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Abstract: Neonatal pancreatic cell clusters (NPCCs) are potential tissues for the treatment of diabetes.
Different from adult cells, they continuously proliferate and differentiate after transplantation. In
this study, we utilized magnetic resonance imaging (MRI) to detect and monitor implanted NPCCs.
NPCCs were isolated from one-day-old neonatal pigs, cultured for three days, and then incubated
overnight with the contrast agent chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparti-
cles. In vitro, Prussian blue staining and MR scans of CSPIO-labeled NPCCs were performed. In vivo,
we transplanted 2000 CSPIO-labeled NPCCs under the kidney capsule of nondiabetic nude mice.
Recipients were scanned with 7.0T MRI. Grafts were removed for histology with insulin and Prussian
blue staining. After being incubated overnight with CSPIO, NPCCs showed positive iron staining
and appeared as dark spots on MR scans. After transplantation of CSPIO-labeled NPCCs, persistent
hypointense areas were observed at recipients’ implant sites for up to 54 days. Moreover, histology
showed colocalization of the insulin and iron staining in 15-, 51- and 55-day NPCC grafts. Our results
indicate that transplanted NPCCs survived and differentiated to β cells after transplantation, and
that MRI is a useful tool for the detection and monitoring of CSPIO-labeled NPCC grafts.

Keywords: porcine neonatal pancreatic cell clusters; transplantation; magnetic resonance imaging;
chitosan-coated superparamagnetic iron oxide nanoparticles

1. Introduction

Since 2000, human islet transplantation has proven efficacious in curing patients
with type 1 diabetes. However, most successful cases need two or more transplants [1–3].
To solve the problem of limited pancreas donors, several alternative β-cell sources are
currently being explored, particularly xenogeneic islets and pluripotent stem cells [4,5].
Pigs are promising replenishable source of islets. However, adult porcine islets are fragile
during isolation [6], and fetal islets have a poor insulin response to glucose [6,7]. In
contrast, porcine neonatal pancreatic cells (NPCCs) are easily isolated, and capable of
secreting insulin in response to glucose and restoring normoglycemia after transplantation
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in diabetic mice [8–12], pigs [13], and nonhuman primates [14]. However, they are rather
immature and continue differentiation in vitro [8,9,15] and in vivo [9,10,15].

To better understand the fate of islets after transplantation, magnetic resonance imag-
ing (MRI) has been used to detect transplanted islets labeled with dextran-coated superpara-
magnetic iron oxide (SPIO), such as ferumoxide (Feridex®, EndoremTM) and ferucarbotran
(Resovist®), in mice [16–19], rats [20–27], baboons [28], and humans [29,30]. However, MRI
has not yet been used in tracing transplanted NPCCs which undergo differentiation. Since
Feridex® and Resovist® were no longer available after 2008 and 2009, respectively [31], it is
crucial to develop new MR contrast agents for cell imaging. Chitosan, the N-deacetylated
product of chitin, is one of the most abundant polysaccharides in nature. It has been
applied to numerous biomedical applications due to its nontoxicity, biocompatibility, and
biodegradability [32]. It is particularly interesting in metal nanoparticle synthesis be-
cause of its interaction with metal atoms, metal ions, and metal oxide nanoparticles for
their stabilization in colloidal suspension. In this regard, it is worth noting that chelation
evenly disperses metal oxides throughout the chitosan polymer. Chitosan is therefore a
good dispersant for a variety of different nanoparticles, including single-walled carbon
nanotubes [33,34]; platinum, gold, and silver nanoparticles [35]; as well as iron oxide
nanoparticles. Of note, the primary amines on chitosan are involved in metal ion chelation
and nanoparticle immobilization [36,37]. We have developed an in situ coating method
to prepare ferrofluids coated with γ-ray-irradiated chitosan [38] and demonstrated that
the chitosan-coated SPIO (CSPIO) nanoparticles have potential as a T2 contrast agent in
MRI [39]. We also showed that CSPIO-labeled adult mouse islet isografts [40,41] and
allografts [40,42] can be safely and effectively imaged by MR for a long period of time.
However, it is not known if CSPIO nanoparticles can internalize into NPCCs and be applied
for imaging NPCC grafts by MRI. Therefore, in this study, we tested if MRI can be used for
the detection and monitoring of transplanted NPCCs labeled with CSPIO nanoparticles.

