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Abstract 

Background:  The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse) is an important worldwide invasive 
species and can be a locally important vector of chikungunya, dengue and, potentially, Zika. This species is native 
to Southeast Asia where populations thrive in both temperate and tropical climates. A better understanding of the 
population structure of Ae. albopictus in Lao PDR is very important in order to support the implementation of strate‑
gies for diseases prevention and vector control. In the present study, we investigated the genetic variability of Ae. 
albopictus across a north-south transect in Lao PDR.

Methods:  We used variability in a 1337-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene 
(cox1), to assess the population structure of Ae. albopictus in Lao PDR. For context, we also examined variability at the 
same genetic locus in samples of Ae. albopictus from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA.

Results:  We observed very high levels of genetic polymorphism with 46 novel haplotypes in Ae. albopictus from 9 
localities in Lao PDR and Thailand populations. Significant differences were observed between the Luangnamtha 
population and other locations in Lao PDR. However, we found no evidence of isolation by distance. There was overall 
little genetic structure indicating ongoing and frequent gene flow among populations or a recent population expan‑
sion. Indeed, the neutrality test supported population expansion in Laotian Ae. albopictus and mismatch distribution 
analyses showed a lack of low frequency alleles, a pattern often seen in bottlenecked populations. When samples 
from Lao PDR were analyzed together with samples from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA, 
phylogenetic network and Bayesian cluster analysis showed that most populations from tropical/subtropical regions 
are more genetically related to each other, than populations from temperate regions. Similarly, most populations from 
temperate regions are more genetically related to each other, than those from tropical/subtropical regions.

Conclusions:  Aedes albopictus in Lao PDR are genetically related to populations from tropical/subtropical regions 
(i.e. Thailand, Singapore, and California and Texas in the USA). The extensive gene flow among locations in Lao PDR 
indicates that local control is undermined by repeated introductions from untreated sites.
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Background
Dengue fever, the potentially deadly outcome of infection 
with a mosquito borne flavivirus (DENV, Flaviviridae, 
Flavivirus), is one of the most challenging public health 
problems in the Greater Mekong Subregion (GMS) com-
posed of Cambodia, China, Myanmar, Thailand, Vietnam 
and Lao People’s Democratic Republic (PDR) [1, 2]. From 
2009 to 2012, dengue was reported in all provinces in Lao 
PDR, except for Phongsaly and Huaphanh provinces in 
northern region [3]. All four serotypes of dengue flavivi-
ruses (DENV1-4) now circulate in rural and urban areas 
in Lao PDR [3–7]. In Lao PDR, an extensive dengue out-
break, mostly attributed to serotype 3 (DENV3) in 2013, 
caused 44,098 cases and 95 deaths [8, 9]. Again in 2017, 
9832 cases of dengue fever were reported in Lao PDR, 
including 14 deaths, with the most affected provinces 
being Vientiane Capital and Champasak [10]. Both Aedes 
(Stegomyia) aegypti (Linnaeus) and Aedes (Stegomyia) 
albopictus (Skuse, 1894) were suspected to have been 
involved in these epidemics [11, 12]. However, still there 
is no study proving their vector status in the country.

Aedes albopictus, the Asian tiger mosquito, is thought 
to be native to Southeast Asia [13]. In recent decades, 
Ae. albopictus has spread throughout the world and is 
now found on all continents except Antarctica [14–16]; 
it is considered one of the most invasive and widespread 
mosquito species in the world [14, 17]. Despite Ae. albop-
ictus being considered a secondary vector of dengue and 
chikungunya (CHIKV, Togaviridae, Alphavirus) relative 
to Ae. aegypti [18], in some instances such as in cen-
tral Africa, China and Mediterranean Europe [19–21] it 
can become the primary vector. Of note, several labora-
tory studies have shown that Ae. albopictus can be more 
competent at transmitting DENV and CHIKV than Ae. 
aegypti [22–24]. Furthermore, Ae. albopictus has been 
associated with the emergence of Zika virus from its 
native Africa, although this is still in early stages of inves-
tigation [25–27].

Although mosquito populations with different genetic 
makeup may differ in vector competence [28], there is 
currently no information about the population genetics 
of Ae. albopictus in Lao PDR. Information about genetic 
diversity and population structure can be a tool in the 
development of effective mosquito control programmes 
[29, 30]. Therefore, we obtained samples of Ae. albopictus 
from eight provinces from the northwest, northern, cen-
tral and southern regions of Lao PDR including the two 
most affected provinces, Vientiane Capital and Cham-
pasak, and sequenced a fragment of the cytochrome c 
oxidase subunit 1 gene (cox1) mitochondrial (mt) DNA. 
First, we analyzed the genetic variability of samples from 
Lao PDR, then compared against other samples from 
China, Japan, Taiwan, Singapore, the USA, Italy [31] and 

Thailand to check the genetic relationships among them. 
Our primary aim was to increase our understanding 
of the population structure of Ae. albopictus in Laos in 
order to develop better strategies for dengue prevention 
and vector control in Lao PDR.

