4184 measured reflections

 $R_{\rm int} = 0.010$

2275 independent reflections

2138 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1S,3S)-Methyl 6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoguinoline-3carboxylate

Tricia Naicker,^a Thavendran Govender,^a Hendrik G. Kruger^b and Glenn E. M. Maguire^{b*}

^aSchool of Pharmacy and Pharmacology, University of KwaZulu Natal, Durban 4000, South Africa, and ^bSchool of Chemistry, University of KwaZulu Natal, Durban 4000. South Africa

Correspondence e-mail: maguireg@ukzn.ac.za

Received 15 May 2011; accepted 17 May 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.082; data-to-parameter ratio = 10.2.

In the title compound, C₁₉H₂₁NO₄, an organocatalyst with a tetrahydroisoquinoline backbone, the heterocyclic ring assumes a half-boat conformation. The dihedral angle between the aromatic rings is 82.93 (8)°. In the crystal, molecules are linked via N-H···O and C-H···O hydrogen bonds, forming a layer parallel to $(10\overline{1})$.

Related literature

For related structures, see: Naicker et al. (2010, 2011).

Experimental

Crystal data

C19H21NO4 $M_r = 327.37$ Monoclinic, P2 a = 9.3841 (3) Å b = 6.3453 (2) Å c = 14.2048 (4) Å $\beta = 94.475 \ (2)^{\circ}$

V = 843.25 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 K $0.90\,\times\,0.07\,\times\,0.06$ mm

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.923, T_{\max} = 0.995$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.082$	independent and constrained
S = 1.05	refinement
2275 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O3^{i}$ $C1 - H1 \cdots O3^{ii}$ $C19 - H19B \cdots O2^{iii}$	0.91 (2) 1.00 0.98	2.27 (1) 2.55 2.53	3.0918 (17) 3.503 (2) 3.270 (2)	149 (2) 160 132

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 2; (ii) x, y + 1, z; (iii) $-x, y - \frac{1}{2}, -z + 1$.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

The authors wish to thank Dr Hong Su from the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2714).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o1403.

Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859-2867. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o1501 [doi:10.1107/S1600536811018782]

(1S,3S)-Methyl 6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate

T. Naicker, T. Govender, H. G. Kruger and G. E. M. Maguire

Comment

The title compound is a novel chiral organocatalyst containing a tetrahydroisoquinoline (TIQ) framework. We have recently reported the use of similar TIQ derivatives as organocatalysts in the Diels-Alder cycloaddition between alpha, beta-unsaturated aldehydes and cyclopentadiene (Naicker *et al.*, 2010).

Diastereomers formed during the synthesis of the title compound were easily separated using column chromatography to yield the TIQ derivative with the stereochemistry as illustrated in Fig. 1. The absolute stereochemistry was confirmed to be S,S at the C1 and C9 positions, respectively, by proton NMR spectroscopy.

The *N*-containing six-membered ring assumes a half-boat conformation $[Q = 0.5537 (16) \text{ Å}, \theta = 53.94 (16)^{\circ} \text{ and } \phi = 335.3 (2)^{\circ}]$. This observation is similar to a related structure that we recently reported (Naicker *et al.*, 2011). The molecules are linked through N1—H1N···O3ⁱ and C1—H1···O3ⁱⁱ hydrogen bonds (Table 1) into a column stacked along the *b* axis. The columns are further connected by C19—H19B···O2ⁱⁱⁱ hydrogen bonds, forming a layer parallel to the (101) plane (Fig. 2).

