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A B S T R A C T

Background: Cataract is a blinding disease worldwide. It is an age-related disease that mainly occurs in people over
65 years old. Cataract is also prevalent in patients with diabetes mellites (DM). The pathological mechanisms
underlying diabetic cataract (DC) are more complex than that of age-related cataract. Studies have identified that
polyol pathway, advanced glycation end products (AGEs) and oxidative stress are the primary pathogenesis of DC.
In recent years, molecular-level regulations and pathological processes of lens epithelial cells (LECs) have been
confirmed to play roles in the initiation and progression of DC. A comprehensive understanding and elucidation of
how chronic hyperglycemia drives molecular-level regulations and cytopathological processes in the lens will
shed lights on the prevention, delay and treatment of DC.
Main text: Excessive glucose in the lens enhances polyol pathway and AGEs formation. Polyol pathway causes
imbalance in the ratio of NADPH/NADPþ and NADH/NADþ. Decrease in NADPH/NADPþ ratio compromises
antioxidant enzymes, while increase in NADH/NADþ ratio promotes reactive oxygen species (ROS) over-
production in mitochondria, resulting in oxidative stress. Oxidative stress in the lens causes oxidation of DNA,
proteins and lipids, leading to abnormalities in their structure and functions. Glycation of proteins by AGEs de-
creases solubility of proteins. High glucose triggered epigenetic regulations directly or indirectly affect expres-
sions of genes and proteins in LECs. Changes in autophagic activity, increases in fibrosis and apoptosis of LECs
destroy the morphological structure and physiological functions of the lens epithelium, disrupting lens
homeostasis.
Conclusions: In both diabetic animal models and diabetics, oxidative stress plays crucial roles in the formation of
cataract. Epigenetic regulations, include lncRNA, circRNA, microRNA, methylation of RNA and DNA, histone
acetylation and pathological processes, include autophagy, fibrosis and apoptosis of LECs also involved in DC.
1. Introduction

Cataract is the leading cause of blindness, accounting for about 51 %
of all blind people worldwide.1 It is mainly prevalent in people over 65
years old and patients with diabetes mellitus (DM).2 Both Type-1 and
Type-2 diabetics are susceptible to develop cataract at an earlier age.3

Epidemiological investigations have shown that as the rise of diabetics,
so does the patients with diabetic cataract (DC).4 Implantation of an
intraocular lens (IOL) instead of cloudy lens by surgery is the only
effective way to treat cataract, however, postoperative complications
remain unavoidable problems. Some researches indicate that diabetics
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are at a higher risk of postoperative complications. Herein, understand-
ing the pathogenesis of DC is essential to prevent, delay and treat cataract
in diabetics. The purpose of this review is to discuss molecular-level
regulations and cytopathological activities of lens epithelial cells
(LECs) triggered by high glucose, and how they drive and facilitate the
development of cataract.

The lens is an avascular and transparent tissue that is composed of
LECs, lens fiber cells differentiated from LECs at the equatorial region and
mature fiber cells. Although the metabolic activity is different between
LECs and lens fiber cells, glucose metabolism occurs in both LECs and
lens fiber cells. Studies have shown that excess glucose in LECs and lens
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Table 2
Oxidative stress and involvement of oxidative stress underlying diabetic cataract
in animal models.

Materials Alteration of redox
homeostasis

Involvement of
oxidative stress

References

Lens epithelium of
diabetic rats
induced by
fructose

Increases in ROS and
SOD2 acetylation

Protein oxidation with
increase in 3-nitrotyr-
osine (3-NT) level

83

LECs of diabetic
rats induced by
fructose

ROS production (p47-
phox, p67-phox
subunits of NOXs and
NOX4 upregulation)

/ 86,87

LECs of diabetic
rats induced by
high glucose

AR overexpression
(decrease in NADPH/
NADPþ)

LECs apoptosis 88

LECs of diabetic
rats induced by
high glucose

ROS generation Increases in
intracellular Ca2þ and
apoptosis mediated
byTRPV2
upregulation

