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Abstract: Aziridination reactions represent a powerful tool in aziridine synthesis. Significant progress
has been achieved in this field in the last decades, whereas highly functionalized aziridines including
3-arylated aziridine-2-carbonyl compounds play an important role in both medical and synthetic
chemistry. For the reasons listed, in the current review we have focused on the ways to obtain
3-arylated aziridines and on the recent advances (mainly since the year 2000) in the methodology of
the synthesis of these compounds via aziridination.
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1. Introduction

The finding of new potential anti-cancer and antiviral drugs, as well as the develop-
ment of efficient methods for synthesizing them and their appropriate building blocks, is
one of the most important problems in medical chemistry. Due to the electrophilic nature of
the aziridine ring, derivatives of aziridine-2-carboxylic acid react with various nucleophiles,
therefore becoming interesting synthetic substrates in order to create different amino acids,
alkanolamines, and heterocyclic compounds [1]. Some derivatives of aziridine-2-carboxylic
acid, namely, imexon, azimexon [2], and leakadine [3] were developed as anti-tumour
agents and have shown anti-cancer immunomodulatory activity.

It is also known that derivatives of aromatic α,β-unsaturated carboxylic acids, such
as caffeic acid [4] and its esters [5] have demonstrated cytotoxic effects and promo-
tion of apoptosis in lung carcinoma cells. Its analogue, p-coumaric acid, has shown an
anti-angiogenic effect [6], which is important to stop tumor development. In this light,
3-arylated derivatives of aziridine-2-carboxylic acid 1a,b (Scheme 1) and similar com-
pounds containing an aziridine ring in phenylpropionic acid side chain could be predicted
to have anti-cancer properties.

Authors of previous reviews have summarized the recent advances in the synthesis of
aziridine-2-carbonyl compounds (Zalubovskis and Ivanova [7]) and in the overall aziridine
chemistry and synthesis (Singh [8] and Luisi [9]). The generally known methods to obtain
these compounds include aziridination, Gabriel-Cromwell cyclization of aminoalcohols,
Diels-Alder cycloaddition to azirines, Baldwin rearrangement, and others. This review
is focused on synthesizing 3-aryl substituted aziridines 1a–c (Scheme 1) via aziridination
since aziridination has a wide perspective, especially in stereoselective synthesis; it is
tolerant towards various functional groups and can be realized in mild conditions which
are important for construction of more complex molecules. The structures 1a–c (Scheme 1)
have two asymmetric carbons in 2(α-) and 3(β-) positions of aziridine ring, and therefore
stereoselectivity of synthetic methods is important. Aziridination has two variations:
carbon addition to the imine double bond via carbene sources (Scheme 1A) and nitrogen
addition to the olefin double bond via nitrene sources (Scheme 1B).
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particularly large number of scientific publications have been prepared by the Wulff’s 
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purity [10–12]. AZ reaction-based synthesis of L-DOPA [10] and (-)-chloroamphenicol [11] 
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uent 3-aryl-NH, aziridines were successfully obtained after hydrogenation in 83–100% 
yields [13]. Instead of ester diazo carbene source 3a, diazoamide 3b (Scheme 2) produced 

trans-aziridines 1b1 as illustrated in the Scheme 2 [18]. 

Scheme 1. The general pathways of aziridination. (A) carbon insertion in the imine double bond via
carbene sources; (B) ni-trogen insertion in the olefin double bond via nitrene sources.

2. Aziridination of Imines (Path A)

This aziridination approach includes:

• Aziridination of imines with a diazo carbene source (AZ reaction);
• Variations of aza-Darzen reaction;
• Aziridination with ylides.

2.1. Aziridination of Imines with a Diazo Carbene Source (Wulff’s AZ Reaction)

Catalytic asymmetric aziridination (AZ reaction) of imines using a carbene source
represents the best explored and most popular group of synthetic methods of 3-arylated
aziridines 1a–c (Scheme 1). The most common carbene sources are diazo compounds, e.g.,
ethyl diazoacetate (EDA) and its analogues.

Fundamental series of research in catalytic C=N bound (imine) aziridination with
diazo carbene sources (Scheme 2) was made by Wulff’s and Thurston’s teams [10–32]. A
particularly large number of scientific publications have been prepared by the Wulff’s
group [10–29,31,32]. At first, it was established that the best catalysts for aryl imine 2a
(Scheme 2) and ethyl diazoacetate (EDA) 3a (Scheme 2) reactions were complexes of (S)-
VAPOL 4a (Scheme 3) and (S)-VANOL 5a ligands (Scheme 3) with B(OPh3). cis-Aziridine
esters 1a1 (Scheme 2) were obtained in good (69–91%) yields and high enantiomeric (ee)
purity [10–12]. AZ reaction-based synthesis of L-DOPA [10] and (-)-chloroamphenicol [11]
and florfenicol [12] have been demonstrated. In the case of dianisylmethyl (DAM) sub-
stituent 3-aryl-NH, aziridines were successfully obtained after hydrogenation in 83–100%
yields [13]. Instead of ester diazo carbene source 3a, diazoamide 3b (Scheme 2) produced
trans-aziridines 1b1 as illustrated in the Scheme 2 [18].
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Scheme 3. Aryl ligands for Wulff’s aziridination [10–14,27,28].

Aziridinyl vinyl ketones 1c1 (Scheme 2) also have been obtained from the correspond-
ing diazo ketones using AZ reaction in presence of (S)-VANOL and (S)-VAPOL-derived
boron complex catalysts in 19 examples at 35–90% yields [14]. Series of 3–arylated aziridinyl
ketones 1c2 (Scheme 2; seven examples, 62–90% yields, 85–99% ee) have been synthesized
in tandem acylation-aziridination of trimethylsilyldiazomethane [20] using (S)-VAPOL
and (R)-VANOL ligands. N-Boc-imines 2a (Scheme 2) are more reactive toward diazo com-
pounds and allow to reach trisubstituted aziridines cis-1a2, 1b3 shown in the Scheme 2 [23].

More detailed studies of this AZ reaction were carried out in 2008 [15,16]. The structure
of active catalyst was established [15]. This is a pyroborate 6 or 7 (Scheme 4). Reaction
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with a catalyst 6 and 7 (Scheme 4) has been explored in case of EDA 3a (Scheme 2) and 12
different imines 2a (Scheme 2), ee of the obtained 3-aryl aziridines 1a (Scheme 2) were in
the range of 90–95%.
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Scheme 4. Boroxinate catalyst [15,17,21].