Experimental

To a stirred solution of 1:1 methanol: methylene chloride (6.0 ml) with 4 Å molecular sieves, (*S*)-methyl 2-amino-3-(3,4dimethoxyphenyl)propanoate (1.0 g, 4.2 mmol) and benzaldehdye (1.1 eq.) was added under an inert atmosphere. The reaction mixture was allowed to stir for 1.5 h. Thereafter the reaction mixture was filtered and the solvents was removed *in vacuo* to yield the intermediate imine which was left on a high vacuum pump to remove any residual water for 2 h. The residue was then dissolved in trifluoroacetic acid (20 ml) and refluxed for 3 h. The reaction mixture was then neutralized with a saturated sodium bicarbonate solution and extracted with ethylacetate (4 × 20 ml). The organic extracts were combined and dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo*. The crude product (diastereomers) was purified by column chromatography (50:50 EtOAc/Hexane, $R_{\rm f}$ 1/2) to afford the product 1.20 g (88%) as a white solid. Melting point 370–372 K. IR (neat): 2928, 2600, 1746, 1516, 1250, 1123, 727 cm⁻¹ [*a*]²⁰_D = +15.38 (*c* 0.26 in CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.11 (m, 5H), 6.57 (s, 1H), 6.10 (s, 1H), 5.02 (s, 1H), 3.79 (s, 4H), 3.70 (s, 3H), 3.52 (s, 3H), 3.01 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.96, 147.76, 147.41, 143.87, 130.22, 129.04, 128.59, 127.84, 126.07, 111.31, 110.56, 62.85, 56.54, 55.89, 55.84, 52.18, 32.22.

Recrystallization from ethyl acetate at room temperature afforded crystals suitable for X-ray analysis.

Refinement

All hydrogen atoms, except H1N on N1, were placed in idealized positions and refined as riding, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The position of H1N was located in a difference electron density map and refined with a bond length restraint

of N—H = 0.95 (3) Å. With unmerged data, the Flack x parameter refines to -0.5475 with e.s.d. 0.6554, and the absolute structure cannot be determined reliably. The final refinements were performed with merged data.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2. A partial projection of the title compound, viewed along the *a* axis.

2275 independent reflections

(15,35)-Methyl 6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate

Crystal data	
C ₁₉ H ₂₁ NO ₄	F(000) = 348
$M_r = 327.37$	$D_{\rm x} = 1.289 {\rm ~Mg~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Melting point: 371 K
Hall symbol: P 2yb	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.3841 (3) Å	Cell parameters from 4184 reflections
b = 6.3453 (2) Å	$\theta = 2.2 - 28.3^{\circ}$
c = 14.2048 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 94.475 \ (2)^{\circ}$	T = 173 K
$V = 843.25 (4) \text{ Å}^3$	Needle, colourless
Z = 2	$0.90 \times 0.07 \times 0.06 \text{ mm}$
Data collection	
Nonius KappaCCD	

diffractometer

Radiation source: fine-focus sealed tube	2138 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.010$
ϕ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.923, T_{\max} = 0.995$	$k = -8 \rightarrow 8$
4184 measured reflections	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.082$	$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.1004P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2275 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
2 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Drimary atom site location: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.014 (4)

Special details

Experimental. Half sphere of data collected using *COLLECT* strategy (Nonius, 2000). Crystal to detector distance = 33 mm; combination of φ and ω scans of 1.0°, 60 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.32761 (13)	0.8193 (2)	0.52227 (9)	0.0421 (3)
O2	0.14691 (13)	0.5304 (2)	0.46573 (8)	0.0377 (3)
O3	0.39059 (11)	-0.1210 (2)	0.96117 (8)	0.0372 (3)
O4	0.15273 (11)	-0.0802 (2)	0.93763 (8)	0.0359 (3)
N1	0.44475 (13)	0.2219 (2)	0.85516 (9)	0.0286 (3)
H1N	0.4969 (18)	0.214 (4)	0.9118 (11)	0.033 (5)*

