CE, and G were identified by the presence of methane, 

ethane, and propane (Fig. 6) (Zheng et al., 2018). CS, which did not include these three 
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compounds, did not resolve a natural gas factor in its solution. The CW solution separated a 

methane-enhanced factor from a propane and ethane-enhanced factor. A four-factor solution 

combined both natural gas factors into one but resulted in poorer BS and BS-DISP results, 

as well as significantly lower methane R2 (0.92 for 5-factor and 0.49 for 4-factor). This 

suggests that there is some difference in the origin of methane compared to ethane and 

propane at this site.

The natural gas factor could originate from leakages in the natural gas distribution system or 

from natural gas extraction in the surrounding region (Tollefson, 2012; Jackson et al., 2014). 

Wind direction analysis shows how the likely source of this factor varies by monitoring site 

(Fig. 7). The G natural gas factor appears to originate locally, given its high concentration 

at low windspeeds. This factor is likely emitted from the well pads near the monitoring 

site. In CW, the methane factor also is most concentrated at low windspeeds, whereas the 

ethane/propane factor comes from the south and the northeast at more variable windspeeds. 

The CE natural gas factor comes mostly from the north. These directions may point toward 

local leakages or regional extraction activity.

3.4. Vehicle exhaust

CW, CE, CD, and CS solutions resolved vehicle exhaust factors that were identified by the 

presence of acetylene, ethylene, propylene, nitrous oxides, carbon monoxide, and/or benzene 

(Fig. 8) (Abeleira et al., 2017; Harley et al., 1992). Diurnal patterns associated with rush 

hour were also present for all factors, further validating the identification as vehicle exhaust 

(Figs. S2–S3). Wind analysis indicated an association between high concentrations of this 

factor and wind coming from the direction of nearby major roads (Fig. 9).

27–36% of ethane resolved into the vehicle exhaust factors, even though vehicle exhaust 

is not expected to contain ethane. This will bias tmVOC attribution, as ethane is a major 

component of tmVOC concentrations in the datasets.

G is the only dataset that did not include a vehicle exhaust factor in its solution. This may 

be attributed in part to its monitoring location, which is much less traffic-dense than the 

other four monitoring locations. This dataset also did not include the key species used to 

identify most other vehicle exhaust factors: acetylene, ethylene, propylene, nitrous oxides, 

and carbon monoxide. Benzene is included in G but is not considered a key vehicle exhaust 

species in Greeley, CO, as Halliday et al. found that oil and gas activities, not traffic-related 

sources, are the primary source of benzene here (Halliday et al., 2016). Including key 

vehicle exhaust species may have helped PMF successfully disentangle a vehicle exhaust 

factor in G, as it is likely some traffic air quality impacts still exist at the monitoring 

location.

3.5. Liquid gasoline/short-lived oil and gas

A factor was resolved in each dataset that was composed of alkanes and aromatics, 

specifically ethylbenzene, toluene, and xylenes (Fig. 10). In the CE solution, only the higher 

alkanes were present, as the aromatic species mostly resolved into the vehicle exhaust factor.
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Over 50% of many of the C6–C9 compounds are attributed to this factor on a species 

percentage basis. Prior studies have specified factors enriched in aromatics and C6–C9 

alkanes as liquid or unburned gasoline fuel (Harley et al., 1992; Na and Pyo Kim, 2007). 

However, in areas with high oil and gas activity, this factor has also been identified as short-

lived oil and gas emissions (Abeleira et al., 2017; Sadeghi et al., 2022; Bari and Kindzierski, 

2018). The liquid gasoline/short-lived oil and gas (OG) factors show similar diurnal trends 

as the vehicle exhaust factors in some solutions (CE, CW, G) and as the oil extraction, 

processing, and evaporation factors in others (CS) (Fig. S2). The CW factor shows similar 

wind direction dependence as its oil extraction, processing, and evaporation factor, whereas 

the CE factor shows similar wind direction dependence as its vehicle exhaust factor (Fig. 