In the subsequent study [16], the active site of the aziridination catalyst “chemzyme”
was explored using different N-substituents in the imine 2a (Scheme 2), and authors found
that 3.5-dimethyldianisilmethyl (MEDAM) and 3.5-di-tert-butyldianisilmethyl (BUDAM)
groups resulted in the best asymmetric inductions in AZ reaction. Further, evidence of
cyclic self-assembled boroxinate Brønsted acid ion pair 8 (Scheme 4) acting as an active
catalyst in the asymmetric AZ reaction has been reported [17].

Control of diastereo- and enantioselection of chiral VAPOL/VANOL-based polyborate
Brønsted acid catalyst-based AZ reactions has been studied [18,19]. In case of diazoamide
3b, trans aziridines (Scheme 2; 1b) can be obtained in reasonably high yields (90%) and
enantioselectivity reaching 96% [18]. MEDAM group is the best imine 2a (Scheme 2)
N-substituent in this reaction. Also, cis aziridine amides 1b (Scheme 2) are obtained if
the amide group is more sterically hindered [19]. Product stereochemistry-determining
transition states have been studied both experimentally and in silico to obtain universal
methodology of catalytic AZ reaction [19].

The previously described results have been summarized by Mukherjee et al. [21]. The
N-substituents have been compared, and it was found that MEDAM imines 2 (Scheme 2)
showed 96–97% ee in resulting aziridines 1a,b (Scheme 2). Imines 2a (Scheme 2) derived
from seven different aryl aldehydes were examined in aziridine ester 1a and amide 1b
(Scheme 2) synthesis.

Structure of the self-assembled boroxinate-imine complex 8 (Scheme 4) has been
characterized by X-ray diffraction in case of two “chemzyme”-substrate complexes [22]. A
practical gram-scale methodology of boroxinate Brønsted acid-catalyzed AZ reaction has
been developed [24]. The further steps in developing this asymmetric aziridination tool
were experiments with double stereodifferentiation using imines 2 (Scheme 2) obtained
from chiral amines (chiral PG) [25] and one-pot five-component reaction protocol: Base-
induced formation of boroxinate catalyst 8 (Scheme 4) followed with subsequent addition
of diazo compound 3 was replaced with simultaneous addition of all reagents [26].

The further increase of AZ reaction enantioselectivity was realized through insertion
of substituents in 7, 7′ positions of biaryl ligand 5b as depicted in the Scheme 3 [27].
Improving of catalyst ligand included developing of iso-VAPOL ligand 4b illustrated in the
Scheme 3 [28]. This ligand was an isomer of VAPOL 4a (Scheme 3) but had a chiral pocket
of VANOL 5a (Scheme 3) and was available from much cheaper starting materials.

In 2017, Wulff’s group continued to study AZ reaction using closely related BINOL
catalysts 9a and 9b represented in the Scheme 5 [29]. Different borate ester structures were
investigated. Boroxinate 9a and spiro borate 9b (Scheme 5) yielded opposite asymmetric
inductions in aziridine cis-1a1 (Scheme 2) formation.
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Scheme 5. Boroxinate and BINOL catalysts in AZ reaction [29–36].

A series (12 examples) of esters cis-1a1 (Scheme 2) were obtained by Thurston’s group
using BINOL-derived Brønsted acid catalyst 10a (Scheme 5) [30]. Multi-component vari-
ation of AZ reaction was carried out employing aromatic and heteroaromatic aldehydes.
Other examples of multi-component AZ reaction approach involving the above men-
tioned VAPOL and BOROX catalysts are also known [31,32]. Optimal reaction protocol for
aromatic aldehydes in synthesis of aziridines trans-1b (Scheme 2) was found [32].

Another boron Brønsted acid catalyst system—arylboronic acid 11 and chiral diol
ligand 12 in situ assembled boronate ester (Scheme 6) was developed by Maruoka and co-
workers [33]. Aziridine amides cis-1b3 (Scheme 6) were obtained in good yields and high
enantioselectivities (22 examples). In case of α-diazoacyl oxazolidinones 3c (Scheme 6) as
carbene sources and chiral N-triflyl phosphoramide Brønsted acid catalyst 10a
(Ar = Ph) [34] highly substituted oxazolidinone aziridine amides cis-1b4 (Scheme 6) were
obtained in good (77–91%) chemical yields and usually >80% ee. Series of different 3–aryl
substituents were demonstrated to be useful in these reactions in 24 examples. Reasonable
trans-selectivity was reached in this type of reactions with chiral phosphoric acids 10b
(Ar = 9-Anthryl) [35] and 10c (Ar = 2.4.6-Me3-C6H2; Scheme 5) [36] as a catalyst to obtain
amides trans-1b3 in excellent yields (89–97%) and enantioselectivity (88–98%), shown in 16
examples [35] and 14 examples [36], respectively.
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Scheme 7. Ruthenium catalysts for the AZ reaction [37–39].

Six examples of β-aryl esters cis-1a (PG=CHPh2) were demonstrated in moderate
yields (9–33%) and good ee (75–93%). Another ruthenium complex (Scheme 7; 14) as a cat-
alyst has been used in the same AZ reaction, leading to yields of esters cis-1a (16 examples)
up to 86% [39] but the stereoselectivity was moderate, typically 2.5:1. Iron-pyBOX com-
plexes [40] and rhodium-benbox complexes (ten examples [41]) as AZ reaction catalysts at
room temperature were reported earlier, but results (yields, ee) were moderately good.

The use of a chiral diazonium compound (Scheme 8) represents an interesting asym-
metric variation of AZ reaction [42,43]. Thus, N-α-diazoacyl camphorsultams 3d demon-
strate good results in reaction with imines 2b to obtain β-mono- and disubstituted aziridine-
2-carboxamides cis-1b4.
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Scheme 8. Aziridination with a chiral diazonium reagent [42,43].

Diazoacetates 3e are useful substrates for synthesis of highly functionalized β-aryl
aziridine ketoesters cis-1a3 as shown in the Scheme 9 [44]. Six successful examples with
different arylimines were presented. Unfortunately, if Ar = p-NO2Ph, or 2-pyridyl, no
reaction was observed. On the other hand, some examples of products cis-1a3 with another
ester groups and 2.2-diesters instead of ketoester were demonstrated.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 29 
 

 

 

Scheme 8. Aziridination with a chiral diazonium reagent [42,43]. 