Methods
Mosquito collection and identification
The collections were carried out in eight localities from 
the northwest [Bokeo (BK), Luangnamtha (LN) and 
Xayabouly (XB) Provinces], northern [Luang Prabang 
(LP) Province], central [Vientiane prefecture (VC), 
Borikhamxay (BK) and Khammuane (KM) Provinces] 
and southern [Champasak (CH) Province] regions of Lao 
PDR (Fig. 1). Aedes albopictus larvae and pupae were col-
lected between 2014 and 2016 from domestic containers 
(tanks and jars) and peri-domestic habitats (used tires, 
discarded containers, etc.), then carefully transferred into 
WhirlPak plastic bags (BioQuip, Rancho Dominguez, 
CA, USA) and sent to the insectaries in Vientiane for 
rearing (field generation, F0). Each mosquito population 
sample consisted of larvae and pupae collected from at 
least 10 breeding sites per locality to reduce the likeli-
hood of re-sampling them. Female mosquitoes were then 
stored individually in a desiccated tube at − 80  °C until 
molecular analyses. All mosquitoes were morphologi-
cally identified as Ae. albopictus using available keys [32] 
and confirmed by comparison of cox1 barcode region 
sequences available on GenBank.

DNA extraction and sequencing
Total genomic DNA was extracted from single whole 
mosquitoes using a NucleoSpin® Tissue kit (Macherey-
Nagel, Duren, Germany) according to manufacturer’s 
instructions. The fragment of mtDNA cytochrome c oxi-
dase subunit 1 (cox1) gene was amplified using two sets 
of primers, 1454F (5′-GGT CAA CAA ATC ATA AAG 
ATA TTG G-3′) and 2160R (5′-TAA ACT TCT GGA 
TGA CCA AAA AAT CA-3′); and 2027F (5′-CCC GTA 
TTA GCC GGA GCT AT-3′) and 2886R (5′-ATG GGG 
AAA GAA GGA GTT CG-3′), following the polymer-
ase chain reaction (PCR) protocol explicitly detailed in 
Zhong et  al. [31]. Aliquots of the PCR products were 
visualized on 1.5% agarose gels and successful amplifi-
cations were purified using ExosapIT® (USB Co, Cleve-
land, OH, USA). All sequencing reactions were carried 
out in both directions using an ABI Big Dye Terminator 
Kit v.3.1 (Applied Biosystems, Warrington, UK) and ana-
lyzed on an ABI Prism 3500xL—Avant Genetic Analyzer 
(Applied Biosystems, Foster City, CA, USA) at the Insti-
tut Pasteur du Laos sequencing facilities in Vientiane.
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Fig. 1  Collection information of Aedes albopictus in Lao PDR
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Data analyses
The cox1 gene sequences were edited using Sequencher® 
version 5.4.6 (Gene Codes Corporation, Ann Arbor, MI, 
USA) and automatically aligned in Geneious v.9.1.6. [33].

The number of haplotypes (H), haplotype diversity 
(Hd), nucleotide diversity (π) and (K) average of nucleo-
tide differences within each site were generated using 
DnaSP v.5.0 [34]. The pairwise FST was calculated to esti-
mate population differentiation based on differences in 
haplotype frequencies, whereas Nei’s Nm estimated gene 
flow is based on GST [35] using Arlequin v.3.5 [36].

Analysis of molecular variance (AMOVA) was con-
ducted to determine the distribution of genetic variation 
within and among populations using 1000 permutations 
implemented in Arlequin v.3.5 [36]. Additionally, a spa-
tial analysis of molecular variance (SAMOVA) v.1.0 [37] 
was used to cluster the 1337-bp cox1 sequences into 
genetically and geographically homogeneous popula-
tions. SAMOVA generates F-statistics (FSC, FST, FCT), 
using the AMOVA approach, into K groups to maximize 
the between group variation. SAMOVA estimates were 
computed for K = 2–8, with 1000 simulated annealing 
steps from each of 100 sets of initial starting conditions. 
Isolation by distance (IBD) was checked using a Mantel 
tests [38]. IBD was estimated in GenAlEx v.6.5 [39, 40] 
between the genetic and geographical distances with 
10,000 permutations.