C1	0.45806 (15)	0.4396 (3)	0.82212 (10)	0.0276 (3)
H1	0.4271	0.5382	0.8715	0.033*
C2	0.36095 (14)	0.4684 (2)	0.73185 (10)	0.0260 (3)
C3	0.38575 (16)	0.6398 (3)	0.67243 (11)	0.0303 (3)
Н3	0.4558	0.7420	0.6921	0.036*
C4	0.30923 (16)	0.6610 (3)	0.58571 (11)	0.0309 (3)
C5	0.20784 (15)	0.5077 (3)	0.55602 (10)	0.0299 (3)
C6	0.17693 (14)	0.3466 (3)	0.61690 (10)	0.0273 (3)
Н6	0.1036	0.2485	0.5984	0.033*
C7	0.25316 (14)	0.3266 (2)	0.70613 (10)	0.0250 (3)
C8	0.21706 (15)	0.1462 (3)	0.76978 (10)	0.0274 (3)
H8A	0.2446	0.0110	0.7415	0.033*
H8B	0.1127	0.1433	0.7759	0.033*
C9	0.29613 (15)	0.1715 (3)	0.86760 (10)	0.0259 (3)
Н9	0.2524	0.2909	0.9011	0.031*
C10	0.28876 (15)	-0.0258 (3)	0.92677 (10)	0.0273 (3)
C11	0.1344 (2)	-0.2585 (3)	0.99879 (13)	0.0423 (4)
H11A	0.0322	-0.2859	1.0025	0.063*
H11B	0.1788	-0.2277	1.0621	0.063*
H11C	0.1799	-0.3829	0.9733	0.063*
C12	0.61296 (15)	0.4843 (3)	0.80537 (10)	0.0291 (3)
C13	0.68782 (16)	0.3487 (3)	0.74980 (11)	0.0374 (4)
H13	0.6419	0.2270	0.7229	0.045*
C14	0.82974 (17)	0.3906 (4)	0.73342 (12)	0.0426 (4)
H14	0.8798	0.2980	0.6951	0.051*
C15	0.89763 (17)	0.5663 (4)	0.77280 (13)	0.0431 (4)
H15	0.9951	0.5924	0.7631	0.052*
C16	0.82347 (18)	0.7041 (3)	0.82631 (13)	0.0419 (4)
H16	0.8695	0.8269	0.8520	0.050*
C17	0.68109 (16)	0.6639 (3)	0.84278 (11)	0.0339 (3)
H17	0.6307	0.7594	0.8796	0.041*
C18	0.43336 (19)	0.9743 (3)	0.54802 (15)	0.0450 (4)
H18A	0.4362	1.0782	0.4972	0.067*
H18B	0.5270	0.9062	0.5585	0.067*
H18C	0.4097	1.0450	0.6061	0.067*
C19	0.0553 (2)	0.3649 (3)	0.43094 (12)	0.0480 (5)
H19A	0.0173	0.3981	0.3664	0.072*
H19B	-0.0238	0.3498	0.4715	0.072*
H19C	0.1094	0.2328	0.4308	0.072*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0381 (6)	0.0362 (7)	0.0523 (7)	-0.0028 (6)	0.0043 (5)	0.0163 (6)
02	0.0426 (6)	0.0405 (7)	0.0296 (5)	-0.0005 (6)	-0.0009 (4)	0.0067 (5)
O3	0.0353 (6)	0.0404 (7)	0.0356 (6)	0.0093 (6)	0.0002 (4)	0.0060 (5)
O4	0.0313 (5)	0.0380 (7)	0.0380 (6)	-0.0025 (5)	-0.0002 (4)	0.0088 (5)
N1	0.0229 (6)	0.0322 (7)	0.0299 (6)	0.0000 (5)	-0.0032 (5)	0.0002 (6)

C1	0.0234 (6)	0.0302 (8)	0.0290 (7)	-0.0003 (6)	0.0007 (5)	-0.0056 (6)
C2	0.0214 (6)	0.0254 (7)	0.0315 (7)	0.0018 (6)	0.0031 (5)	-0.0026 (6)
C3	0.0237 (6)	0.0251 (7)	0.0422 (8)	0.0006 (6)	0.0023 (5)	-0.0008 (7)
C4	0.0263 (6)	0.0281 (8)	0.0390 (8)	0.0036 (6)	0.0077 (6)	0.0067 (7)
C5	0.0266 (7)	0.0337 (8)	0.0296 (7)	0.0040 (6)	0.0030 (5)	0.0018 (6)
C6	0.0237 (6)	0.0286 (7)	0.0296 (7)	0.0000 (6)	0.0012 (5)	-0.0001 (6)
C7	0.0218 (6)	0.0257 (7)	0.0276 (6)	0.0017 (6)	0.0027 (5)	-0.0004 (6)
C8	0.0243 (6)	0.0284 (7)	0.0289 (7)	-0.0023 (6)	-0.0012 (5)	0.0021 (6)
C9	0.0240 (6)	0.0271 (7)	0.0267 (6)	0.0021 (6)	0.0017 (5)	-0.0016 (6)
C10	0.0302 (7)	0.0291 (8)	0.0223 (6)	0.0015 (6)	0.0008 (5)	-0.0040 (6)
C11	0.0477 (9)	0.0388 (10)	0.0404 (9)	-0.0081 (8)	0.0035 (7)	0.0082 (8)
C12	0.0232 (6)	0.0350 (8)	0.0284 (7)	-0.0005 (6)	-0.0017 (5)	-0.0012 (6)
C13	0.0290 (7)	0.0449 (10)	0.0381 (8)	0.0022 (8)	0.0010 (6)	-0.0077 (8)
C14	0.0299 (7)	0.0590 (12)	0.0394 (8)	0.0068 (8)	0.0068 (6)	-0.0014 (9)
C15	0.0247 (7)	0.0602 (12)	0.0445 (9)	-0.0010 (8)	0.0029 (6)	0.0106 (9)
C16	0.0314 (8)	0.0473 (11)	0.0460 (9)	-0.0093 (8)	-0.0031 (7)	0.0041 (9)
C17	0.0286 (7)	0.0370 (9)	0.0357 (8)	-0.0045 (7)	0.0002 (6)	-0.0014 (7)
C18	0.0414 (9)	0.0287 (9)	0.0673 (12)	-0.0008 (8)	0.0203 (8)	0.0072 (9)
C19	0.0671 (12)	0.0411 (11)	0.0331 (8)	0.0001 (10)	-0.0126 (8)	0.0006 (8)

