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INTRODUCTION
Epilepsy is a common neurological disorder characterized by 

unprovoked recurrent seizures [1]. Seizures can be derived from 
uncontrolled, synchronous, and excessive neuronal excitation 
in any brain region. When seizures begin in the temporal lobe, 
including the hippocampus and the surrounding area, it can be 
diagnosed as temporal lobe epilepsy (TLE) [2]. Because TLE is 
the most common form of adult focal epilepsy [2], hippocampal 

pathophysiology in TLE has been studied extensively using vari-
ous animal models [3]. However, essential molecular mechanisms 
that follow acute seizures and their chronological contributions 
to disease progression are still not clearly understood. Therefore, 
more vigorous research investigations are needed to discern how 
the expression patterns of various molecules are altered after 
acute seizures. Because the hippocampus undergoes continuous 
changes after acute seizures until chronic epilepsy has developed, 
basic information is needed about the molecular alterations that 
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ABSTRACT Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular 
calcium increase and oxidative stress, which are characteristic features of temporal 
lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular local-
ization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-in-
duced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochlo-
ride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given 
diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day 
after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell 
death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 
immunoreactivity showed that RCAN1 was mainly expressed in neurons in the sham-
manipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in 
hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells 
with stellate morphology at 3 and 7 day after SE, which were confirmed to be reac-
tive astrocytes, but not microglia by double immunofluorescence. In addition, real-
time reverse transcriptase–polymerase chain reaction showed a significant upregu-
lation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, 
in situ hybridization with immunohistochemistry revealed astrocytic expression of 
RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and 
RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epilepto-
genesis, providing foundational information for the potential role of RCAN1 in reac-
tive astrocytes during epileptogenesis.
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occur during epileptogenesis to better understand the compli-
cated pathophysiology of TLE.

Regulator of calcineurin 1 (RCAN1) is widely expressed in the 
brain [4,5]. The RCAN1 gene encodes two predominant isoforms, 
RCAN1-1 and RCAN1-4, depending on the choice of the first 
exon among the 7 exons in the gene [6]. RCAN1-1 mRNA can 
generate two different protein isoforms, long (RCAN1-1L) and 
short (RCAN1-1S) proteins, and RCAN1-4 mRNA translates the 
RCAN1-4 protein when a calcineurin-regulated promoter is ac-
tivated by an intracellular calcium increase [7-12]. Perturbations 
in RCAN1 expression have been reported in many brain diseases, 
including Down syndrome, Alzheimer’s disease, Huntington 
disease, and ischemic stroke [13-18]. Moreover, previous studies 
demonstrated an association between RCAN1 and oxidative or 
calcium stress [19,20], which are the most common pathologic 
mechanisms in multiple brain diseases. Nonetheless, few efforts 
have been made to discern the role of RCAN1 in epilepsy, despite 
ample evidence that RCAN1 expression might be altered after 
acute seizures because calcium overload and excitotoxicity are 
characteristic features of epilepsy [21].

Therefore, in the present study, we investigated the spatiotem-
poral expression pattern of RCAN1 in the mouse hippocampus 
after acute seizures, including a phenotypic analysis. Moreover, 
we assessed the temporal hippocampal expression of RCAN1-4 
mRNA, the calcium-sensitive isoform, using quantitative reverse 
transcriptase polymerase chain reaction (qRT-PCR), and we used 
an in situ hybridization double labeling technique to analyze the 
cell types. These findings provide basic information about the 
expression patterns of RCAN1 and RCAN1-4 following acute sei-
zures, encouraging further studies to evaluate the functional roles 
of RCAN1 and its isoforms in epilepsy.

METHODS

Pilocarpine-induced status epilepticus (SE)

Animal experiments were approved by the Ethics Commit-
tee of the Catholic University of Korea and were carried out in 
accordance with the National Institutes of Health Guideline for 
the Care and Use of Laboratory Animals (NIH Publication No. 
80–23, revised 1996). The pilocarpine-induced SE model was 
generated as previously described [22]. Briefly, mice were given 
atropine methyl nitrate (3 mg/kg, i.p.) 30 min before the injec-
tion of pilocarpine hydrochloride (280 mg/kg, i.p.). Only animals 
that had stage 5 generalized tonic-clonic seizures according to 
the Racine scale were selected for the study [23]. After 2 h of SE, 
diazepam (10 mg/kg, i.p.) was administrated to quell the seizures. 
For sham-manipulated animals, all the procedures were the same 
except that saline was injected instead of pilocarpine.