The hypothesis of strict neutrality among Ae. albop-
ictus populations from Lao PDR was examined using 
the statistics D [41] and Fu’s FS [42], calculated using 
DnaSP v.5.0 [34]. The mismatch distribution (simulated 
in Arlequin v.3.5) was performed to distinguish between 
a smooth unimodal distribution and a multimodal or 
ragged distribution [43–45]. Statistically significant dif-
ferences between observed and simulated distributions 
were evaluated with the sum of square deviations (SSD) 
to reject the hypothesis of demographic expansion [46].

To make broader comparisons among haplotypes from 
Lao PDR and other geographical regions, we analyzed 
samples from Thailand and downloaded available data in 
GenBank from China, Taiwan, Japan, Singapore, Italy and 
the USA [31]. The parsimony network was performed 
using TCS network inference method [47] in Population 
Analysis with Reticulate Trees (PopART) [48]. We also 
checked the number of haplotypes, FST, Nm and AMOVA 
using the same methodology described earlier.

In addition, a Bayesian clustering algorithm imple-
mented in the program STRU​CTU​RE v.2.3 was used to 
investigate genetic structure of individuals. The program 
was run under varying assumptions on Hardy-Weinberg 
(HW) and linkage equilibriums [49], with ten independ-
ent runs performed for each value of K (K = 1 to 21). In 
this analysis, the most likely number of genetic clusters 

(K) in the dataset is determined without prior informa-
tion of the sampling locations, and then assigns propor-
tion of the ancestry of each individual into the different 
clusters implemented in the program. The method of 
Evanno et al. [50] was used to determine the most likely 
number of clusters. This approach uses an ad hoc quan-
tity, based on the second rate of change of the likelihood 
function between successive values of K. Poterior proba-
bility values were estimated using a Markov Chain Monte 
Carlo (MCMC) method and 1,000,000 interactions of 
each chain following the 100,000 iteration burn-in period 
were performed, as recommended by Pritchard et  al. 
[49]. We visualized the partitioning of clusters using the 
program DISTRUCT [51].

Results
Genetic diversity
Partial sequences of the mtDNA cox1 (1337-bp) were 
amplified from 172 specimens, representing populations 
from Lao PDR (n = 155) and Thailand (n = 17). No inser-
tions, deletions or stop codons were detected across all 
samples, which minimizes the likelihood of pseudogene 
amplification.

A total of 44 haplotypes were identified among the Lao 
populations (Table 1); of these, 13 haplotypes (30%) were 
shared among Lao populations and 31 (70%) were unique 
to single Lao populations. When the data was combined 
with Zhong et al. [31] (H1–H66) and the Thailand sam-
ples, a total of 46 haplotypes were found. These newly 
identified haplotypes are H67–H112 and were depos-
ited in GenBank under accession numbers MN080720–
MN080765 (Table  1). Lao PDR sequences shared five 
haplotypes with Thailand, two haplotypes (H45 and H56) 
with the USA (California and Texas, respectively) and 
Thailand, and one haplotype (H46) with the USA (Cali-
fornia) (Table 1).

Zhong et al. [31] amplified a fragment of 1433-bp of the 
mtDNA cox1, and identified 66 haplotypes of Ae. albop-
ictus in 6 different countries (Italy, Japan, Taiwan, China, 
Singapore and the USA; 12 populations). The trimmed 
fragment we used is 96-bp smaller (1337-bp) than that 
of Zhong et al. [31]; however, no polymorphic sites were 
included in the trimmed sequence. Therefore, when we 
trimmed all fragments to 1377-bp, we still have the same 
66 haplotypes as Zhong et al. [31] and 46 new haplotypes 
were recognized, totaling 112 haplotypes (Table 1).

The average number of nucleotide differences in Ae. 
albopictus in Lao PDR populations ranged from 0.537 
(LN) to 3.105 (KM), corresponding with the range of the 
nucleotide diversity (π) 0.00040 (LN) to 0.00232 (KM). 
Haplotype diversity (Hd) ranged from 0.416 ± 0.116 
(mean ± SD) (LN) to 0.942 ± 0.029 (VC) (Table 2).
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Table 1  Haplotypes of Aedes albopictus based on the mtDNA 
cox1 marker

Haplotype n Country (code) GenBank ID

H01a 6 China (GZ, XM), USA (LA01) KC690896

H02a 5 China (GZ) KC690897

H03a 113 China (GZ, XM, JS,), Taiwan (TW), Japan 
(JP), Italy (IT), USA (LA01, LA11, HW)