Diazoacetates 3e are useful substrates for synthesis of highly functionalized β-aryl 

aziridine ketoesters cis-1a3 as shown in the Scheme 9 [44]. Six successful examples with 

different arylimines were presented. Unfortunately, if Ar = p-NO2Ph, or 2-pyridyl, no re-

action was observed. On the other hand, some examples of products cis-1a3 with another 

ester groups and 2.2-diesters instead of ketoester were demonstrated. 

 

Scheme 9. Synthesis of 3-arylaziridine ketoesters [44]. 

Ionic liquids have been successfully tested for cis-selective AZ reactions [45,46]. Re-

actions of aromatic aldimines were carried out in bmim PF6 at room temperature [45] and 

in the same liquids in multi-component variation with 2 mol% of Bi(OTf)3 or 5 mol% of 

Sc(OTf)3 catalyst [46] addition. The yields of aziridines cis-1a in both studies exceeded 

80%. Ten [45] and twelve [46] examples were demonstrated, respectively. 

Other simple catalysts for imine C=N bound aziridination with diazo compounds 

include BF3*OEt2 [47,48], montmorillonite K-10 [49], LiClO4 [50] and Rh2(OAc)4 [44,51]. 

The Lewis acid BF3*OEt2-catalyzed reaction of imino ester 2d and phenyldiazomethane 3f 

produces the aziridine ester cis-1a4 in good yield [47] without enamino- and dimeric by-

products (Scheme 10). 

 

Scheme 10. Lewis acid-catalyzed aziridination [47]. 

Sugar-derived imine also was successfully aziridinated under BF3*OEt2 catalysis [48]. 

The montmorillonite K-10 catalysis in imine-EDA aziridine-forming reaction is character-

ised by high cis-selectivity and good yields (15 examples). The demonstrated procedure is 

very simple, namely, reactions were performed at room temperature with EDA as solvent 

[49]. A similar method with LiClO4 catalysis allows to obtain broad spectrum (18 exam-

ples) of 3-aryl aziridine esters cis-1a at room temperature in acetonitrile over 4.5–7.5 h at 

>75% chemical yields and good stereoselectivity [50]. 

Organocatalytic variations of AZ reaction are also known. In presence of pyridinium 

salts as Brønsted acid organocatalysts cis-selective synthesis of esters cis-1a was demon-

strated [52,53]. The best results show 10 mol% of pyridinium triflate [53]. Synthesis of 21 

examples of different 3-aryl aziridine-2-carboxylates 1a bearing substituted phenyls and 

Scheme 9. Synthesis of 3-arylaziridine ketoesters [44].

Ionic liquids have been successfully tested for cis-selective AZ reactions [45,46]. Reac-
tions of aromatic aldimines were carried out in bmim PF6 at room temperature [45] and
in the same liquids in multi-component variation with 2 mol% of Bi(OTf)3 or 5 mol% of
Sc(OTf)3 catalyst [46] addition. The yields of aziridines cis-1a in both studies exceeded 80%.
Ten [45] and twelve [46] examples were demonstrated, respectively.

Other simple catalysts for imine C=N bound aziridination with diazo compounds
include BF3*OEt2 [47,48], montmorillonite K-10 [49], LiClO4 [50] and Rh2(OAc)4 [44,51].
The Lewis acid BF3*OEt2-catalyzed reaction of imino ester 2d and phenyldiazomethane
3f produces the aziridine ester cis-1a4 in good yield [47] without enamino- and dimeric
byproducts (Scheme 10).
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Scheme 10. Lewis acid-catalyzed aziridination [47].

Sugar-derived imine also was successfully aziridinated under BF3*OEt2 catalysis [48].
The montmorillonite K-10 catalysis in imine-EDA aziridine-forming reaction is charac-
terised by high cis-selectivity and good yields (15 examples). The demonstrated procedure
is very simple, namely, reactions were performed at room temperature with EDA as
solvent [49]. A similar method with LiClO4 catalysis allows to obtain broad spectrum
(18 examples) of 3-aryl aziridine esters cis-1a at room temperature in acetonitrile over
4.5–7.5 h at >75% chemical yields and good stereoselectivity [50].

Organocatalytic variations of AZ reaction are also known. In presence of pyridinium
salts as Brønsted acid organocatalysts cis-selective synthesis of esters cis-1a was demon-
strated [52,53]. The best results show 10 mol% of pyridinium triflate [53]. Synthesis of
21 examples of different 3-aryl aziridine-2-carboxylates 1a bearing substituted phenyls
and 2-pyridils in β-position has been demonstrated (70–99% yields). Polymer-supported
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pyridinium salt also was reported as an effective catalyst (80% yield of product), and
three-component one-pot process was performed.

In addition, N-fluoropyridinium triflate (fluoronium ion catalyst) has been described
as an organocatalyst in eight examples of these reactions [54], and the reached results
were comparable with the previously listed examples. A source of cation radical, tris-(4-
bromophenyl) aminium hexacloroantimonate (TBPA+ SbCl6-), was an effective initiator of
EDA 3a addition to aryl imines 2 in 13 examples [55]. tert-Butyl diazoacetate addition to one-
pot-generated aldimines 2 under pyridinium triflate catalysis was successfully employed
to obtain more complex 3-aryl aziridine structures 1a5, 1a6 shown in the Scheme 11 [56].
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An interesting variation of imine aziridination was EDA-aziridination of in situ gener-
ated iminium ion [57], generated from α-aminonitriles.

2.2. Aziridination of Imines with Other Carbene Precursors

Other carbene precursors or carbene-like species can be added to imines. These
species include:

• Active methylene compounds;
• Enolates derived from α-bromoesters and bases;
• Lithiated enamines;
• Guanidinium, ammonium or sulfonium ylides.

2.2.1. Variations of aza-Darzen Reaction

The most frequently used method is the addition of enolates derived from α-bromoesters
to various imines (aza-Darzen reaction variations).