11). Finally, correlation coefficients between all factors in a solution show inconsistent 

evidence of whether this factor is more correlated with oil extraction, processing, and 

evaporation or vehicle exhaust in each solution (Fig. S3). Given these inconclusive results 

and the monitoring site’s proximity to both roadways and oil and gas activity, we cannot 

specifically identify this factor as either liquid gasoline or short-lived OG.

4. Analysis

Applying PMF to comparable datasets from similar regions and time periods allowed us 

to better evaluate the strengths and limitations of PMF. Here we outline the major findings 

from this analysis that can be used to inform future PMF studies seeking to inform VOC 

mitigation plans.

4.1. Assumption of constant source profile

PMF could not converge when applied to mobile monitoring data, revealing the model’s 

limitations when applied to data with varying sources. High concentrations were also not 

well-modeled in any of the datasets (Fig. 12), suggesting that pollution spikes originate from 

infrequent sources or sources that do not hold a consistent composition profile. In CD, two 

triggered canister samples with very high alkane levels even had to be removed from the 

dataset in order for PMF to resolve a stable solution. PMF assumes constant source profiles, 

so any temporary changes in factor composition cannot be captured.

Poor modeling of pollution spikes in these PMF solutions has important implications for the 

use of PMF in VOC mitigation applications. Although PMF can resolve factors contributing 

to more consistently elevated VOC levels, it was not effective here at revealing the sources 

responsible for short, intense pollution episodes. It is worth noting that the continuous 

monitoring data in this analysis was collected for relatively short periods of time (less than 1 

year). PMF analysis of longer-term, continuous monitoring, where several peaks occur, may 

be able to better capture these variable episodes. If short, intense pollution episodes are the 

main concern regarding VOC exposure, PMF analysis of short-term monitoring may not be 

the best tool to inform mitigation strategies.

4.2. Spatial influence

PMF does not appear to be sensitive to hyperlocal sources in this study. Commerce City, 

CO is an urban region containing many local VOC-emitting industrial and commercial 
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facilities, which can contribute to VOC hotspots (Khuzestani et al., 2022; Liu et al., 2021; 

Healy et al., 2022). As such, we expected the Commerce City-based datasets to show high 

spatial heterogeneity in the PMF factor solutions. However, each of the datasets collected 

throughout Commerce City showed nearly the same factors. With the exception of vehicle 

exhaust (see section 4.4), PMF also resolved nearly the same Commerce City-based factors 

in Greeley, CO; a more rural region with less diverse industrial and commercial impacts. 

While the expected spatial heterogeneity is not directly reflected in the PMF factors, it is 

likely contributing to the generally lower overall R2 values for Commerce City species as 

compared to Greeley species (Fig. 13).

This comparison suggests that PMF analysis in places with hyperlocal or infrequent sources 

may not reveal the full scope of present sources, even if PMF resolves a stable solution. 

PMF factors should then be interpreted more generally, rather than as a representation of 

hyperlocal sources at the community scale.

The CD dataset is made up of summa canister samples collected at all monitoring 

locations on scheduled days and at individual sites when triggered by elevated total VOC 

concentrations. Factor mixtures were similar across all locations each day but varied more 

broadly across days (Fig. 14). This suggests that the sources resolved in the PMF solutions 

vary more temporally than they do spatially within the area of Commerce City covered by 

this monitoring. The similar factor mixtures at regional sites (CAMP, JUNC, BFD) suggest 

that this might be true beyond Commerce City as well, but there are not enough regional 

canisters included in this data set to conclude beyond Commerce City.

4.3. Temporal resolution

All monitoring analyzed in this study occurred between 2019 and 2022, but only CD and 

CW overlap in time (Fig. 2). Despite the overall lack of overlap, the PMF solutions reveal 

similar solutions, suggesting that major sources are not changing year-to-year.

CW, CS, CE, and G contain continuous samples, while CD is made up of discrete, quarterly 

canister samples. There do not appear to be major differences in PMF factor profiles based 

on the temporal resolution of measurements here. However, there are differences in how 

well the PMF factors reconstruct the observed pollutant concentrations. CD shows worse 

fits compared to the other four datasets (Fig. 13), possibly because it could not rely on 

diurnal patterns to disentangle factors. This effect has been seen in other PMF studies using 

low-time resolution data (Li et al., 2020; Wang et al., 2018).