KC690898

H04a 3 China (GZ) KC690899

H05a 1 China (GZ) KC690900

H06a 2 China (GZ) KC690901

H07a 1 China (XM) KC690902

H08a 9 China (XM) KC690903

H09a 1 China (XM) KC690904

H10a 1 China (XM) KC690905

H11a 1 China (XM) KC690906

H12a 2 China (XM) KC690907

H13a 2 China (XM) KC690908

H14a 1 China (XM) KC690909

H15a 1 China (XM) KC690910

H16a 7 China (JS) KC690911

H17a 26 Taiwan (TW), Italy (IT), USA (LA11, TX, 
HW)

KC690912

H18a 1 Taiwan (TW) KC690913

H19a 2 Taiwan (TW), USA (LA11) KC690914

H20a 1 Taiwan (TW) KC690915

H21a 1 Taiwan (TW) KC690916

H22a 3 Taiwan (TW), USA (LA11) KC690917

H23a 1 Taiwan (TW) KC690918

H24a 23 Japan (JP), Singapore (SG) KC690919

H25a 1 Japan (JP) KC690920

H26a 1 Singapore (SG) KC690921

H27a 8 Singapore (SG) KC690922

H28a 1 Singapore (SG) KC690923

H29a 1 Singapore (SG) KC690924

H30a 2 Singapore (SG) KC690925

H31a 2 Singapore (SG) KC690926

H32a 1 Singapore (SG) KC690927

H33a 1 Singapore (SG) KC690928

H34a 1 Singapore (SG) KC690929

H35a 1 Singapore (SG) KC690930

H36a 1 Italy (IT) KC690931

H37a 40 Italy (IT), USA (NJ, TX) KC690932

H38a 1 Italy (IT) KC690933

H39a 6 Italy (IT), USA (TX) KC690934

H40a 2 Italy (IT) KC690935

H41a 4 Italy (IT) KC690936

H42a 1 Italy (IT) KC690937

H43a 1 Italy (IT) KC690938

H44a 1 Italy (IT) KC690939

H45a, b 52 USA (LA01), Laos (BK, BO, CH, KM, LN, LP, 
VC, XB), Thailand (TH)

KC690940

H46a, b 5 USA (LA01), Laos (BK, BO, CH) KC690941

Table 1  (continued)

Haplotype n Country (code) GenBank ID

H47a 1 USA (LA01) KC690942

H48a 2 USA (LA01) KC690943

H49a 7 USA (LA11) KC690944

H50a 1 USA (LA11) KC690945

H51a 2 USA (NJ) KC690946

H52a 4 USA (NJ) KC690947

H53a 2 USA (NJ) KC690948

H54a 2 USA (NJ) KC690949

H55a 3 USA (TX) KC690950

H56a, b 5 USA (TX), Laos (BK, BO), Thailand (TH) KC690951

H57a 1 USA (TX) KC690952

H58a 1 USA (TX) KC690953

H59a 1 USA (TX) KC690954

H60a 1 USA (TX) KC690955

H61a 16 USA (HW) KC690956

H62a 2 USA (HW) KC690957

H63a 1 USA (HW) KC690958

H64a 1 USA (HW) KC690959

H65a 1 USA (HW) KC690960

H66a 1 USA (HW) KC690961

H67c 1 Lao PDR (BK) MN080720

H68c 1 Lao PDR (BK) MN080721

H69c 4 Lao PDR (BK, CH), Thailand (TH) MN080722

H70c 1 Lao PDR (BK) MN080723

H71c 11 Lao PDR (BK, BO, LP) MN080724

H72c 1 Lao PDR (BK) MN080725

H73c 1 Lao PDR (BK) MN080726

H74c 1 Lao PDR (BK) MN080727

H75c 6 Lao PDR (BO, CH, LN) MN080728

H76c 20 Lao PDR (BO, LN, XB), Thailand (TH) MN080729

H77c 4 Lao PDR (BO) MN080730

H78c 2 Lao PDR (CH) MN080731

H79c 1 Lao PDR (CH) MN080732

H80c 1 Lao PDR (CH) MN080733

H81c 1 Lao PDR (CH) MN080734

H82c 1 Lao PDR (CH) MN080735

H83c 1 Lao PDR (CH) MN080736

H84c 3 Lao PDR (CH, LP, VC) MN080737

H85c 2 Lao PDR (KM) MN080738

H86c 6 Lao PDR (KM, VC) MN080739

H87c 4 Lao PDR (KM, VC) MN080740

H88c 1 Lao PDR (KM) MN080741

H89c 2 Lao PDR (KM) MN080742

H90c 3 Lao PDR (KM, XB) MN080743

H91c 1 Lao PDR (LP) MN080744

H92c 2 Lao PDR (LP) MN080745

H93c 2 Lao PDR (LP, VC) MN080746

H94c 1 Lao PDR (LP) MN080747

H95c 1 Lao PDR (LP) MN080748
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The highest level of genetic differentiation in Lao PDR 
based on the fixation index FST was between LN and LP 
(FST = 0.33288, P ˂  0.05). Gene flow (Nm) was > 1 among 
all populations, except LN and XB (Table 3). When ana-
lyzed all together including the samples of Zhong et  al. 
[31], the highest FST was between LN (Luangnamtha, Lao 

PDR) and JS (Jiangsu, China) (FST = 0.610, P ˂  0.05) (Addi-
tional file 1: Table S1).