The sources of chirality are chiral N-substituents in imines or enolates. Use of chiral
enolates and N-diphenylphosphinylimines were explored by Sweeney and co-authors [58,59].
Thus, enolate 16a, generated from 2R-N-bromoacethylcamphorsultam 15a (Scheme 12) reacts
with N-diphenylphosphinyl aldimines 2e1 leading to 3-arylaziridine-2-carboxamides cis-1b5.
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Scheme 12. Sweeney’s aza-Darzen type aziridination [58,59].

Chemical yields are good (57–78%) and stereoselectivity excellent, >95% dr in 14
demonstrated examples [58]. However, in some cases depending of the imine aryl sub-
stituent structure (using imines 2e2) inversion of stereochemistry has been observed and
aziridines trans-1b5 obtained [59]. The mechanism of reaction and transition states were
elucidated.

Another approach to chiral 3-aryl aziridine-2-carboxylic acid derivatives by asymmet-
ric aza-Darzen type reaction is the use of chiral moiety in the imine component.

There are chiral N-phosphinyl imines 2f1, 2f2 [60,61] and chiral sulfimines 2f3, 2f4 [62–64]
presented (Scheme 13). N-phosphinyl imines 2f1 have been successfully used in aza-Darzen
reaction with enolates generated from esters 15b in ten examples of aziridines cis-1a7 in
72–82% chemical yields and >80% de [60]. Better results have been achieved by imines 2f2:
17 examples of aziridines cis-1a7 with various 3–aryl substituents and four examples of dif-
ferent esters 1a7 (Ar = Ph) have been obtained in good chemical yields (51–87%) and >98%
cis- selectivity [61]. Chiral tert-butanesulfinyl aldimines 2f3, 2f4 and ketimines 2f5 were used in
series of aziridines cis-1a7 synthesis [62]. Corresponding 3-aryl and 3.3-diaryl products were
obtained in moderately good cis-selectivity (71:29–98:2); eight examples of 3-aryl products
cis-1a7 were demonstrated. Isolated examples of S-mesitylsulfinyl imines 2f4 have been em-
ployed in aziridine cis-1a7 synthesis [63]. Trisubstituted 3-aryl aziridine-2-carboxylates cis-1a7
were obtained from substituted 2-bromoesters 15b and tert-butane sulfinyl aldimines 2f3 [64]
in >60% chemical yields and >98% de (five examples).
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Modified aza-Darzen type protocol allows to obtain trisubstituted spirocyclic 3-aryl
aziridinyl ketones 1c3 (Scheme 14) from cyclic halogenated ketones 15c illustrated in the
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Scheme 14 [65]. Two protocols—one-step direct approach to ketones 1c3 (Scheme 14) and
two-step synthesis through an addition product, namely, tertiary halogenide 16 (Scheme 14)
—were realized. Chloro- and bromoketones 15c (Scheme 14) were used, and the catalyst was
Zn-ligand 17 (Scheme 14) complex. Reactions can be run in gram-scale with small amounts of
catalyst. Chemical yields of products (30 examples) are 75–99% in >20:1 dr.
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Scheme 14. Spirocyclic aziridine products via aza-Darzen aziridination [65].

In a similar way, α-chloro-1.3-diketones 1c4 (Scheme 15) were used as enolate precursors
in aza-Darzen type synthesis [66] in reactions with N-benzoylarylaldimines 2a1 under (R)-
VAPOL magnesium phosphonate salt catalysis (Scheme 15). In case of electron deficient
imines 2a (Scheme 15), no strong bases are necessary and aziridines 1c4 (Scheme 15) form in
52–78% yield and 57–92% ee.
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3-Arylated aziridine diesters 1a8 (Scheme 15) also can be prepared in aza-Darzen
reaction [67]. Racemic aziridines 1a8 (Scheme 15) are obtained in >80% yields from imines
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2a (Scheme 15) and bromomalonates 15e (Scheme 15). Useful N-substituent for these
reactions was tosyl (24 examples) but N-Boc aziridine diester 1a8 (Scheme 15) also can
be prepared from N-Boc imine 2a (Scheme 15). N-tosyl imines 2a (Scheme 15) can react
with activated methylene compounds 18 (Scheme 15) in iodine (III) induced aziridina-
tions to form aziridines 1a8 as shown in the Scheme 15 [68,69]. Iodobenzene diacetate—
tetrabutylammonium bromide system was reported first [68]. Aziridines 1a8 (Scheme 15)
can form from malonates 18 (Scheme 15), acetyl-, cyano- and nitroacetic acid esters to
obtain symmetrical and unsymmetrical products 1a8 (Scheme 15) in 37–89% yields. The
further study showed that PhIO-KI system is a better oxidative iodine (III) additive for
these reactions [69]. In this case, aziridines 1a8 (Scheme 15) are obtained in >75% yields.

Reformatsky type aza-Darzen reaction variation using imines 2a, inactivated zinc
metal and fluorodibromoacetate 15f is successfully used for access to 3-arylated 2-fluoro
aziridine-2-carboxylates 1a9 as shown in the Scheme 16 [70].
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Scheme 16. Reformatsky type aza-Darzen aziridination [70].

Yields up to 60% (determined by 19FNMR) and up to 80% syn products were obtained
in ten examples.

More complicated cascade reactions (Scheme 17) which allowed stereoselective obtain-
ing of 3-arylated 2-chloro aziridines was demonstrated by Xu and co-authors [71]. This cas-
cade coupling included nucleophilic addition of anion generated from silyldichloromethane
20 and nitriles 19 in presence of LDA and subsequent [1,3] -aza-Brooke rearrangement to
give α-N-silyl imines in equilibrium with 1-azaenolate equivalents. These species were
then trapped by imines 2g in an aza-Darzen type reaction to give aziridines 1c5 in good
(up to 50%) yields and up to 10:1 selectivity demonstrated in 19 cases for each method.
Remarkably, stereoselectivity strictly depends on the silyl group and the order of addition
of 2g and HMPA (method A or B).
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2.2.2. Ylides as Carbon Sources

An interesting variation of C=N double-bond aziridination are aziridinations of ylides.
The first remarkable reports were made by Ishikava’s group on reactions of guanidinium
ylides with aryl aldehydes as a practical route for obtaining of inactivated 3-arylated
aziridine-2-carboxylates 1a1 [72–76]. The initial study [72] for the first time reported the for-
mation of guanidinium ylides 21b from guanidinium salts 21a in the presence of base (NaH
or tetramethylguanidine) and their reactions with aryl aldehydes to form trans aziridines
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1a1 (Scheme 18). In the subsequent publication [73], the potential reaction mechanism and
role of the p-substituents in aldehyde aryl ring were explored. The authors concluded that
in the case of EDG p-substituted benzaldehydes SNi-like mechanism and in case of EWG
substituents SN2-type mechanism took place. Not only trans aziridines 1a1 are available
with this method. Procedure of epimerization in β- (C3) position was described [74] using
indium chloride catalyst. Aziridinomitosene skeleton synthesis [74], formal synthesis
of (-)-podophyllotoxin [75] and synthesis of cyclic dipeptide (-)-benzolactam-V8 [76] has
been demonstrated.
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Scheme 18. Ishikava’s aziridination [72–77].