78

Rat lenses
cultured with
high glucose,
Lens of diabetic
rats induced by
STZ

Decreases in GSH,
Total-SOD, GSH-Px,
CAT, α-Klotho and
Nrf2

Lipids peroxidation 81,43,13

Lenses of diabetic
rats fed with
galactose

GSH decrease UPR activation and
LECs apoptosis

82

Lenses of diabetic
cataract of STZ
induced rats

/ Protein oxidation 32,89

Cataractous lenses
of SDH deficient
mice

GSH decrease Lipids oxidation, Naþ/
Kþ-ATPase activity
reduction,

90
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fiber cells results in different outcomes. Chronic hyperglycemia com-
promises antioxidant capacity and initiates apoptosis in the LECs,5,6

while causes swelling and liquefaction of lens fiber cells as a result of
sorbitol accumulation and osmotic stress.7 A large number of studies
have demonstrated that polyol pathway, advanced glycation end prod-
ucts (AGEs) and oxidative stress are the primary pathological mecha-
nisms underlying DC.8 Polyol pathway and AGEs compromise
antioxidant defense system, leading to reactive oxygen species (ROS)
accumulation and oxidative stress.9 In some cells (e.g., endothelial cells),
ROS also enhances polyol pathway and AGEs formation under hyper-
glycemic condition.10 In LECs of diabetics11,12 and diabetic animal
models,13 oxidative stress plays important roles in the development of
cataract according to literatures summarized in Table 1 and Table 2.

In addition to the three pathways mentioned above, lncRNA,
circRNA, mircoRNA, RNA and DNA methylation, histone acetylation
affected by high glucose are regulatory mechanisms mediating survival
and apoptosis of LECs. Pathological processes of LECs, include auto-
phagy, fibrosis and apoptosis are also involved in the initiation and
progression of DC. This review comprehensively discusses the mecha-
nisms underlying DC and aims to provide theoretical supports for pre-
vention, delay and treatment of DC.

2. Glucose metabolisms and oxidative stress

2.1. Polyol pathway and oxidative stress

Under physiological conditions, glucose is mainly metabolized by
glycolysis and citric acid cycle to provide ATP for survival and growth of
the lens. About 10 % of glucose is metabolized through pentose phos-
phate pathway to provide sugar residues for nucleotide synthesis, and
some of glucose is utilized to synthesize glycogen.14 Only less than 5 % of
Table 1
Oxidative stress and involvement of oxidative stress underlying diabetic cataract
in human.

Materials Alteration of redox
homeostasis

Involvement of
oxidative stress

References

Treatment of
SRA01/04
with high
glucose (50
mM, 24 h)

Decrease in GSH/GSSG
ratio, Total-SOD, CAT,
GPx

Lipids peroxidation 81

Human LECs line
cultured with
high glucose
(25.6 mM, 7 d)

ROS production Increases in
intracellular Ca2þ

and apoptosis
mediated by TRPV2
upregulation

78

Human LECs
cultured with
high glucose
(125 mM, 24
h)

ROS production Activation of
unfolded protein
response (UPR)

82

LECs from lenses
of diabetic
cataract

Increases in AKR1B1
expression and SOD2
acetylation

Protein oxidation
with an increase in 3-
nitrotyrosine level

83,5

Lenses of
diabetic
cataract

Decrease in GSH, GR,
GPx

Protein oxidation 11,84

Plasma and
serum of
patients with
diabetic
cataract

Increases in ALR2 and
AGEs; decreases in GSH
and GPX-3

Lipids peroxidation 42,85

Lenses of
diabetic
cataract

Increases in RAGE and
RAC1(regulatory
subunit of NADPH
oxidase)

/ 86

MDA: malondialdehyde; GR: Glutathione reductase; GPx: Glutathione peroxi-
dase; EMT: epithelial-to-mesenchymal transition; ALR2: aldose reductase 2;
AKR1B1: aldo-keto reductases1B1.

osmoregulatory
machinery
impairment

Lenses of diabetic
rats induced by
STZ

GSH decrease Protein and lipids
oxidation

91

LECs: lens epithelial cells; STZ: streptozotocin; RAGE: receptor for AGEs; SGLT2:
sodium-glucose cotransporter 2; SDH: dehydrogenase; UPR: unfolded protein
response; MDA: malondialdehyde.
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glucose shunts into polyol pathway due to the low affinity of aldose
reductase (AR) to glucose.15 Under the condition of hyperglycemia,
increased glucose levels in aqueous humor prompt excess glucose to be
transported into the lens by glucose transporters (e.g., GLUT1, GLUT3
and GLUT5) and sodium-glucose cotransporter (SGLT) on the cell
membrane through an insulin-independent manner.14 Elevation of
glucose levels in LECs leads to saturation of hexokinase and restriction of
glycolytic pathway. However, both the activity and expression of AR are
increased under such condition, approximately 33 % of glucose in lens
cells shunts into polyol pathway.16 Glucose is oxidated to sorbitol by AR
and sorbitol is reduced to fructose by sorbitol dehydrogenase (SDH),
which leads to an reduction in NADPH/NADPþ ratio and an increase in
NADH/NADþ ratio, respectively (Fig. 1). NADPH is a coenzyme of
several antioxidant enzymes, such as glutathione reductase (GR), gluta-
thione peroxidase (GPx) and catalase (CAT). Decrease in NADPH/NADPþ

ratio impairs the antioxidant capacity of cells, leading to ROS accumu-
lation.17 Increase in NADH/NADþ ratio promotes ROS overproduction in
mitochondria.15