Global AMOVA tests indicated a high proportion of 
the total genetic variance was attributable to within-
population variation (85.98%), suggesting low and sig-
nificant genetic structure among populations (FST = 0.14, 
P ≤ 0.001) in Lao PDR. When we added all samples 
including that of Zhong et al. [31], global AMOVA found 
a significant overall population structure in Ae. albopic-
tus (FST = 0.43, P ≤ 0.001), with 56.8% of genetic variation 
found within-population and 43.2% among-populations. 
The spatial analysis of molecular variance (SAMOVA), 
based on mtDNA data, showed no genetically distinct 
population groups. Partitions of the sampling areas for 
each K value were not informative. FCT values presented 
a narrow range between 0.18 and 0.23. (Additional file 2: 
Figure S1). Mantel tests showed that genetic and geo-
graphical distances (Additional file  3: Table  S2) among 
populations in Lao PDR do not support a pattern of isola-
tion by distance (r = 0.0846, P = 0.1433).

Assessment of population expansion based on neutral-
ity test resulted primarily in negative values but most 
were not statistically significant, with the exception of 
Tajima’s D for CH, and Fu’s Fs for BK, CH, LN and LP 
(Table 4). Mismatch distribution models revealed poor fit 
to equilibrium distribution (Additional file 4: Figure S2); 
both the sum of squared deviation (SSD) values (0.016, 
P = 0.29) and raggedness index (0.09) were not statisti-
cally significant in almost all the populations, except the 
SSD value for BO and CH and Rag for CH (Table 4), indi-
cating further support for population expansion based on 
cox1 gene.

Genetic relationships among haplotypes
The parsimony network showed that the genealogical 
relationships among the haplotypes differed by 4–9 muta-
tional steps (Fig. 2) and can be divided into three Groups: 
Group 1 mainly contained haplotypes from China, and a 
number of haplotypes from Japan, Italy, Taiwan and the 
USA; Group 2 contained haplotypes from China, Japan, 
Italy, Taiwan, the USA, and 50% of the haplotypes in 
Singapore; and Group 3 contained haplotypes from Lao 
PDR, Thailand, the remaining 50% from Singapore, and 
three haplotypes shared with the USA. The most com-
mon haplotypes were 3 (n = 113) and 45 (n = 52) (Fig. 2, 
Table  2). Haplotype 3 was shared among populations 
from China, Taiwan, Japan, Italy and the USA, while H45 
was shared among the USA, Thailand and all populations 
from Lao PDR (Fig. 2, Table 1).

Genetic clustering of individuals
Bayesian inference implemented in STRU​CTU​RE 
revealed that the optimal partitioning of all Ae. albopictus 

Table 1  (continued)

Haplotype n Country (code) GenBank ID

H96c 2 Lao PDR (LP), Thailand (TH) MN080749

H97c 1 Lao PDR (LP) MN080750

H98c 2 Lao PDR (VC) MN080751

H99c 2 Lao PDR (VC) MN080752

H100c 1 Lao PDR (VC) MN080753

H101c 1 Lao PDR (VC) MN080754

H102c 2 Lao PDR (VC) MN080755

H103c 1 Lao PDR (VC) MN080756

H104c 1 Lao PDR (VC) MN080757

H105c 1 Lao PDR (VC) MN080758

H106c 2 Lao PDR (XB) MN080759

H107c 4 Lao PDR (XB) MN080760

H108c 1 Thailand (TH) MN080761

H109c 2 Thailand (TH) MN080762

H110c 3 Thailand (TH) MN080763

H111c 1 Thailand (TH) MN080764

H112c 1 Thailand (TH) MN080765
a  Haplotype data obtained from Zhong et al. [31]
b  Shared haplotypes with Zhong et al. [31]
c  New haplotypes

Abbreviations: GZ, Guangzhou; XM, Xiamen; JS, Jiangsu; TW, Xinzhu; JP, Nagazaki; 
SG, Helios Block; IT, Trentino; LA01, California; LA11, California; NJ, New Jersey; 
TX, Texas; HW, Hawaii; BK, Borikhamxay; BO, Bokeo; CH, Champasak; KM, 
Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, 
Xayabouly; TH, Thailand