Finally, reaction conditions were optimized, the method was expanded to broad
spectrum of aryl aldehydes (45 examples) and series of modified guanidine salts were
examined to reach a general method for highly substituted 3-arylaziridine-2-carboxylate
1a1 synthesis [77].

Other ylides can work in a similar way. Thus, aziridinations via ammonium [78–80]
and sulfonium [81–84] ylides are known. A simple protocol for the reaction of phenacyl
bromides 15g with imines 2a2 promoted by tertiary amine (DABCO) via in situ generated
ylide (Scheme 19) has been reported [78].
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Scheme 19. DABCO-promoted aziridination [78].

This one-pot aziridination process include quaternization of DABCO, then in situ
formation of ammonium ylide in the presence of base and aziridination of imine 2a2
to obtain 3-arylated trans-aziridinyl ketones trans-1c6 in good yields (nine examples)
and trans-selectivity. Enantioselective aziridination using chiral DABCO analogue also
was demonstrated.

Simple trimethylammonium salts work similarly via amide-stabilized ammonium
ylides (forming from salts 22a; Scheme 20) which react with aromatic aldimines 2a3 to form
3-arylated trans-aziridine carboxamides trans-1b [79]. Moderate to good yields and trans-
selectivity has been demonstrated in eight examples. Remarkable feature is that ammonium
salts 22b do not react with aldimines 2a2 in similar way. However, the classic aza-Darzen
process—reaction of imines 2a2 with phenacyl bromide 15g—gives cis–aziridinyl ketones
cis-1c6 in high yields.
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Scheme 20. Ammonium salt-promoted aziridination via ylides [79].

Asymmetric aziridination using stabilized trimethylammonium salts 23 has been
demonstrated [80] in six examples (Scheme 21). Aziridine carboxamides trans-1b6 were
obtained in good yields.
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Scheme 21. Aziridination with chiral stabilized trimethylammonium salt [80].

Sulfonium ylide-mediated catalytic asymmetric aziridination of imines were men-
tioned by Aggarwal’s group [81,82]. Chiral sulfides, for example, 24 and catalytic amounts
of metal salts, promote aziridination of imines with diazo compounds via sulphur ylide
intermediates (Scheme 22). Five examples of synthesis of aziridines trans-1a, b were demon-
strated reaching good yields (53–98%) and moderate enantioselectivity of 30–58% ee [81].
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Scheme 22. Aggarwal’s aziridination [81,82].

Ester and amide-stabilized sulfur ylides generated form sulfonium salts were ex-
plored [82] as sources of aziridines (Scheme 23). It was established that ester and amide-
stabilized sulfur ylides 25 react with activated aryl aldimines 2a2 reversibly to form
betaines 26 and the stereocontrolling step is represented by the base-controlled aziridine
ring closure leading to aziridines 1a6, 1b6.
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Scheme 23. Sulfur ylide aziridination [82].

A series of 3-arylated N-diphenylphospinoyl aziridine-2 carboxamides trans-1b7 are
synthesized in similar route from amide sulfonium salts via type 25 stabilized ylides [83]
as well as series of chiral 3-aryl spiro-aziridine oxindoles 1b8 (11 examples, 60–76%,
dr > 99:1) from corresponding imines using ylides generated from sulfonium salts in
presence of NaH (Scheme 24) [84]. Therefore, sulfonium ylides as well as the above men-
tioned guanidinium and ammonium ylides are useful tools in target aziridine synthesis.
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Scheme 24. Sulfur ylide aziridination products [83,84].

An interesting variation of aziridine synthesis from imines is the benzyne-promoted
Darzen-type reaction of tertiary amine 27 as shown in the Scheme 25 [85]. This process
was performed in mild conditions (no strong bases, room temperature) in the presence
of 2-(trimethylsilyl)phenyl triflate 28, KF and a crown ether. Five different 3-arylated
aziridine-2-carboxylates trans-1a1 were obtained in moderate to good yields (40–80%) and
good trans-selectivity > 98:2 dr.
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3. Aziridination of Olefins (Path B)

This pathway of aziridination includes:

• Evans aziridination with arylsulphonyliminophenyliodinanes;
• Oxidative aziridination with N-aminophtalimide and its analogues;
• Active hydroxylamines as aminating agents.
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3.1. Evans Aziridination

The reaction of olefins with active nitrene species generated from various nitrene
precursors represents another well-known and reliably explored method to synthesize
aziridine structures 1. The first approach, notable for 3-aryl aziridine-2-carboxylic acid
derivative synthesis, is the classical Evans aziridination using PhI=NTs as nitrene pre-
cursor, cinnamate type substrates 29 as olefins in the presence of Cu salts as catalysts
(Scheme 26) [86,87].
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Scheme 26. Evans aziridination [86–89].

Other nitrene precursors (p-NO2 and p-OMe benzenesulphonylimino-phenyliodinanes
instead of PhI=NTs) may increase yields of 29a type cinnamate aziridinations products 1a10
to 97% in 87% ee using chiral ligand 30a (BOX) [88]. Aziridination using iodosylbenzene in
combination with sulfonylamides instead of iminoiodinanes has been reported, but the
yields of 1a type esters were only moderately high reaching 40–53% [89].

The further investigations in Evans aziridination included various design of chiral
ligands (Scheme 27). Thus, a series of cinnamates were aziridinated using copper-catalyzed
asymmetric aziridination with PhI=NTs and chiral salen type ligand 31 (nine examples,
yield 60–90%, 61–93% ee) [90] as well as binaphthyldiimine ligand 32 (11 examples, yield
47–92%, 11–97% ee) [91]. A series of cinnamates and chalcones has been successfully
aziridinated by PhI=NTs/[Cu(MeCN)4]PF6 system in the presence of the same ligands 32
(R and S BINIM-DC) (15 examples, yields 41–87%, 36–97% ee) [92].