Tissue collection and staining

At 1, 3, 7, 14, and 28 day after SE (1 day after sham-manipula-
tion), the animals were deeply anesthetized with an overdose of 
ketamine and xylazine. After performing transcardial perfusion 
with 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), 
we removed the mouse brains and cryoprotected them with a 
30% sucrose solution. Then, the brains were rapidly frozen with 
liquid nitrogen and cut into 20-μm-thick coronal sections using 
a cryostat microtome. Cresyl violet staining and immunohisto-
chemistry were carried out as previously described [17,22,24]. For 
the immunohistochemistry, we used rabbit anti-RCAN1 (1:200), 
mouse anti-neuronal nuclei (NeuN, 1:200), mouse anti-glial fi-
brillary acidic protein (GFAP, 1:400), and rat anti-Ox-42 (1:100).

Quantitative reverse transcriptase polymerase chain 
reaction

We quantitatively analyzed RCAN1-4 transcription using a 
previously described method [17]. Briefly, total RNA was extract-
ed from epileptic or sham-manipulated hippocampi, and qRT-
PCR was performed with SYBR green using an MX3005P system 
(Stratagene). The primer sequences for RCAN1-4 and glyceral-
dehyde-3-phosphate dehydrogenase were 5’-GTCTGCCCCGT-
GAAAAAGCA-3’ (forward), 5’-TGGAAGGTGGTGTCCTTGT-
CA-3’ (reverse) and 5'-TCAACAGCAACTCCCACTCTTCCA-3' 
(forward), 5'-ACCCTGTTGCTGTAGCCGTATTCA-3' (reverse), 
respectively. The fold change of RCAN1-4 transcription was cal-
culated relative to the level in sham-manipulated animals. The re-
sults are presented as the mean ± standard error of the mean and 
were analyzed using one-way analysis of variance (ANOVA) and 
a post-hoc Duncan’s test. Differences were assumed to be statisti-
cally significant at p < 0.05.

In situ hybridization double labeling

The specific sequence for the RCAN1-4 riboprobe was pro-
duced by RT, followed by PCR amplification with primer sets 
(forward: 5’-CTCTTGCAAAGGAACCTCCA-3’, reverse: 
5’-GGGGGTGGCATCTTCTACTT-3’). After cloning into the 
pBluescript II RI Predigested Vector (Agilent Technologies, Wald-
bronn, Germany), digoxigenin (DIG)-labeled sense and antisense 
riboprobes for RCAN1-4 were prepared by in vitro transcription 
using a DIG RNA labeling kit (Boehringer, Mannheim, Ger-
many). Coronal sections from sham-treated and epileptic mice 
were washed three times with 2x saline-sodium citrate (SSC) 
buffer (0.3 M sodium chloride, 0.03 M sodium citrate, pH 7.0). 
Then, prehybridization and hybridization steps were performed 
at 53°C for 2 h and 16 h, respectively. The prehybridization solu-
tion was composed of 4x SSC, 10% dextran sulfate, 1x Denhardt’s 
solution, 50% formamide, and 100 µg/ml salmon sperm DNA. 
The hybridization buffer was identical to the prehybridization 
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solution except for the addition of 500 ng/ml of sense or antisense 
RCAN1-4 riboprobes. On the next day, sections were rinsed with 
2x SSC at room temperature and serially washed with prewarmed 
2x SSC for 20 min, 0.5x SSC for 45 min, and 0.2x SSC for 45 min 
at 62°C. After several washes with 0.1 M Tris-buffered saline (pH 
7.5), the sections were incubated with 10% normal sheep serum 
containing 0.1% Triton X-100 for 1 h at room temperature and 
subsequently with biotin-conjugated monoclonal mouse anti-
digoxin (1:500) overnight at 4°C. On the next day, after labeling 
with DyLight 488 Streptavidin (1:50) for 2 h at room temperature, 
the sections were incubated with mouse anti-GFAP overnight at 
4°C, followed by incubation with Cy-3-conjugated anti-mouse 
IgG for 2 h at room temperature. Finally, the slides were observed 
under a confocal microscope (LSM 510 Meta; Carl Zeiss Co., Ltd., 
Oberkochen, Germany).