In vitro, ROS also facilitates polyol pathway by impacting AR under
certain conditions.18 It has been found that superoxide anion radical
(O⋅�

2 ) is the first ROS produced in mitochondria in bovine aortic endo-
thelial cells cultured with high glucose. Normalizing mitochondrial O⋅�

2
prevents high glucose induced ROS generation, indicating O⋅�

2 is a key
contributor to ROS induced by high glucose.19 Enhancement of polyol
pathway by ROS may be attributed to the increases in activity and



Fig. 1. Schematic diagram of polyol pathway and oxidative stress. Reduction of
glucose to sorbitol by AR leads to decrease in NADPH/NADPþ ratio, this com-
promises generation of GSH from GSSG and the ability of CAT to reduce H2O2 to
H2O. Oxidation of sorbitol to fructose by SDH results in increase in NADH/
NADþ ratio, NADH is a donor of electron and a higher ratio of NADH/NADþ in
the mitochondrial matrix promotes ROS generation.

Fig. 2. Pathways for AGEs formation under the condition of high glucose. In-
termediates from glycolysis and polyol pathway, such as MGO and 3-DG are
primary precursors for AGEs. Higher glucose inside cells enhances Mail-
lard reaction.
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transcription of AR. It has been identified that O⋅�
2 has the ability to

quench nitric oxide (NO), which inhibits AR activity by S-thiolation of
cystine 298 at the active site.20 Although we discuss the impact of ROS on
AR according to findings in endothelial cells, this mechanism may be
dependent on the cellular context.

2.2. Advanced glycation end products (AGEs) and oxidative stress

Accumulation of AGEs is one of the major risk factors for diabetic
complications (e.g., diabetic nephropathy, diabetic retinopathy, diabetic
cataract) due to the ability of AGEs to induce oxidative stress and initiate
inflammation by binding to their receptor RAGE.21 In vitro studies have
shown that ROS also enhances AGEs formation in certain conditions.22

AGEs are a class of heterogeneous compounds that primarily gener-
ated by the reactions between carbonyl groups of reducing sugar (e.g.,
glucose, fructose, galactose) and amino groups of proteins, lipids and
nucleic acids, known as Maillard reaction. The processes of AGEs for-
mation are spontaneous that do not require catalysis of enzyme. Under
the condition of high glucose, AGEs formation is enhanced due to in-
creases in glucose availability and dicarbonly compounds (e.g., methyl-
glyoxal, 3-deoxyglucosone, glyoxal). Intermediates or byproducts from
glycolysis, polyol pathway and lipids peroxidation are also contributor to
AGEs (Fig. 2).23 Studies have shown that AGEs levels in the cataractous
lens of diabetics are higher than that without diabetes.3 AGEs induce
oxidative stress not only by activating NADPH oxidases (NOXs) through
AGEs/RAGE signaling,24,25 but also reducing activity of antioxidant en-
zymes by glycation (e.g., site specific or random fragmentation of
Cu/ZnSOD).26 In vitro, ROS also enhances AGEs formation through
different mechanisms in several types of cells (e.g., retinal vascular
endothelial cells).18 Firstly, O⋅�

2 inactivates glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) by oxidation of cysteine residue (Cys-149) at
the active site.27 Secondly, ROS caused DNA strand breakage activates
poly (ADP-ribose) polymerase-1 (PARP-1), which inactivates GAPDH by
mediating GAPDH poly (ADP-ribosyl)ation.28 Thirdly, high glucose also
inhibits GAPDH transcription.29 GAPDH is the enzyme that catalyzes the
conversion of glyceraldehyde-3-phosphate (GAP) to 1, 3-biphospgogly-
cerate in the processes of glycolysis. Reduction in GAPDH causes accu-
mulation of GAP, which can be converted into methylglyoxal (MGO), a
major precursor of AGEs.30 ROS also enhances AGEs formation by pro-
moting binding of carbonyl groups to amino groups.31 Although we
discuss the interactions between AGEs and ROS, their interplays in the
lens still need to be furtherly explored, especially in the context of high
glucose.
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3. Molecular-level regulations and cellular pathological
processes