Geometric parameters (Å, °)

O1—C4	1.3696 (19)	C8—H8B	0.9900
O1—C18	1.424 (2)	C9—C10	1.512 (2)
O2—C5	1.3704 (18)	С9—Н9	1.0000
O2—C19	1.421 (2)	C11—H11A	0.9800
O3—C10	1.2017 (18)	C11—H11B	0.9800
O4—C10	1.3429 (18)	C11—H11C	0.9800
O4—C11	1.445 (2)	C12—C17	1.392 (2)
N1—C9	1.4552 (18)	C12—C13	1.394 (2)
N1-C1	1.467 (2)	C13—C14	1.395 (2)
N1—H1N	0.909 (14)	C13—H13	0.9500
C1—C12	1.5178 (19)	C14—C15	1.380 (3)
C1—C2	1.525 (2)	C14—H14	0.9500
C1—H1	1.0000	C15—C16	1.382 (3)
C2—C7	1.381 (2)	C15—H15	0.9500
C2—C3	1.407 (2)	C16—C17	1.398 (2)
C3—C4	1.383 (2)	C16—H16	0.9500
С3—Н3	0.9500	C17—H17	0.9500
C4—C5	1.403 (2)	C18—H18A	0.9800
C5—C6	1.384 (2)	C18—H18B	0.9800
С6—С7	1.4118 (18)	C18—H18C	0.9800
С6—Н6	0.9500	C19—H19A	0.9800
С7—С8	1.513 (2)	C19—H19B	0.9800
C8—C9	1.5317 (19)	C19—H19C	0.9800
C8—H8A	0.9900		
C4—O1—C18	117.28 (14)	С8—С9—Н9	108.9
C5—O2—C19	116.41 (13)	O3—C10—O4	123.84 (15)
C10-04-C11	115.40 (13)	O3—C10—C9	124.95 (14)