RESULTS

Hippocampal cell death after pilocarpine-induced SE

The hippocampal damage caused by pilocarpine-induced SE 
was assessed by cresyl violet staining. In the sham-manipulated 
hippocampi, we found intact cells in the pyramidal cell layer of 

the hippocampus and the hilus of the dentate gyrus (Fig. 1A, 
A1, A2, and A3). However, 1 day after pilocarpine-induced SE, 
pyknotic cells were found in the hilar regions of the dentate gyrus 
(Fig. 1B, B3). Moreover, from 3 to 28 day after SE, pyramidal cells 
in the medial CA1 and CA3 subfields of the hippocampus, along 
with the dentate hilar region, showed a clear pyknotic morphol-
ogy compared with the sham-treated hippocampi (Fig. 1C–E, C1, 
and C2), validating our in vivo animal model of SE.

Temporal expression pattern and cellular localization 
of RCAN1 protein after pilocarpine-induced SE

In the sham-manipulated hippocampi, RCAN1-positive cells 
were observed in the neurons of the pyramidal and granule cell 
layer (Fig. 2A and A1). At 1 day after SE, RCAN1 expression was 
increased in the neuropils of the hippocampal stratum radiatum 
and the molecular layer of the dentate gyrus (Fig. 2B and B1). At 3 
and 7 day after SE, immunoreactivity to RCAN1 was dramatical-
ly induced in cells with the stellate morphology and then gradu-
ally decreased from 14 to 28 day after SE (Fig. 2C–F, C1). Neuro-
nal RCAN1 signals in the medial CA1 subfield decreased from 3 
day until the last time-point examined, possibly due to neuronal 
deaths caused by the prolonged seizure activity (Fig. 2C–F). The 
phenotypic analysis of the RCAN1-expressing cells using double 

Fig. 1. Hippocampal cell death after pilocarpine-induced status epilepticus (SE) measured by cresyl violet staining. In sham-manipulated 
hippocampi (A), intact neurons were observed in the CA1 (magnified in A1), CA3 (magnified in A2), and the hilus (magnified in A3, arrowheads for 
exemplary interneurons) subfields. In contrast, pyknotic cells were found in the hilus 1 day after SE (B, B3), and in the CA1 (magnified in C1) and CA3 
(magnified in C2) subfields, along with the dentate hilus at 3 day (C), 14 day (D), and 28 day (E) after SE onset. Scale bar in (E) = 200 μm; the same mag-
nification was used for (A–D). Scale bar in (C2) = 20 μm; the same magnification was used for (A1, A2, C1). Scale bar in (B3) = 50 μm; the same magnifi-
cation was used for (A3).
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immunofluorescence revealed that 3 day after SE, RCAN1 in 
the medial CA1 subfield was co-labeled with a neuronal marker, 
NeuN (Fig. 3A–C). Moreover, RCAN1 immunoreactivity was co-
localized with GFAP, an astrocyte marker (Fig. 3D–F), but not 
with Ox-42, a microglial marker (Fig. 3G–I).

Temporal expression pattern and cellular localization 
of RCAN1-4 mRNA after pilocarpine-induced SE

We further assessed quantitative RCAN1-4 transcription in 
the hippocampus using qRT-PCR. In agreement with the results 

of the RCAN1 protein expression analysis, RCAN1-4 mRNA 
was significantly increased after SE compared with the sham-
manipulated controls (Fig. 4A). Moreover, cellular localization 
of RCAN1-4, evaluated by in situ hybridization, showed that in 
the sham-manipulated hippocampi, RCAN1-4 was observed 
in the neurons of the pyramidal cell layer and not co-labeled 
with GFAP, whereas 3 day after SE, the hybridization signal for 
RCAN1-4 mRNA was localized in astrocytes with GFAP labeling 
(Fig. 4B, arrows). In addition, no cellular labeling was detected in 
the hippocampus when in situ hybridization was performed with 
the RCAN1-4 sense probe (data not shown).

Fig. 2. Temporal expression pattern of regulator of calcineurin 1 (RCAN1) protein in the hippocampus after pilocarpine-induced status epi-
lepticus (SE). In sham-manipulated hippocampi (A), RCAN1 signals were found in neurons (magnified in A1). At 1 day after SE, RCAN1 labeling was 
increased in neuropils of the hippocampal stratum radiatum (magnified in B1) and the molecular layer of the dentate gyrus (B). RCAN1 expression 
was markedly induced in glia-like cells at 3 day (C, magnified in C1) and 7 day (D) after SE and gradually subsided from 14 day (E) to 28 day after SE (F). 
Scale bar in (C1) = 50 μm; the same magnification was used for (A1, B1). Scale bar in (F) = 200 μm; the same magnification was used for (A–E).