3.1. Impairment of biomacromolecules

3.1.1. Protein modifications and insolubility
Proteins in the lens account for 33 % of the total weight of the lens,

and the high content of proteins is essential for maintaining refractive
property and transparency of the lens. Oxidation of proteins changes the
structure and function and contributes to lens opacity (Fig. 3). In the
development of DC in streptozotocin (STZ) induced rats, the amount of
protein carbonyl groups in the lens increases in a time-dependent
manner,32 indicating the degree of proteins oxidation is positively
correlated with the time of high glucose exposure. Oxidation of proteins
alters surface charge and native conformation, causing partial unfolding
and exposure of hydrophobic groups. The exposed hydrophobic groups
interact with other exposed hydrophobic groups and form aberrant
protein-protein interactions, leading to aggregation and insolubility.

Glycation of proteins is also a cause of partial unfolding, exposure of
sulfhydryl groups and hydrophobic groups, resulting in formation of di-
sulfide bonds and hydrophobic interactions. Both glycated modifications
and abnormal interactions cause cross-linking, high-molecular-weight ag-
gregation and insolubility.33 Proteins in both intracellular and extracellular
matrix (ECM) can be modified by glycation. Glycation of proteins in ECM
(e.g., collagen) causes abnormal interactions between collagens and other
components or receptors on cell membrane, impairing cellular structure.34

α-Crystallin is the protein with molecular chaperone and anti-apoptotic
activity. It is essential to protect other proteins from oxidative damage and
apoptosis of LECs. High glucose impairs the molecular chaperone and anti-
apoptotic activity of α-crystallin via different modifications, including
glycation,35 oxidation,36 and phosphorylation. Glycation of α-crystallin
damages the integrity of fiber cells.37 It has been shown that glycation of
α-crystallin by MGO causes partial unfolding and decrease in the stability,
making it easily degrade.38 In cataractous lens of diabetic rats, phosphor-
ylated level of αB-crystallin is increased, which causes an increase in the
fraction of insolubility and formation of cataract.39 Studies have indicated
that p38 and ERK1/2 phosphorylate αB-crystallin at Ser59 and Ser45,
respectively. Both p38 and ERK1/2 kinases are activated by high glucose
andmay be responsible for proteins phosphorylation in the development of
DC. In vitro, low concentrations (5 and 50 mM) of sorbitol subtly changes
the secondary and tertiary structure of α-crystallin, reducing the chaperone
activity.40



Fig. 3. Pathological mechanisms involved in diabetic cataract. A. Polyol pathway, AGEs, oxidative stress. B. Epigenetic regulations: includes lncRNA, CircRNA,
microRNA, methylation of DNA and RNA, histone acetylation. C. Cellular pathological processes: includes autophagy, fibrosis, apoptosis of lens epithelial cells.
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3.1.2. Lipids peroxidation
Cell membrane is an important barrier to maintain osmotic balance.

Lipids are key components of cell membrane. Although the composition
and structure of lipids in lens cell membrane confer them resistance to
oxidation, lipids peroxidation also occurs in aging and cataractous lens.41

In cataractous lenses of diabetics and diabetic rats, the content of
malondialdehyde (MDA) is obviously elevated and its concentration is
positively correlated with the duration and severity of hyperglyce-
mia,42,43 indicating high glucose induces lipids peroxidation in the lens.

Lipids peroxidation disrupts the phospholipid bilayer structure of cell
membrane, leading to impairment of membrane structure and selective
permeability. Lipids peroxidation also causes uncoupling of membrane-
bound Naþ/Kþ-ATPase and oxidative inhibition of Ca2þ-ATPase in lens
cells.44 Decrease in Ca2þ-ATPase activity increases intracellular Ca2þ

concentration and disturbs osmotic balance.45 Besides, lipids peroxides
(e.g., MDA, HNE) also damage proteins and DNA due to their longer
half-life and the ability to diffuse to distant sites.46 Thus, elevation of
intracellular Ca2þ level and secondary damages to DNA and proteins may
be responsible for DC as a consequence of lipids peroxidation (Fig. 3).