Table 2  Summary of haplotype and nucleotide diversity 
measures of the cox1 gene for Ae. albopictus in Lao PDR

Abbreviations: n, number of individuals analyzed; H, number of haplotypes; Hd, 
haplotype diversity; SD, standard deviation; π, nucleotide diversity; K, average 
of nucleotide differences; BK, Borikhamxay; BO, Bokeo; CH, Champasak; KM, 
Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, 
Xayabouly

Population 
code

n H Hd ± SD π ± SD K

BK 20 11 0.874 ± 0.064 0.00150 ± 0.0009 2.000

BO 20 7 0.821 ± 0.056 0.00131 ± 0.0009 1.753

CH 20 11 0.805 ± 0.090 0.00110 ± 0.0008 1.468

KM 15 8 0.914 ± 0.043 0.00232 ± 0.0010 3.105

LN 20 3 0.416 ± 0.116 0.00040 ± 0.0004 0.537

LP 20 11 0.868 ± 0.064 0.00145 ± 0.0009 1.942

VC 20 12 0.942 ± 0.029 0.00220 ± 0.0012 2.937

XB 20 5 0.716 ± 0.087 0.00110 ± 0.0007 1.474
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samples (China, Taiwan, Japan, Singapore, Italy, USA 
from Zhong et  al. [31], Lao PDR and Thailand) was 
K = 8. The individuals analyzed from the 21 populations 
were assigned to eight clusters with a certain probabil-
ity value (Fig.  3, Additional file  5: Table  S3). Most indi-
viduals from Lao PDR and Thailand were represented in 
clusters 1 and 2, and partially in clusters 4 and 8, sharing 
with Singapore, Japan and the USA (California samples). 
Samples from China were mainly found in clusters 3, 6 
and 7, sharing with USA and Italy, and cluster 5 included 
the highest proportion of individuals from the USA (New 
Jersey and Texas samples: 86 and 72%, respectively), as 
observed in Zhong et al. [31].

Discussion
The barcoding mitochondrial gene, cox1, has been widely 
used to analyze genetic diversity in Ae. albopictus [31, 
52–59]. In this study, we followed the recommendation of 
Goubert et al. [60] that reviewed the literature on the use 

of the cox1 for population genetic studies, and employed 
a longer mtDNA marker designed by Zhong et al. [31].

Genetic diversity in Ae. albopictus from Lao PDR
Overall, we detected very high haplotype diversity in 
Ae. albopictus in Lao PDR, with 44 haplotypes identified 
from only eight populations. Among them, 13 haplotypes 
were shared (Table  1), in some cases by all eight popu-
lations. Low and significant genetic structure (Table  3) 
were observed, supporting the finding of other studies 
[55, 57, 59, 61].

The higher and significant differentiation among LN 
(Luangnamtha) and other locations in Lao PDR (FST 
0.126–0.371), except CH (Champasak), may be due to 
climate (Table 3). Indeed, while Lao PDR has a predomi-
nantly tropical climate, the mountainous topography 
and the extensive Mekong River network in the north-
ern and southern regions, results in variation in average 
temperature conditions and creates significantly differ-
ent microclimates that may be highly relevant to mos-
quito development. On the other hand, the Mantel test 
revealed no correlation between genetic and geographi-
cal distances, indicating no isolation by distance of Ae. 
albopictus in Lao PDR. Similar results were observed 
within countries [60, 62–65], except in Schmidt et  al. 
[66]; they analyzed genetic structure of Ae. albopictus 
from 12 localities in China using single nucleotide poly-
morphism (SNPs) and found evidence for IBD.

Signs of recent expansion observed in Ae. albopictus 
across Lao PDR are evidenced by economic development, 
which is characterized by high rates of urbanization in 
the Association of South East Asian Nations (ASEAN) 
community. This has led to a better road infrastructure 
throughout the country and has increased connectiv-
ity between all the provinces, which has the potential 
to facilitate human-assisted movement of Aedes mos-
quitoes (SM, personal observation) and their pathogens 

Table 3  Pairwise differentiation (FST, below the diagonal), and gene flow (Nm, above the diagonal) among populations of Ae. albopictus 
in Lao PDR

* Significant values after Bonferroni correction (* P ˂ 0.05, ** P ˂  0.01)

Abbreviations: BK, Borikhamxay; BO, Bokeo; CH, Champasak; KM, Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, Xayabouly