A

A1 B1

B

DC

E F

C1



Spatiotemporal RCAN1 expression in epilepsy 

Korean J Physiol Pharmacol 2020;24(1):81-88www.kjpp.net

85

DISCUSSION
In the present study, we assessed the spatiotemporal expression 

pattern of RCAN1 protein and its cellular phenotype in a mouse 
model of epilepsy. Compared with sham-manipulated controls, 
RCAN1 expression increased in the neuropils of the hippocampal 
stratum radiatum and the molecular layer of the dentate gyrus 1 
day after SE. At 3 and 7 day after SE, RCAN1 was markedly in-
duced in reactive astrocytes, which gradually decreased from 14 
to 28 day after SE. When RCAN1-4, a calcium-inducible RCAN1 
isoform, was assessed with qRT-PCR and in situ hybridization 
double labeling, RCAN1-4 transcription was found to be in-
creased significantly in the hippocampus after acute seizures, in 

addition to the astrocytic production of RCAN1-4 mRNA, in line 
with our RCAN1 protein expression data.

A variety of factors, such as exercise, aging, and hyperglyce-
mia, have been reported to stimulate RCAN1 expression [25]. In 
pathologic circumstances, the cumulative evidence demonstrates 
that RCAN1 levels are altered in Down syndrome, Alzheimer’s 
disease, Huntington disease, ischemic stroke, and spinal cord 
injuries [13-18,26]. Except for Huntington disease, RCAN1 has 
been shown to increase in most brain diseases. Consistent with 
that notion, we demonstrated upregulated RCAN1 expression in 
mouse hippocampi after acute seizures. Interestingly, the RCAN1 
expression pattern after acute seizures differed between neurons 
and glial cells. Whereas RCAN1 was enhanced in the hippocam-

Fig. 3. Phenotypes of regulator of calcineurin 1 (RCAN1)-positive cells in the hippocampus 3 day after pilocarpine-induced status epilepticus 
(SE). RCAN1 immunoreactivity was co-localized with NeuN (A–C), a neuronal marker, and with GFAP (D–F, arrowheads for RCAN1/GFAP-double posi-
tive cells), an astrocyte marker. However, RCAN1 signals did not overlap with Ox-42 labeling (G–I, arrows for RCAN1-positive cells), a microglial marker. 
Scale bar in (I) = 50 μm; the same magnification was used for (A–H). NeuN, neuronal nuclei; pcl, pyramidal cell layer; sr, stratum radiatum; GFAP, glial 
fibrillary acidic protein.
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pal dendritic regions from the acute phases of epileptogenesis 
until the time when seizure-induced neuronal damage occurred, 
glial RCAN1 emerged in the entire hippocampus at the subacute 
and chronic phases of epileptogenesis, suggesting differential 
functions of RCAN1 in epilepsy. To the best of our knowledge, 
this is the first report showing the comprehensive spatiotemporal 
expression pattern of RCAN1 throughout the epileptogenesis of 
an animal model of TLE.

Our immunohistochemistry and double immunofluorescence 
analyses indicate that RCAN1 induction in small cells with stel-
late morphology after acute seizures occurred in reactive astro-
cytes but not in microglia. Under physiologic conditions, RCAN1 
expression was not detected in glial cells, which was consistent 
with the data from our sham-manipulated controls [27]. These 
results fit nicely with our previous report showing RCAN1 up-
regulation in GFAP-positive astrocytes after ischemic stroke, in 
addition to other researchers’ results [17,18]. Moreover, calcium 
ionophore treatment markedly increased RCAN1-4 expres-
sion in primary astrocyte cultures, supporting the escalation of 
RCAN1 in astrocytes [28]. This was further corroborated by a 
report showing that the RCAN1-4 promoter was highly activated 
in the C6 glial cell line [12]. On the contrary, RCAN1 expression 
in Alzheimer’s disease was detected only in neurons, without 
significant expression in astrocytes or microglial cells, suggesting 
a context-dependent cell type–specific role for RCAN1 [14,27]. 
Stroke and seizure activity can cause abrupt cellular and mo-
lecular changes, whereas Alzheimer’s disease features a slow ac-
cumulative disruption of cell signaling; thus, it will be interesting 
to elucidate how astrocytic RCAN1 production is differentially 
stimulated upon different brain insults.