3.1.3. Oxidative damages to DNA
Oxidation of DNA influences genome stability, transcription, protein

misfolding and cellular damages. Oxidation of DNA causes DNA strand
breakage and activation of PARP-1. PARP-1 is the best characterized DNA
repair enzyme and plays double roles in H2O2 treated lens cells. Medium
activity of PARP repairs damaged DNA strand, while prolonged activa-
tion of PARP-1 promotes cell death in the lens.47 Treatment of human
LECs with 30 mM glucose for 48 h significantly increases
poly(ADP-ribosyl)ated protein, indicating PARP-1 activation.48 PARP-1
activation results in NADþ decrease and polymers of ADP-ribose (PAR)
increase, leading to energy imbalance of cells. In STZ-induced diabetic
cataract rats, DNA oxidation marker 8-Hydroxydeoexyguanosine
(8-OHdG) in serum is significantly increased.49 DNA oxidation contrib-
utes to DC through direct or indirect roles (e.g., overactivation of
PARP-1) (Fig. 3).
3.2. Epigenetic regulations

3.2.1. LncRNA and miRNA
LncRNA are crucial regulatory molecules related to physical devel-

opment and multiple diseases, including DC. LncRNA NEAT1 is down-
regulated in the LECs of patients with DC. It regulates microRNA-205-3p/
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MMP16 axis in the development of DC.50 In high glucose treated HLE-B3
cells, lncRNA PVT1 is upregulated. This inhibits proliferation and pro-
motes apoptosis of LECs by regulating miR-214-3p/MMP2 axis.51 Cir-
cular RNAs (circRNAs) is the covalently closed loop long non-coding
RNAs and act as inhibitors (‘sponges’) of microRNA or protein.52 In the
LECs of patients with DC and high glucose cultured HLE-B3 cells,
downregulation of circPAG1 caused by high glucose promotes oxidative
stress and apoptosis. It has been identified that circPAG1 acts as a
‘sponge’ of miR-630, which targets to EPHA2. Upregulation of circPAG1
protects high glucose induced oxidative damage to LECs by regulating
miR-630/EPHA2 axis.53 In cataractous lenses of diabetics, high glucose
induced upregulation of circKMT2E promotes DC by downregulating
miR-204-5p. miR-204 inhibits LECs EMT by binding to the 3’-UTR of
Smad4.54 Upregulation of circKMT2E involves in EMT processes of LECs
in the context of high glucose.

MicroRNAs (miRNAs) are key regulatory molecules in physical
development and pathological processes by target a majority of
mRNAs.55 In aqueous humor of patients with DC, miR-551b is signifi-
cantly upregulated. And this reduces the viability and increases apoptosis
of LECs by downregulating CRYAA expression.56 Downregulation of
miR-30a implicates in DC by targeting SNAL1, an important transcription
factor regulating EMT processes.57 Both in vivo and in vitro studies in
human LECs have indicated that miRNA-199a-5p is downregulated by
high glucose. And this induces EMT by regulating SP1.58

3.2.2. N6-methyladenosine (m6A)
m6A modification involves in various of RNA biological processes,

including transport, splicing, stability, degradation and translation.
Treatment of human LECs with high glucose increases RNA methyl-
transferase like 3 (METTL3) and total m6A levels. Upregulation of
METTL3 represses proliferation and promotes apoptosis by targeting
intercellular adhesion molecule-1 (ICAM-1),59 indicating METTL3 not
only regulates methylation of mRNA, but also affects fate of LECs under
the condition of high glucose.

3.2.3. DNA methylation
Methylation and demethylation of CpG islands in the promoter of

DNA are regulatory mechanisms of gene expression by influencing the
accessibility of the functional factors in transcriptional machinery.60

Kelch-like ECH associated protein 1 (Keap1) is a protein negatively
regulates Nrf2, a key nuclear transcriptional factor regulating expression
of several antioxidant enzymes in the lens. Studies have shown that high
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glucose regulates methylation levels in the promoter region of Keap1. In
the lenses of patients with DC, methylation level in the promoter of Keap1
is significantly decreased, and this increases its expression of mRNA and
protein. Increase in Keap1 promotes Nrf2 degradation that down-
regulates transcription of several antioxidant enzymes. Thus, demethy-
lation of Keap1 implicates in DC by aggravating oxidative stress and
proteins aggregation.61 It has been revealed that increase of MGOmay be
responsible for keap1 demethylation under the condition of high
glucose.62