High-time resolution data also provided supplementary information that could be used to 

further inform mitigation strategies. For example, diurnal trends confirmed the identity of 

the vehicle exhaust factors. Diurnal trend analysis shows when factors peak throughout the 

day, which could also be used to target sources at critical times of the day. Wind direction 

analysis using high-time resolution data helped to narrow the potential sources of some 

factors, such as the CW oil extraction, processing, and evaporation factor. Given the profile 

alone, there was not enough information to distinguish whether this factor was coming from 

the nearby refinery and fuel storage or from surrounding oil fields. Wind direction analysis, 

however, clearly showed that high concentrations of the factor originated from the direction 
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of the refinery. Although it may not be essential solely for general source identification, the 

advantages of high-time resolution data are important to consider when the objective is to 

develop PMF-informed, source-specific mitigation strategies.

4.4. Species availability

When comparing VOC PMF results across time, space, and species availability, it appears 

that VOC species availability is the strongest driver influencing PMF factor outcomes. 

Tracer species that are not VOCs, such as NOx, CO, and methane, were also important for 

resolving their associated factors. With the exception of the CS oil extraction and processing 

factor, if a dataset did not include the key species of a factor, it did not resolve that factor. CS 

did not resolve a natural gas source without C1–C4 alkanes. G is missing a vehicle exhaust 

factor without acetylene, ethylene, propylene, NOx, or CO. These missing factors may still 

be present at the monitoring sites but are excluded in PMF analysis. This will impact how 

tmVOC and BTEX concentrations are attributed at the site, leading to potentially misleading 

conclusions about source impacts in an area.

Oxygenated VOCs (OVOCs) and terpenes were largely missing from all monitoring datasets 

(CE quantified a-pinene, which was excluded from PMF analysis due to missing values). 

OVOCs and terpenes play a key role in secondary pollutant formation globally. Additionally, 

these species may help to better deconvolute some sources, such as biogenic, volatile 

chemical product, and industrial emissions, resulting in better apportionment of all VOCs. 

Caution should be used with data sets that do not include comprehensive species, as it may 

mean the PMF solution does not represent all sources within an area. This could potentially 

lead to misguided mitigation strategies for both primary and secondary pollution.

4.5. Volatile chemical products not resolved by PMF

Factors representing volatile chemical products (VCPs), such as cleaning agents, personal 

care products, adhesives, and coatings, are not present in any of the solutions, even though 

recent work has shown that VCPs make up approximately one-half of emitted VOCs in 

industrialized cities (McDonald et al., 2018). VCPs have been similarly underestimated 

in other source apportionment studies (Niedojadlo et al., 2007; Baudic et al., 2016). 

These sources may be underrepresented because VCPs have more variable source profiles, 

which PMF cannot capture, due to the many different products contributing to VCP 

emissions. VCPs may also be underrepresented because the VOC species often used in 

source apportionment studies are biased towards fossil fuels, rather than chemical products 

(McDonald et al., 2018).

5. Conclusion

This study provides insights into how PMF analysis can be optimized to strategically inform 

VOC mitigation efforts. We found that air monitoring for PMF analysis should be stationary 

to allow for more stable source profiles. Highly elevated pollutant concentrations, hyperlocal 

sources, and volatile chemical products (VCPs) were not well-modeled overall, indicating 

that PMF may not be a sufficient source apportionment tool when short-term pollution 

spikes, hyperlocal VOC hotspots, and VCPs are the main concern, at least for monitoring 
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data that is collected for less than 1 year. High-time resolution data was not necessary to 

identify the main four factors here. However, high-time resolution led to more actionable 

PMF outcomes by providing insight into diurnal patterns and wind direction dependence. 