2. Materials and Methods
2.1. Materials

RPMI-1640 medium was purchased from GIBCO BRL (Grand Island, NY, USA).
Collagenase type V was from Sigma Immunochemicals (St Louis, MO, USA). Iron(III)
chloride hexahydrate (FeCl3·6H2O) and D–mannitol were obtained from Riedel-de Haen
(Seelze, Germany). Iron(II) chloride tetrahydrate (FeCl2·4H2O) was from Showa (Minato
City, Tokyo, Japan). Ammonium hydroxide solution (25%) was obtained from Fluka (Buchs,
Switzerland). Low-molecular-weight chitosan was from Sigma-Aldrich (St. Louis, MO,
USA). Chitosan had a molecular weight of 50–190 kDa and a deacetylation degree of 83.3%.
Solid chitosan was subjected to Co-60 g-ray irradiation at a dose of 300 kGy prior to use.
After irradiation, the molecular weight of chitosan was between 13–16.2 kDa, determined
by using a Cannon Ubbelohde four bulb shear dilution viscometer. Deionized water was
purged with nitrogen gas for 30 min before use. Polyethylene tubing (PE-50) was purchased
from Clay Adams (Parsippany, NJ, USA). Guinea pig anti-swine insulin antibody was
purchased from Dako (Carpinteria, CA, USA).

2.2. Preparation of CSPIO

Approximately 0.428 g of irradiated solid chitosan were dissolved in 200 mL 0.5% (v/v)
aqueous acetic acid. To the irradiated chitosan solution, 2 g of FeCl3·6H2O (7.4 mmole) and
0.90 g of FeCl2·4H2O (4.5 mmole) were added to obtain a pale brown solution. Subsequently,
10 mL of 25% ammonium hydroxide solution was rapidly added to the brown solution
under sonication at 50 ◦C. The mixture was treated for a further 40 min with sonication. The
black precipitate was isolated with the aid of a magnet and decantation or centrifugation
at 3500 rpm for 10 min. Subsequently, it was washed with water at least three times until
there was no AgCl cloud. The washed black precipitate was converted to ferrofluid of
CSPIO particles—an aqueous solution of complex chitosan with SPIO—when dispersed in
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60 mL water (total volume) at a pH of 2.0, obtained by the addition of 2 N HCl, 3.48 g of
mannitol, and 2 mL of lactic acid.

2.3. Animals

One-day-old pigs of either sex were purchased from a local slaughterhouse. Male
athymic nude Balb/c mice, aged 8 to 12 weeks, were purchased from the National Lab-
oratory Animal Center and used as recipients of the NPCCs. The animal experimental
protocol was approved by the Institutional Animal Care and Use Committee of Chang
Gung Memorial Hospital.

2.4. Preparation and Culture of NPCCs

Each neonatal pig pancreas was cut into fragments from ~ 1 to 2 mm3, then digested
by collagenase type V in a water bath at 37 ◦C. The digest was filtered, washed, then
placed in RPMI-1640 medium and maintained at 37 ◦C (5% CO2, 95% air) in humidified
air [12]. After 3 days of culture, NPCCs were incubated overnight with CSPIO nanoparticles
(concentration of 10.08 µg/mL) before in vitro studies and transplantation.

2.5. Uptake of CSPIO Nanoparticles by NPCCs

NPCCs were incubated overnight with CSPIO nanoparticles, and the intracellular iron
content was then examined by Prussian blue staining. NPCCs were washed with PBS to
remove excess iron particles and then fixed in 4 vol% formaldehyde solution for 30 min.
After fixation, the cells were stained for the presence of intracellular iron with freshly
prepared potassium ferrocyanate solution (mixture of equal volume of 4 wt% potassium
ferrocyanate with 4 vol% hydrochloric acid) for 30 min. After washing with distilled water,
the cells were examined using a microscope to determine the labeling efficiency. Cells with
intracellular blue particles were considered labeled.