3.2.4. Histone acetylation
Histone acetylation enhances gene expression by relaxing chromatin.

Histone deacetylation suppresses gene expression due to the unmodified
histones possess a positive charge. In this situation, histones interact
more closely with the negatively charged DNA backbone, leading to
condensation of chromatin and restriction of transcriptional machin-
ery.63 In galactose induced rats, the formation of cataract is attributed to
upregulation of Polo-like kinase 3 (Plk3) mRNA. Mechanically, over-
expression of Polo-like kinase 3 (Plk3) mRNA is regulated by histone
acetylation.64 This implies that acetylation and deacetylation are one of
the regulatory mechanisms underlying galactose induced cataract in rats.
3.3. Cellular pathological processes

3.3.1. Autophagy of LECs
Autophagy is a catabolic process implicated in both cellular survival

and death. It degrades defective or aggregated proteins, lipids, toxic
debris, as well as disused organelles and membrane. It has been shown
that alternations in autophagic activity are associated with cataract.65

Exposure of HLE-B3 cells to high glucose results in a decrease in auto-
phagic activity and activation of EMT.66 In high glucose treated HLE-B3
cells, inhibition of autophagic activity is correlated with EMT processes.
NICD/ULK1 signaling is confirmed to mediate the crosstalk between
autophagy and EMT processes in the development of DC.67 In high
glucose cultured SRA01/04 cells and lens epithelium of patients with DC,
autophagic activity is significantly suppressed. Downregulations of
AMPK-dependent FOXO3 and TFEB are the regulatory mechanisms of
autophagy inhibition induced by high glucose.68 Both in vivo and in vitro
studies in LECs of mice demonstrate inhibition of autophagy induced by
high glucose is related to oxidative damage.69

3.3.2. Fibrosis of LECs
Fibrosis of LECs destroys the morphological structure and causes

abnormal deposition of ECM (e.g., collagen), leading to LECs hardness
and loss of elasticity. Both TGFβ1 and TGFβ2 are highly expressed in
aqueous humor and lens epithelium of patients with DC. Moreover, the
expression of TGFβ is positively correlated with the level of glycosylated
haemoglobin.70 TGFβ is the most effective inductor of fibrosis, suggesting
high glucose may promote LECs fibrosis by stimulating TGFβs expression.
In lens epithelium of diabetics, LECs EMT is also associated with the
increase in RAGE.5 AGEs/RAGE activates or participates in signaling
pathways to regulate EMT. It has been found that AGEs/RAGE also in-
volves in TGF-β signaling in the processes of EMT in LECs.71 In diabetic
animal models, fibrosis of LECs is also indueced by AR.72

3.3.3. Apoptosis of LECs
In the lenses of patients with DC, apoptosis of LECs is obviously

observed.73 In lens epithelium of diabetics, apoptosis of LECs is evi-
denced by expression of Bax/Bcl-2,74 p53 and caspase-8.75 Oxidative
stress induced by high glucose is also an initiator of apoptosis in human
LECs.76–78 Elevation of intracellular Ca2þ induced by high glucose also
mediates apoptosis of LECs. Both in vivo and in vitro experiments sug-
gested that disruption of Ca2þ homeostasis enhances apoptosis of human
LECs and contributes to lens opacity.73 Exposing ex vivo lenses of rats to
184
galactose aggravates apoptosis of LECs, indicating accumulation of sugar
alcohols is also a risk factor for LECs apoptosis and DC.79 In STZ induced
diabetic rats, apoptosis of LECs at the central of anterior capsule and
equatorial zones is remarkably observed. And this is related to the
reduction of NGF level.80

4. Conclusions

Oxidative stress plays key functions in the formation of cataract in
both diabetics and diabetic animal models. Additionally, epigenetic
regulations, autophagy, fibrosis and apoptosis of LECs also implicated in
the initiation and progression of DC according to findings, which are
mainly derived from in vitro studies of human cell lines.
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DC Diabetic cataract
LECs Lens epithelial cells
AGEs Advanced glycation end products
RAGE Receptor for advanced glycation end products
ROS Reactive oxygen species
O⋅�

2 Superoxide anion radical
NOXs NADPH oxidases
GSH Glutathione
GSSG Glutathione disulfide
H2O2 Hydrogen peroxide
CAT Catalase
SOD Superoxide dismutase
GPx Glutathione peroxidases
NADþ Oxidized nicotinamide adenine dinucleotide
NADH Reduced nicotinamide adenine dinucleotide
NADPþ Nicotinamide adenine dinucleotide phosphate
NADPH Nicotinamide adenine dinucleotide phosphate hydrogen
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