BK BO CH KM LN LP VC XB

BK – 6.50505 ∞ 12.2500 3.47518 5.69707 6.08466 2.33385

BO 0.07138* – 4.42693 4.62039 1.51515 3.83055 4.06553 10.50360

CH − 0.00838 0.10148** – 8.32182 7.27273 3.02857 4.20786 1.95535

KM 0.04122 0.09765** 0.05668* – 1.65733 4.48241 25.51247 2.50000

LN 0.12578** 0.24812** 0.06433 0.23177** – 1.00205 1.19722 0.84646

LP 0.08068* 0.11546** 0.14170** 0.10035** 0.33288** – 5.04399 1.95201

VC 0.07593** 0.10952** 0.10621** 0.01922 0.29460** 0.09019** – 2.49604

XB 0.17644** 0.04544 0.20364** 0.16667** 0.37135** 0.20391** 0.16689* –

Table 4  Neutrality test and mismatch distribution of cox1 gene 
of Ae. albopictus in Lao PDR

* Significant value, P ˂  0.01

Abbreviations: BK, Borikhamxay; BO, Bokeo; CH, Champasak; KM, Khammuane; 
LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, Xayabouly

Population code Neutrality tests Mismatch analysis

D FS SSD Rag

BK − 1.25890 − 6.08335* 0.012 0.056

BO 0.11573 − 1.61256 0.040* 0.144

CH − 2.03130* − 8.03746* 0.017* 0.131*

KM − 1.10557 − 1.58578 0.017 0.059

LN − 0.97524 − 0.07875* 0.000 0.132

LP 0.47276 − 6.25889* 0.008 0.046

VC 0.54226 − 5.33883 0.007 0.038

XB 0.88892 − 0.12444 0.028 0.144

Mean − 0.41892 − 3.64001 0.016 0.09
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Fig. 2  Phylogenetic network of 112 mitochondrial haplotypes (1337 bp) of the cox1 gene in Ae. albopictus. Localities are indicated by different 
colors (bottom-right). The area of each circle is approximately proportional to the frequency of the haplotype. #Samples available in Genbank from 
Zhong et al. [31]. αSamples from Lao PDR

Fig. 3  Pie charts representing the proportional membership of Ae. albopictus identified in Bayesian cluster analysis (optimal partitioning of all 
samples, K = 8). Abbreviations: China: GZ, Guangzhou; XM, Xiamen; JS, Jiangsu; Taiwan: TW, Xinzhu; Japan: JP, Nagazaki; Singapore: SG, Helios Block; 
Italy: IT, Trentino; USA: LA01, California; LA11, California; NJ, New Jersey; TX, Texas; and HW, Hawaii – are samples from Zhong et al. [31]; Lao PDR: BK, 
Borikhamxay; BO, Bokeo; CH, Champasak; KM, Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, Xayabouly; Thailand: TH, 
Thailand
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[13, 67]. In addition, rubber plantations provided several 
potential breeding sites for Ae. albopictus including latex-
collection cups [68, 69]. According to Tangena et al. [12], 
the risk of dengue infection in natural forests and rub-
ber plantations is higher than in northern region villages 
in Luang Prabang Province. Aedes albopictus is highly 
adaptable and successfully spread from its preferred for-
ested environments to different rural and urban habitats, 
which has increased its potential as a vector and, conse-
quently, arboviruses transmission risk in these more pop-
ulated areas.

Genetic relationship among Ae. albopictus in Lao PDR 
and the available haplotypes from other geographical 
regions and genetic clustering of individuals
When populations of Ae. albopictus were analyzed from 
many different geographical regions, three haplotypes 
were observed to be shared between Lao PDR and other 
countries. H45 and H46 were shared with the USA (Cali-
fornia) and Thailand, and H56 with the USA (Texas). 
H45 and H46 are shared haplotypes from Los Angeles, 
California, where samples were collected in 2001. Simi-
larly, Zhong et  al. [31] observed those haplotypes were 
shared with Singaporean populations and were not found 
in their collection in 2011; hence, the authors suggested 
that only specimens from subtropical/temperate climates 
could have established successfully in the USA. In addi-
tion, the FST was lower when comparing Lao PDR with 
the 2001 California samples (0.093–0.323, P ≤ 0.05) than 
the ones collected 10 years later in 2011 (0.286–0.529, P 
≤ 0.05) (Additional file 1: Table S1).