2.6. In Vitro MR Scanning

MR imaging was performed on a 7.0 T MRI system (Clinscan, Bruker, Ettlingen, Ger-
many). Seven hundred NPCCs were incubated overnight with CSPIO nanoparticles for 24 h
at 37 ◦C and washed three times in PBS. All samples were scanned by using a fast gradient-
recalled echo pulse sequence (repetition time (TR)/echo time (TE) = 3000 msec/70 ms). The
contrast enhancement was calculated by the following equation: percentage of enhance-
ment (%) = (SIpost−SIpre)/SIpre × 100, where SIpost is the signal intensity measured from
within the phantom of cells with treatment of the contrast agent, CSPIO. SIpre is the signal
intensity from the phantom with cells alone [39].

2.7. Transplantation of NPCCs

Two thousand CSPIO-labeled NPCCs were transplanted under the left kidney capsule
of each nude mouse. NPCCs were first centrifugated in PE-50 tubing connected to a 200-µL
pipette tip. A capsulotomy was performed in the lower pole of the left kidney. The tip of
the tubing was advanced under the capsule from the lower pole of the kidney capsule to
the upper pole, the final injection site [12].

2.8. In Vivo MR Scanning

After transplantation, serial MR was acquired on the same scanner in 3 recipients.
MR images were acquired on the same scanner using a surface coil with the following
parameters for the gradient-recalled echo sequence: slice thickness = 0.5 mm, TR = 3700 ms,
TE = 37 ms. MRI signal intensity of the graft at the left kidney and the mirror area at the
right kidney, which was used as a within-subject control, was calculated [40–42].

2.9. Histological Study of Grafts

NPCC grafts were removed at 15, 51, and 65 days after transplantation. They were
fixed in a formalin solution and processed for paraffin embedding and sectioning. Sections
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of grafts were stained with iron with Prussian blue and for endocrine β-cells with a guinea
pig anti-swine insulin antibody.

2.10. Statistical Analysis

In vivo MR signal intensity was expressed as the mean and standard deviation
(M ± SD). All the statistical analyses were performed in PASW Statistics 21 (released
2012, IBM SPSS Statistics for Windows; Armonk, NY: IBM Corp.). The normality of the
distribution of the variable was checked with the Kolmogorov–Smirnov test. For each
comparison pair of mean values of the graft at the left kidney and the mirror area at the
right kidney, the independent t-test was performed if both samples passed the normality
test. The Mann–Whitney U test (Wilcoxon test) was performed if any one sample of the
comparison pair failed with the normality test. A p-value < 0.05 was considered significant.

3. Results and Discussion
3.1. Uptake of CSPIO Nanoparticles by NPCCs

To track NPCCs in vivo by MRI, it is essential to demonstrate the cell uptake of
contrast agent with positive images on MR scans. We have developed and characterized
the MR contrast agent, CSPIO nanoparticles, which have a z-average diameter of 87.2 nm,
a polydispersity index (PDI) of 0.251, a zeta potential of 47.9 mV, and an iron concentration
of 10.4 mg Fe/mL [38]. They do not affect islet viability and insulin secretion [40] and
have been used for long-term tracking of islet isografts [40,41] and allografts [40,42]. To
examine cellular uptake of CSPIO nanoparticles, NPCCs were incubated overnight with
CSPIO nanoparticles, and the intracellular iron content was then examined by Prussian
blue staining. Figure 1A shows the absence of blue stain in the NPCCs without CSPIO
loading. In contrast, blue spots were located in the cytoplasm of some CSPIO-loaded
NPCCs (Figure 1B), indicating that CSPIO nanoparticles were taken up by these cells. These
findings are consistent with our previous observation that CSPIO could be introduced into
cells, including two pancreatic β-cell lines, NIT-1 and β-TC6 [39]. It is well recognized that
cationic chitosan can strongly bind with anionic cell surface, and subsequently enhances
nanoparticle internalization via endocytosis [43,44]. Hence, in this study, coating SPIO
with chitosan further promoted NPCC uptake of nanoparticles.
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Figure 1. Uptake of chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles by NPCCs. NPCCs were
incubated overnight without (A) or with (B) CSPIO nanoparticles. The intracellular iron content was examined by Prussian
blue staining.