Similarly, biaryl Shiff base 33 was used as a ligand (nine examples, yield 32–77%,
89–98% ee) [93]. Aziridine esters trans-1a have been obtained, and structures of copper-
ligand 32 complexes [93] and reaction mechanisms [94] have been explored. The improved
diimine ligand 34 was used in asymmetric aziridination of cinnamates under 34/Cu(1)
catalysis with PhI=NTs as nitrene source (yield 63–99%, >80% ee) or in a one-pot procedure
with iodobenzene diacetate-sulfonamide system [95].
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The next well-explored group of chiral ligands for Evans-type aziridination of olefins
that are used in synthesis of 3-arylaziridine-2-carboxylic acid derivatives 1a are bidentate
bis-oxazolinyl type compounds—the analogues of BOX ligand 30a mentioned above [88].
The further development of such ligands are 1.8-bisoxazolinylanthracene (AnBOX) type
ligands 30b [96,97] and cyclohexane-linked bis-oxazolines 30c (cHBOX) shown in the
Scheme 28 [98]. The AnBOX ligand 30b was successfully used in asymmetric aziridination
of chalcone type substrates 29c with PhI=NTs in CuOTf catalysis to obtain aziridinyl
ketones trans-1c (nine examples, yields 51–91%, 68–99% ee) [96].
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In a subsequent, more detailed study [97] the substrate scope was expanded
(22 chalcone and a single cinnamate substrate example, yield 35–92%, 27–99% ee) and
the limitations explored. Higher enantioselectivity in the chalcone aziridination has been
reached using (S)-cHBOX 30c (11 examples, yield 51–73%, >80% ee) [98].

The comparison of BOX 30a, AnBOX 30b and cHBOX 30c ligands in Evans-type
chalcone substrate 29c aziridination and the exploration of π-stacking between chalcone
and ligand aromatic systems were performed [99]. The results showed that π–interaction
between chalcone substrates 29c and the AnBOX ligand’s 30b anthracene backbone was
important in order to improve the enantioselectivity of aziridination.

The further improvements of Evans chalcone 29c and cinnamate 29a aziridination in-
cluded use of Cu(2) and poly/perfluorinated alkoxyaluminate type anion complexes [100],
alumina-supported [101] and immobilized magnetic Cu containing nanoparticles [102].
Use of gold instead of copper catalyst has also been reported [103].

In conclusion, Evans aziridination is a practical method for the synthesis of trans-
3-arylated aziridine-2-carboxylates 1a and aziridin-2-ylketones 1c from corresponding
cinnamates 29a and chalcones 29c, respectively.

3.2. Oxidative Aziridination

Another important method for asymmetric aziridination of alkenes is the reaction with
N-aminophthalimide in the oxidative conditions (Pb(OAc)4 or another oxidant) as a nitrene
source. The asymmetric induction can be conducted with chiral moiety in the substrate
and with chiral ligand. Thus, use of chiral auxiliary can be illustrated by aziridination
of chiral camphor N-enoylpirazolidinone 29b1 to obtain aziridine-2-hydrazide trans-1b9
(Scheme 29) in good yield [104]. Another chiral camphor-based auxiliary-directed azirid-
ination of aziridine esters was demonstrated [105] but this study was focused on only a
single example of cinnamate 29a.
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Chiral ligand-mediated variation of this aziridination was studied by the same au-
thors [106]. Reaction of N-enoyl oxazolidinones 29b2 in similar conditions and in presence of
ligand 35 lead to aziridine-carboxamides trans-1b10 in good yields and >80% ee (Scheme 30).
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Similar Pb(OAc)4-mediated aziridination with PthNH2 as nitrogen source using chal-
cone and cinnamate type substrates was successfully employed to obtain aziridine inter-
mediates for oxazole synthesis [107,108], spiro-fused N-phthalimidoaziridines [109] and
3(2-allylphenyl)aziridine-2-carboxylates [110] to investigate their thermal transformations.

Other oxidant systems used in this type of alkene aziridination include iodobenzene
diacetate [111] and aril iodide-m-CPBA system [112]. Iodobenzene diacetate works well
as oxidant in the aziridination of chalcones 29c and cinnamate 29a with N-aminophtalimide
(PthNH2) or 3-amine-3H-benzoxazol-2-one (BoNH2) as nitrogen sources. Yields of aziridines
trans-1a,b (Scheme 31) are excellent [111].
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Scheme 31. Iodobenzene diacetate-promoted oxidative aziridination [111].

The same transformation using in situ generated oxidant made from m-CPBA and
4-methoxyphenyl iodide was demonstrated [112] and compared with PhI(OAc)2 oxidant
in series of alkene substrates including chalcone 29c. The yields were comparable. In-
teresting utilization of PthNH2-PhI(OAc)2 aziridination was demonstrated by Yudin’s
group [113]; this system allowed them to obtain 3-phenyl-2-bromoaziridinylketones cis-1c7
from corresponding α-bromoketones 29c1 in good yields (Scheme 32).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 18 of 29 
 

 

 

Scheme 31. Iodobenzene diacetate-promoted oxidative aziridination [111]. 

The same transformation using in situ generated oxidant made from m-CPBA and 4-

methoxyphenyl iodide was demonstrated [112] and compared with PhI(OAc)2 oxidant in 
series of alkene substrates including chalcone 29c. The yields were comparable. Interest-

ing utilization of PthNH2-PhI(OAc)2 aziridination was demonstrated by Yudin’s group 
[113]; this system allowed them to obtain 3-phenyl-2-bromoaziridinylketones cis-1c7 from 

corresponding α-bromoketones 29c1 in good yields (Scheme 32). 

 

Scheme 32. Yudin’s modification of oxidative aziridination [113]. 

Aziridination of highly functionalized chalcone and cinnamate type substrates with 

a PthNH2 nitrogen source and a PhI(OAc)2 oxidant was utilized for functionalized 3-ben-

zazepine skeleton construction [114] and for obtaining of fluorinated aziridines including 
3-C6F5 substituted aziridine-2-carboxylate 1a [115]. Example of highly functionalized 

biaryl aziridinyl ketone 1c8 (Scheme 33) synthesis from corresponding alkene via the 

PthNH2/PhI(OAc)2 system has been demonstrated [116]. 