The phylogenetic network and the Bayesian clus-
ter analyses corroborated the results from Zhong et  al. 
[31]. Groups 1 and 2 (in the network analysis) and clus-
ters 3, 5–7 (in the Bayesian analysis) included samples 
from temperate regions and most of group 3 and clus-
ters 1, 2, 4, 8 (network and Bayesian analyses, respec-
tively) included the majority of samples from tropical/
subtropical regions (Figs.  2, 3). Allozyme studies have 
shown that populations of Ae. albopictus from Japan are 
likely distinct from the remaining samples in the world 
[70] and Southeast Asia (Borneo, peninsula Malaysia) 
and southern Asian populations (India, Sri Lanka) can 
both be differentiated from northern Asian populations 
(China, Japan) [71]. Worldwide mitogenome diversity of 
Ae. albopictus was studied and three major haplogroups 
were found; the first haplogroup was mostly distributed 
in tropical regions, the second in temperate regions and 
the third appeared to be important in the spread of Ae. 
albopictus from Asia [61]. A possible explanation for 
these differences is the presence of a photoperiodic dia-
pause in Ae. albopictus from temperate regions [72–74], 
and absence of diapause among Ae. albopictus in tropical 

regions, such as in Brazil [72]. However, it is worth not-
ing that the Singapore population represents a particular 
case in Southeast Asia. Its population is genetically con-
nected both with tropical and temperate strains (Figs. 2, 
3).

Although no study has performed a comprehensive 
analysis of the species’ full native range [60], the genetic 
differentiation of native Asian populations of Ae. albop-
ictus may confer both north-south (Korea to Indonesia) 
and east-west (Japan to India) pattern of genetic differ-
entiation [61]; our results partially support the pattern of 
north-south as in Battaglia et al. [61].

Overall, we observed significant population structure 
in Ae. albopictus (FST = 0.43, P ≤ 0.001). Similar results 
were observed in Zhong et  al. [31] and Maynard et  al. 
[75]. As mentioned, Zhong et  al. [31] analyzed cox1 of 
Ae. albopictus from China, Taiwan, Japan, Singapore, 
Italy and the USA. Maynard et al. [75] using both micro-
satellite and mitochondrial markers observed significant 
relationship between genetic variability and geographical 
distance, but weak correlation in Ae. albopictus of Indo-
Pacific regions.

Laotian Ae. albopictus populations were found to be 
very genetically related to the tropical Thailand strain. An 
allozyme study suggested that populations of Ae. albopic-
tus in the eastern USA possibly originated from temper-
ate Asian regions [67], while mtDNA variations revealed 
that populations in Represa do Congo and Sao Luis in 
Brazil formed a lineage paraphyletic to tropical Southeast 
Asian lineages, such as Cambodia, Vietnam, Thailand 
[52, 76] and likely Lao PDR.

Conclusions
To our knowledge, this study represents the first genetic 
analysis of Ae. albopictus in Lao PDR. Laotian Ae. albop-
ictus are genetically related to populations from tropical/
subtropical regions. The high polymorphism but shal-
low population structure across Lao PDR and signs of a 
recent population expansion in Ae. albopictus may be the 
result of recent economic development that facilitates 
human-mediated movement of Ae. albopictus. We sug-
gest that extensive movement and likely common rein-
troductions of Ae. albopictus to treated sites represent a 
major challenge to dengue control in Lao PDR.
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Jersey; TX, Texas; HW, Hawaii; Lao PDR: BK, Borikhamxay; BO, Bokeo; CH, 
Champasak; KM, Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, 
Vientiane Capital; XB, Xayabouly; Thailand: TH, Thailand. #Samples available 
in GenBank from Zhong et al. [31]. *Significant values after Bonferroni 
correction (P ˂  0.05).

Additional file 2: Figure S1. Fixation indices obtained by SAMOVA for the 
best-clustering option at each pre-defined values of K. Abbreviations: FCT, 
variation among groups of populations; FSC, variation among populations 
within groups; FST, variation among population among groups.

Additional file 3: Table S2. Geographical distances (in km) among Ae. 
albopictus from Lao PDR. Abbreviations: BK, Borikhamxay; BO, Bokeo; CH, 
Champasak; KM, Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, 
Vientiane Capital; XB, Xayabouly.

Additional file 4: Figure S2. Mismatch distributions showing the fre‑
quencies of pairwise differences of Ae. albopictus in Lao PDR.

Additional file 5: Table S3. Assignment of the Bayesian clustering analy‑
sis of Ae. albopictus populations. Abbreviations: China: GZ, Guangzhou; XM, 
Xiamen; JS, Jiangsu; Taiwan: TW, Xinzhu; Japan: JP, Nagazaki; Singapore: 
SG, Helios Block; Italy: IT, Trentino; USA: LA01, California; LA11, California; 
NJ, New Jersey; TX, Texas; HW, Hawaii—are samples from Zhong et al. [31]; 
Lao PDR: BK, Borikhamxay; BO, Bokeo; CH, Champasak; KM, Khammuane; 
LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, Xayabouly; 
Thailand: TH, Thailand. #Samples available in Genbank from Zhong et al. 
[31]. The coefficient values above 0.25 are highlighted in bold.
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