Consequently, we recommend that high-time resolution data be used in PMF studies where 

the objective is to directly inform mitigation strategies, rather than just identify general 

source categories. Finally, we found that air monitoring for PMF analysis should include 

a comprehensive suite of pollutant species to ensure key species for each present source 

are included. The recommendations highlighted here will help to ensure that PMF solutions 

more accurately represent the VOC sources present near a monitoring site, leading to 

better-informed mitigation plans.
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Fig. 1. 
Locations of all monitoring sites included in this study.
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Fig. 2. 
Timeline of monitoring data included in this study.
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Fig. 3. 
Contributions of PMF factors in each solution to total measured volatile organic compounds 

(tmVOC) and benzene, toluene, ethylbenzene, and xylenes (BTEX) levels.

Frischmon and Hannigan Page 20

Atmos Environ X. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Factor profiles, based on factor percent (tmVOC only) and species percent, identified as 

oil extraction, processing, and evaporation from CW, CS, CD, CE, and G. EPA shows an 

oil processing profile and a fuel evaporation profile from the EPA’s SPECIATE database 

(Gentner et al., 2014; Black and High, 1980). 1. acetylene, 2. ethane, 3. ethylene, 4. propane, 

5. propylene, 6. isobutane, 7. n-butane, 8. cyclopentane, 9. isopentane, 10. n-pentane, 11. 

2,2-dimethylbutane, 12. 2,3-dimethylbutane, 13. 2-methylpentane, 14. 3-methylpentane, 15. 

isoprene, 16. n-hexane, 17. methylcyclopentane, 18. 2,4-dimethylpentane, 19. benzene, 20. 

cyclohexane, 21. 2, 3-dimethylpentane, 22. 2-methylhexane, 23. 2,3-dimeC5 and 2-meC6, 

24. 3-methylhexane, 25. 2,2,4-trimethylpentane, 26. n-heptane, 27. methylcyclohexane, 

28. 2, 3,4-trimethylpentane, 29. toluene, 30. 2-methylheptane, 31. 3-methylheptane, 32. 

n-octane, 33. ethylbenzene, 34. m,p-xylene, 35. o-xylene, 36. n-propylbenzene, 37. 

isopropylbenzene, 38. n-nonane, 39. naphthalene, 40. n-decane, 41. carbon disulfide, 42. 

tetrachloroethene, 43. CO2*, 44. CH4*, 45. CO*, 46. NOx. (*Background subtracted).
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Fig. 5. 
Conditional bivariate probability function at the 75th percentile for the CW, CS, CE, and G 

oil extraction, processing, and evaporation factors. Arrows point towards a refinery and fuel 

storage tanks.
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Fig. 6. 
Factor profiles, based on factor percent (tmVOC only) and species percent, identified 

as natural gas from CW, CD, CE, and G. CW resolved two factors related to natural 

gas. EPA shows a natural gas profile from the EPA’s SPECIATE database (Brown, 

2011). 1. acetylene, 2. ethane, 3. ethylene, 4. propane, 5. propylene, 6. isobutane, 

7. n-butane, 8. cyclopentane, 9. isopentane, 10. n-pentane, 11. 2,2-dimethylbutane, 

12. 2,3-dimethylbutane, 13. 2-methylpentane, 14. 3-methylpentane, 15. isoprene, 16. n-

hexane, 17. methylcyclopentane, 18. 2,4-dimethylpentane, 19. benzene, 20. cyclohexane, 

21. 2,3-dimethylpentane, 22. 2-methylhexane, 23. 2, 3-dimeC5 and 2-meC6, 24. 3-

methylhexane, 25. 2,2,4-trimethylpentane, 26. n-heptane, 27. methylcyclohexane, 28. 2,3,4-

trimethylpentane, 29. toluene, 30. 2-methylheptane, 31. 3-methylheptane, 32. n-octane, 33. 

ethylbenzene, 34. m,p-xylene, 35. o-xylene, 36. n-propylbenzene, 37. isopropylbenzene, 38. 

n-nonane, 39. naphthalene, 40. n-decane, 41. carbon disulfide, 42. tetrachloroethene, 43. 

CO2*, 44. CH4*, 45. CO*, 46. NOx. (*Background subtracted). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the Web version of this 

article.)
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Fig. 7. 
Conditional bivariate probability function at the 75th percentile for the CW, CE, and G 

natural gas factors.