 

Scheme 33. An example of a highly functionalized product of oxidative aziridination [116]. 

An interesting and perspective oxidant in oxidative aziridination is sodium 2-io-

doxybenzoate 36 generated from o-iodoxybenzoic acid (IBX) and Na2CO3 (Scheme 34) 

[117]. Various type 29 substrates including unsaturated ketones 29c and amides 29b has 

been successfully aziridinated to obtain trans-1b, c type products in 65–92% yields (five 

examples). 

 

Scheme 34. Sodium 2-iodoxybenzoate-promoted oxidative aziridination [117]. 

Scheme 32. Yudin’s modification of oxidative aziridination [113].

Aziridination of highly functionalized chalcone and cinnamate type substrates with
a PthNH2 nitrogen source and a PhI(OAc)2 oxidant was utilized for functionalized 3-
benzazepine skeleton construction [114] and for obtaining of fluorinated aziridines includ-
ing 3-C6F5 substituted aziridine-2-carboxylate 1a [115]. Example of highly functionalized
biaryl aziridinyl ketone 1c8 (Scheme 33) synthesis from corresponding alkene via the
PthNH2/PhI(OAc)2 system has been demonstrated [116].
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Scheme 33. An example of a highly functionalized product of oxidative aziridination [116].

An interesting and perspective oxidant in oxidative aziridination is sodium 2-iodoxybenzoate
36 generated from o-iodoxybenzoic acid (IBX) and Na2CO3 (Scheme 34) [117]. Various type 29
substrates including unsaturated ketones 29c and amides 29b has been successfully aziridinated
to obtain trans-1b, c type products in 65–92% yields (five examples).
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Another nitrogen source for substrate-controlled diastereoselective aziridination is
3-acetoxyaminoquinazolone (QNHOAc) in the presence of hexamethyldisilazane (HMDS)
as shown in the Scheme 35 [118].
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Aziridine ester trans-1a11 was obtained in good yield and diastereomeric excess from
cinnamate 29a1. Intramolecular variation of this process also has been reported in the
synthesis of the complex aziridine ester 1a12 depicted in the Scheme 36 [119].
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An interesting nitrogen source (N-amino-endo-bicyclo[2.2.1]hept-5-ene-2.3-dicarboxylic
acid diimide 37 (EnH-NH2)) was investigated (Scheme 37) in four examples, leading to the
yields of 30–70% [120].
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This NH-transferring agent allows to obtain NH aziridinylketones trans-1c10 from
chalcones 29c in 52–74% yield (11 examples) in a stereoselective one-pot process.

An example of substituted anilines 38 as nitrogen sources in oxidative aziridination
of benzilidene dicarbonyl substrate 29a2 to obtain potential antibacterial aziridines 1a12
(Scheme 39) has been reported [122]. Aziridination was carried out at room temperature,
and the yields of aziridines 1a12 were good (60–70%) in 15 examples.
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Lead or hypervalent iodine oxidants in oxidative aziridination with PthNH2 as a nitro-
gen source can be replaced with direct electrochemical oxidation via +1.80 V potential [123].
Methyl cinnamate 29a and chalcone 29c have been aziridinated in yields of type trans-1a,c
aziridines 86% and 83%, respectively.

Oxaziridine 39 can be used simultaneously as oxidant and nitrogen source for oxida-
tive nitrogen transfer alkene aziridinations in synthesis of 3-arylaziridine-2-carboxylates
1a1, and diesters 1a8 as shown in the Scheme 40 [124]. The reaction was carried out under
mild conditions in presence of MgI2.
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Scheme 40. Oxaziridine-promoted oxidative aziridination [124].

N, N-dihalogene-p-toluenesulfonamides are reported as nitrogen sources for both cat-
alytic [125,126] and non-catalytic [127] aziridinations of cinnamates, cinnamyl amides and
chalcone type substrates 29a,c,d (Scheme 41). Interestingly, aziridination with TsNCl2 was
demonstrated as a two-step addition-cyclization process [125,126] via isolable intermediate
40, but the reaction with TsNBr2 was reported in a one-step nitrene transfer process [127].
The specific use of similar aziridinating agent PhSO2NBr2 under Lu(OTf)3/chiral ligand
catalysis for complex tricyclic aziridine synthesis was noted [128].
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Scheme 41. N,N-dihalogene-p-toluenesulfonamides as the nitrogen source in aziridination [125–127].

The other nitrene sources are sulfenyl nitrenes generated from N-sulfenylsulfodiimides [129]
and bromamine T [130]. Sulfenyl nitrenes allow to obtain N-sulfenylaziridines, a single example
of N-sulfenylaziridine 1c11 has been demonstrated (60% yield from chalcone [129]) (Scheme 42).
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Scheme 42. An example of N-sulfenylaziridine product [129].

Bromamine T is moderately effective as nitrene source for cinnamate substrates 29a
(Scheme 41) under ultrasound conditions in the presence of CuCl2 forming aziridine-2-
carboxlates trans-1a (30–34% yield) and under microwave in the presence of CuBr2 forming
esters cis+trans-1a (Scheme 41) at 36–38% yield [130].

3.3. Hydroxylamines as Nitrogen Sources

Classically, aziridines can be synthesized from conjugated α,β-unsaturated substrates
by the Michael-type addition followed by aziridine ring closure, usually under basic
conditions. Thus, chalcone type substrates 29c (Scheme 43) undergo Michael addition
of O-methylhydroxylamine under scandium (R)-1.1-binaphtyl-2.2′-diyl phosphate (BNP)
complex catalysis and then perform cyclization of intermediate 41 into aziridines trans-1c
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under lanthanum (3) isopropoxide catalysis as shown in the Scheme 43 [131]. Remark-
ably, this is a route to 3-arylated NH-aziridin-2-ylketones trans-1c10. In case of racemic
intermediate 41, a kinetic resolution using La(Oi-Pr)3-mediated cyclization into aziridine
trans-1c10 in the presence of (R) or (S)-BINOL is possible.
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Scheme 43. Michael-type addition-based aziridination [131].