Among the three predominant RCAN1 isoforms expressed in 
the brain, it is well-known that RCAN1-4 can be induced by an 

intracellular calcium increase [7,12,28,29]. Although its basal ex-
pression levels are lower than those of RCAN1-1 in the brain [4], 
RCAN1-4 can be immediately upregulated in response to oxida-
tive stress [20]. When we assessed the temporal expression pat-
tern of RCAN1-4 mRNA after SE, we found a rapid hippocampal 
increase in RCAN1-4 transcription that was maintained for the 
following 2 weeks after acute seizures. Because epileptic seizures 
can cause catastrophic calcium influxes into the intracellular 
space, leading to excessive excitotoxic neuronal damage [21], en-
hanced RCAN1-4 transcription after prolonged seizures activity 
is plausible. Moreover, given that calcium overload is a common 
phenomenon in multiple types of brain injury, increased RCAN1-
4 in ischemic stroke nicely supports our findings [17,18].

Although the mechanisms of RCAN1 upregulation after 
acute seizures remain unclear, we propose a few possible ex-
planations. In the early phases of epileptogenesis (before the 
occurrence of hippocampal cell death), neuronal RCAN1 was 
notably increased in our results. Because RCAN1-overepxressing 
neurons exhibit reduced viability upon oxidative stress [30] 
and prolonged seizure activity can generate explosive reactive 
oxygen species (ROS) [31,32], increased RCAN1 expression af-
ter SE could contribute to the delayed hippocampal neuronal 
deaths. This was further supported by evidence indicating that 
RCAN1-depleted cells displayed increased resistance to H2O2 
stress [20]. The underlying mechanisms are thought to be related 
to RCAN1-triggered mitochondrial dysfunction and caspase 
activation, which results in more robust mitochondrial ROS and 
an increased susceptibility to oxidative stress-induced apopto-
sis [12,30,33]. However, contradictory reports claim that RCAN1 
has a neuroprotective effect [18,34]. Specifically, RCAN1-1L 
overexpression could inhibit apoptosis under hypoxia [34], and 
RCAN1 knockout increased the infarct volume after ischemic 

Fig. 4. Regulator of calcineurin 1 isoform 4 (RCAN1-4) mRNA expression in the hippocampus after pilocarpine-induced status epilepticus (SE). 
A qRT-PCR analysis showed that temporal RCAN1-4 transcription increased significantly in the hippocampus after SE, compared with sham-manipu-
lated animals (A). Data presented are the mean ± standard error of the mean, with *p < 0.05 by one-way ANOVA followed by Duncan’s post-hoc test. 
In situ hybridization showed that RCAN1-4 mRNA in the sham-manipulated animals was expressed in the pyramidal neurons of the hippocampus, 
whereas 3 day after SE, RCAN1-4 signals were detected in GFAP-positive astrocytes (arrows), along with pyramidal neurons (B). Scale bar in (B) = 50 
μm. GFAP, glial fibrillary acidic protein; pcl, pyramidal cell layer; sr, stratum radiatum.

BA
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stroke [18]. Therefore, more elaborate studies are needed on the 
role of RCAN1 in neuronal survival. With regard to glial RCAN1 
expression in the subacute and chronic phases of epileptogenesis, 
we propose that RCAN1 is responsible for anti-inflammatory ac-
tion. RCAN1 has been demonstrated to alleviate the production 
of diverse inflammatory cytokines and key inflammatory en-
zymes by modulating nuclear factor of activated T cell (NFAT) or 
nuclear factor kappa light chain enhancer of activated B cell (NF-
kB) pathways [8,10,17,18,28,35,36]. Regardless of the involvement 
of calcineurin, a well-known RCAN1-interacting phosphatase, 
RCAN1 can promote NFAT activation and block NF-kB activ-
ity [17,18,28,35]. Because glial release of inflammatory mediators 
after acute seizures and prolonged enhancement of inflammation 
is a critical mechanism in epileptogenesis [37,38], RCAN1 induc-
tion in reactive astrocytes after SE could contribute to the attenu-
ation of seizure-induced inflammation. The multiple functions of 
RCAN1 in brain injuries mean that further studies are required 
to understand all the roles of RCAN1 in epilepsy.

In summary, we have provided the spatiotemporal expression 
pattern of RCAN1 and its isoform RCAN1-4 in the hippocampus 
after pilocarpine-induced SE. We have also shown that the main 
cell type for the induced RCAN1 protein and RCAN1-4 mRNA 
after acute seizures is reactive astrocytes. Taken together, our 
results provide a scientific basis for the involvement of RCAN1 in 
epileptic seizures and the development of epilepsy.
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