3.2. In Vitro MR Image of NPCCs

We then perform in vitro 7.0 T MRI on 700 NPCCs, incubating overnight with and
without CSPIO nanoparticles (Figure 2A,C). CSPIO (B) was used as a positive control,
and agar (D) was used as a negative control. As expected, there was a background image
of the agar (Figure 2D) and a completely dark image of CSPIO nanoparticles (Figure
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2B). In contrast to a background image in NPCCs without CSPIO labeling (Figure 2C),
CSPIO-loaded NPCCs appeared as dark spots (Figure 2A), corresponding to the locations
of loaded cells [39]. Visualization of CSPIO-labeled NPCCs by in vitro MRI is fundamental
for detecting them by MRI after transplantation.
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Figure 2. In vitro MRI of 700 NPCCs incubated overnight with (A) and without (C) chitosan-coated
superparamagnetic iron oxide (CSPIO) nanoparticles. CSPIO (B) was used as a positive control and
agar (D) was used as a negative control. All were scanned by a 7.0 T MRI system. In contrast to
unlabeled NPCCs (C), CSPIO-loaded NPCCs (A) appeared as dark spots.

3.3. In Vivo MR Images of NPCCs after Transplantation

For in vivo MRI, we transplanted 2000 CSPIO-labeled NPCCs under the left kidney
capsule of each nude mouse. Three recipients were scanned by a 7.0 T MRI system for up
to 54 days. As shown in Figure 3, the graft of CSPIO-labeled NPCCs (indicated by arrows)
was visualized as a distinct hypointense area on MR images located at the implantation
site between day 0 and 54. This is expected, as we previously visualized CSPIO-labeled
islets under mouse kidney capsules on MR scans as persistent hypointense areas after
syngeneic and allogeneic transplantation [40–42]. The quantification analysis revealed that
the MR signal intensity of the graft on the left kidney was significantly reduced compared
to the mirror area on the right kidney at all time points (p = 0.000) (Figure 4). Previously,
we observed that the MR signal loss was 20% lower in 200 CSPIO-labeled islet isografts
than that of unlabeled islet isografts, and this difference persisted for 6 weeks [40]. In this
study, 2000 CSPIO-labeled NPCC grafts made a persistent 60–80% reduction of MR signal
for 54 days as compared to the same area in the contralateral kidney. To the best of our
knowledge, we are the first to use MRI for the detection and monitoring of NPCC grafts.
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Figure 3. In vivo MR image of NPCCs after transplantation. Two thousand CSPIO-labeled NPCCs were transplanted under
the left kidney capsule of a nude mouse. The recipient was scanned by a 7.0 T MRI system with coronal (upper panel) and
transverse (lower panel) sections. The graft of CSPIO-labeled NPCCs was indicated by arrows.
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Figure 4. Time course of the MR signal intensity of the graft on the left kidney (solid line), and the
mirror area on the right kidney (dash line). * p = 0.000.

3.4. Histological Studies of NPCC Grafts

NPCC Grafts were removed from recipients at 15, 51, and 55 days after transplantation.
To investigate the graft microscopically, we used an insulin antibody to stain NPCCs and
Prussian stain to stain iron. As shown in Figure 5, all grafts were stained positive for insulin
and iron, which were colocalized. These results indicate that transplanted NPCCs not only
survived, but also differentiated to β cells after transplantation.
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Figure 5. NPCC grafts at 15, 51, and 55 days after transplantation. The graft was stained with insulin (upper panel, brown
color) and Prussian blue (lower panel, blue color), which were colocalized.

4. Conclusions

We have developed an in situ coating method to prepare ferrofluids coated with
γ-ray-irradiated chitosan, CSPIO nanoparticles [38], and demonstrated their potential to be
a T2 contrast agent in MRI [34]. We also showed that CSPIO-labeled islet isografts [40,41]
and allografts [40,42] can be safely and effectively imaged by MR for a long period of time.
In this study, our results indicate that transplanted NPCCs survived and differentiated to
β cells after transplantation, and that MRI is a useful tool for the detection and monitoring
of transplanted NPCCs labeled with CSPIO nanoparticles.
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