Highly functionalized aziridine ester 1a13 (yield 58%) [132] and lactone 1a14 (yield
60%) [133] can be produced from corresponding α,β–unsaturated 29a type carboxylic
ester and lactone, respectively, in reaction with carbamate reagent NsONHCOOEt in the
presence of CaO (Scheme 44).
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Scheme 44. Carbamate reagent-based aziridination products [132,133].

Similar asymmetric organocatalytic aziridination of enones with carbamate reagent
TsONHCbz in the presence of catalyst salt 42 (Scheme 45) has been reported [134]. Aziridinyl
ketones trans-1c12 were obtained in good yields and ee.
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Scheme 45. Asymmetric organocatalytic aziridination of enones with carbamate reagent [134].

In the same way, employing TsONHBoc reagent and chiral diphenylprolinol tri-
ethylsilyl ether 43 organocatalyst, enantioselective organocatalytic aziridination of α,β-
unsaturated aldehydes 29d (Scheme 46) can be performed [135].
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Scheme 46. Enantioselective organocatalytic aziridination of α,β–unsaturated aldehydes [135].

Synthesis of various 3-arylated aziridine aldehydes trans-1e and corresponding esters
trans-1a1 (Scheme 46) has been demonstrated in 18 examples showing good yields and
enantioselectivity (>80% ee). Aryl substituents include various substituted phenyls, fluori-
nated phenyls and 3-piridyls. Enantioselective synthesis of (R)-sumanirole employing this
aldehyde 29d aziridination method was reported [136]. The syntheses of spiroaziridine
oxindoles 1b8 (13 examples, 74–98% yields) are performed using BocONHCbz hydroxy-
lamine in the presence of tetramethylguanidine [137]. An isolated example of inactivated
aziridin-2-ylketone trans-1c13 (Scheme 47) (60% yield) in TsONHMe-mediated aziridina-
tion under Rh2(esp)2 catalysis (Scheme 47) was demonstrated [138].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 23 of 29 
 

 

droxylamine in the presence of tetramethylguanidine [137]. An isolated example of inac-

tivated aziridin-2-ylketone trans-1c13 (Scheme 47) (60% yield) in TsONHMe-mediated 

aziridination under Rh2(esp)2 catalysis (Scheme 47) was demonstrated [138]. 

 

Scheme 47. Hydroxylamine reagent-mediated aziridination products [137,138]. 

Finally, Armstrong’s aziridination must be noted as a remarkable advance in the di-

rect access to 3-arylated N-unsubstituted aziridin-2-yl ketones trans-1c10 (Scheme 48) and 

carboxylates trans-1a15. Armstrong’s aziridination implies the use of N,N-ylides gener-

ated from N-methylmorpholine, or other tertiary amines in the presence of Ph2P(O)ONH2 

(dppONH2) as NH transfer agent (Scheme 48) [139–141]. 

 

Scheme 48. Armstrong’s aziridination [139–141]. 

In the initial work [139], chalcones and cinnamates 29a, c were successfully aziridi-

nated to obtain trans-aziridine-2-ketones 1c10 and carboxylates trans-1a15 (Scheme 48) us-

ing N-methylmorpholine. The yields were 32–97%; higher yields were obtained by chal-
cones 29c. Enantioselective variation of this process using quinine as tertiary amine (yields 

35–68% and 37–56% ee, eight examples) [140] and aziridination of highly functionalized 

alkyl arylidene ketones 29c (Scheme 48) (yields 51–81%) has been reported [141]. 

4. Conclusions 

Aziridination has a great synthetic potential in synthesis of 3-arylated aziridine-2-

carboxylates, carboxamides and 2-aziridinylketones. The most important, well-explored, 

and practical in terms of imine C=N bond aziridination are Wulff’s catalytic AZ reaction 

employing diazo compounds as carbene sources and various catalytic systems. 

This method demonstrates a high stereoselectivity in a broad series of examples and 

allow obtaining both cis and trans aziridine products including nitriles and aldehydes se-

lectively. In C=C bond aziridination, the main approaches include Evans olefin aziridina-

tion using PhI=NTs type nitrene sources under Cu catalysis, as well as oxidative aziridi-

nation variations. 

Notably, Evans aziridination is suitable for aziridination of chalcone and cinnamate 

type substrates and oxidative methods allows to obtain also 3-arylaziridine-2-carbox-

amides. Remarkable are several methods which allow to directly access NH aziridines, 

such as Armstrong’s aziridination. 

Scheme 47. Hydroxylamine reagent-mediated aziridination products [137,138].

Finally, Armstrong’s aziridination must be noted as a remarkable advance in the direct
access to 3-arylated N-unsubstituted aziridin-2-yl ketones trans-1c10 (Scheme 48) and
carboxylates trans-1a15. Armstrong’s aziridination implies the use of N,N-ylides generated
from N-methylmorpholine, or other tertiary amines in the presence of Ph2P(O)ONH2
(dppONH2) as NH transfer agent (Scheme 48) [139–141].
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In the initial work [139], chalcones and cinnamates 29a, c were successfully azirid-
inated to obtain trans-aziridine-2-ketones 1c10 and carboxylates trans-1a15 (Scheme 48)
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using N-methylmorpholine. The yields were 32–97%; higher yields were obtained by chal-
cones 29c. Enantioselective variation of this process using quinine as tertiary amine (yields
35–68% and 37–56% ee, eight examples) [140] and aziridination of highly functionalized
alkyl arylidene ketones 29c (Scheme 48) (yields 51–81%) has been reported [141].

4. Conclusions

Aziridination has a great synthetic potential in synthesis of 3-arylated aziridine-2-
carboxylates, carboxamides and 2-aziridinylketones. The most important, well-explored,
and practical in terms of imine C=N bond aziridination are Wulff’s catalytic AZ reaction
employing diazo compounds as carbene sources and various catalytic systems.

This method demonstrates a high stereoselectivity in a broad series of examples
and allow obtaining both cis and trans aziridine products including nitriles and aldehy-
des selectively. In C=C bond aziridination, the main approaches include Evans olefin
aziridination using PhI=NTs type nitrene sources under Cu catalysis, as well as oxidative
aziridination variations.

Notably, Evans aziridination is suitable for aziridination of chalcone and cinnamate
type substrates and oxidative methods allows to obtain also 3-arylaziridine-2-carboxamides.
Remarkable are several methods which allow to directly access NH aziridines, such as
Armstrong’s aziridination.
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