Frischmon and Hannigan Page 24

Atmos Environ X. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Factor profiles, based on factor percent (tmVOC only) and species percent, identified 

as vehicle exhaust from CW, CS, CD, and CE. EPA shows a vehicle exhaust profile 

from the EPA’s SPECIATE database (Kishan et al., 2008). 1. acetylene, 2. ethane, 

3. ethylene, 4. propane, 5. propylene, 6. isobutane, 7. n-butane, 8. cyclopentane, 

9. isopentane, 10. n-pentane, 11. 2,2-dimethylbutane, 12. 2,3-dimethylbutane, 13. 2-

methylpentane, 14. 3-methylpentane, 15. isoprene, 16. n-hexane, 17. methylcyclopentane, 

18. 2,4-dimethylpentane, 19. benzene, 20. cyclohexane, 21. 2,3-dimethylpentane, 

22. 2-methylhexane, 23. 2,3-dimeC5 and 2-meC6, 24. 3-methylhexane, 25. 2,2,4-

trimethylpentane, 26. n-heptane, 27. methylcyclohexane, 28. 2,3,4-trimethylpentane, 29. 

toluene, 30. 2-methylheptane, 31. 3-methylheptane, 32. n-octane, 33. ethylbenzene, 34. 

m,p-xylene, 35. o-xylene, 36. n-propylbenzene, 37. isopropylbenzene, 38. n-nonane, 39. 

naphthalene, 40. n-decane, 41. carbon disulfide, 42. tetrachloroethene, 43. CO2*, 44. CH4*, 

45. CO*, 46. NOx. (*Background subtracted).
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Fig. 9. 
Conditional bivariate probability function at the 75th percentile for the CW, CS, and CE 

vehicle exhaust factors. Arrows point towards major roads.
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Fig. 10. 
Factor profiles, based on factor percent (tmVOC only) and species percent, identified 

as liquid gasoline/short-lived OG from CW, CS, CD, CE, and G. EPA shows 

a liquid gasoline profile from the EPA’s SPECIATE database (Lewis, 2004). 1. 

acetylene, 2. ethane, 3. ethylene, 4. propane, 5. propylene, 6. isobutane, 7. n-

butane, 8. cyclopentane, 9. isopentane, 10. n-pentane, 11. 2,2-dimethylbutane, 12. 2,3-

dimethylbutane, 13. 2-methylpentane, 14. 3-methylpentane, 15. isoprene, 16. n-hexane, 

17. methylcyclopentane, 18. 2,4-dimethylpentane, 19. benzene, 20. cyclohexane, 21. 2,3-

dimethylpentane, 22. 2-methylhexane, 23. 2,3-dimeC5 and 2-meC6, 24. 3-methylhexane, 25. 

2,2,4-trimethylpentane, 26. n-heptane, 27. methylcyclohexane, 28. 2,3,4-trimethylpentane, 

29. toluene, 30. 2-methylheptane, 31. 3-methylheptane, 32. n-octane, 33. ethylbenzene, 34. 

m,p-xylene, 35. o-xylene, 36. n-propylbenzene, 37. isopropylbenzene, 38. n-nonane, 39. 

naphthalene, 40. n-decane, 41. carbon disulfide, 42. tetrachloroethene, 43. CO2*, 44. CH4*, 

45. CO*, 46. NOx. (*Background subtracted).
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Fig. 11. 
Conditional bivariate probability function at the 75th percentile for the CW, CS, CE, and 

G liquid gasoline/short-lived OG factors. Arrows point towards major roads (MR) and a 

refinery and fuel storage (Ref. & FS).
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Fig. 12. 
Sample residuals based on concentration percentile for each species, scaled by respective 

species mean.
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Fig. 13. 
R2 of PMF-modeled species concentrations versus measured species concentrations for each 

species across PMF datasets.
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Fig. 14. 
Contributions of each CD factor sampled in each canister over the study period. Canisters 

are separated by scheduled days and triggered canisters.
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