C9—N1—C1	110.63 (12)	O4—C10—C9	111.20 (12)
C9—N1—H1N	109.5 (12)	O4—C11—H11A	109.5
C1—N1—H1N	106.5 (15)	O4—C11—H11B	109.5
N1—C1—C12	109.42 (13)	H11A—C11—H11B	109.5
N1—C1—C2	108.75 (12)	O4—C11—H11C	109.5
C12—C1—C2	111.26 (12)	H11A—C11—H11C	109.5
N1—C1—H1	109.1	H11B—C11—H11C	109.5
С12—С1—Н1	109.1	C17—C12—C13	119.00 (14)
C2—C1—H1	109.1	C17—C12—C1	120.67 (14)
C7—C2—C3	119.79 (13)	C13—C12—C1	120.31 (14)
C7—C2—C1	121.43 (13)	C12—C13—C14	120.43 (18)
C3—C2—C1	118.75 (13)	C12—C13—H13	119.8
C4—C3—C2	120.72 (14)	C14—C13—H13	119.8
С4—С3—Н3	119.6	C15—C14—C13	120.18 (18)
С2—С3—Н3	119.6	C15-C14-H14	119.9
O1—C4—C3	125.04 (15)	C13—C14—H14	119.9
O1—C4—C5	115.36 (14)	C14—C15—C16	119.84 (16)
C3—C4—C5	119.55 (14)	C14—C15—H15	120.1
O2—C5—C6	124.75 (14)	С16—С15—Н15	120.1
O2—C5—C4	115.61 (14)	C15—C16—C17	120.37 (18)
C6—C5—C4	119.64 (13)	C15—C16—H16	119.8
C5—C6—C7	120.76 (14)	C17—C16—H16	119.8
С5—С6—Н6	119.6	C12—C17—C16	120.14 (16)
С7—С6—Н6	119.6	С12—С17—Н17	119.9
C2—C7—C6	119.20 (13)	С16—С17—Н17	119.9
C2—C7—C8	121.88 (12)	O1—C18—H18A	109.5
C6—C7—C8	118.89 (13)	O1—C18—H18B	109.5
C7—C8—C9	110.34 (12)	H18A—C18—H18B	109.5
С7—С8—Н8А	109.6	O1-C18-H18C	109.5
С9—С8—Н8А	109.6	H18A—C18—H18C	109.5
С7—С8—Н8В	109.6	H18B-C18-H18C	109.5
С9—С8—Н8В	109.6	O2—C19—H19A	109.5
H8A—C8—H8B	108.1	O2—C19—H19B	109.5
N1—C9—C10	109.60 (12)	H19A—C19—H19B	109.5
N1—C9—C8	108.29 (11)	O2—C19—H19C	109.5
C10—C9—C8	112.19 (12)	H19A—C19—H19C	109.5
N1—C9—H9	108.9	H19B—C19—H19C	109.5
С10—С9—Н9	108.9		
C9—N1—C1—C12	-177.34 (12)	C5—C6—C7—C8	-179.14 (14)
C9—N1—C1—C2	-55.63 (14)	C2—C7—C8—C9	9.86 (19)
N1—C1—C2—C7	16.42 (18)	C6—C7—C8—C9	-171.91 (13)
C12—C1—C2—C7	137.00 (14)	C1—N1—C9—C10	-163.99 (11)
N1—C1—C2—C3	-161.44 (13)	C1—N1—C9—C8	73.33 (15)
C12—C1—C2—C3	-40.86 (19)	C7—C8—C9—N1	-46.80 (16)
C7—C2—C3—C4	-4.0 (2)	C7—C8—C9—C10	-167.89 (11)
C1—C2—C3—C4	173.89 (14)	C11—O4—C10—O3	3.2 (2)
C18—O1—C4—C3	-0.3 (2)	C11—O4—C10—C9	-175.80 (13)
C18—O1—C4—C5	-177.71 (14)	N1—C9—C10—O3	2.7 (2)
C2—C3—C4—O1	-178.59 (14)	C8—C9—C10—O3	123.00 (16)

C2—C3—C4—C5	-1.2 (2)	N1-C9-C10-O4	-178.38 (12)
C19—O2—C5—C6	-5.8 (2)	C8—C9—C10—O4	-58.05 (15)
C19—O2—C5—C4	173.61 (15)	N1-C1-C12-C17	-130.54 (15)
01—C4—C5—O2	3.6 (2)	C2-C1-C12-C17	109.27 (16)
C3—C4—C5—O2	-174.04 (14)	N1-C1-C12-C13	51.37 (18)
O1—C4—C5—C6	-177.03 (13)	C2-C1-C12-C13	-68.82 (19)
C3—C4—C5—C6	5.4 (2)	C17-C12-C13-C14	1.2 (3)
O2—C5—C6—C7	175.00 (14)	C1-C12-C13-C14	179.29 (16)
C4—C5—C6—C7	-4.4 (2)	C12-C13-C14-C15	0.5 (3)
C3—C2—C7—C6	5.0 (2)	C13—C14—C15—C16	-1.9 (3)
C1—C2—C7—C6	-172.82 (13)	C14—C15—C16—C17	1.6 (3)
C3—C2—C7—C8	-176.77 (13)	C13—C12—C17—C16	-1.4 (2)
C1—C2—C7—C8	5.4 (2)	C1-C12-C17-C16	-179.55 (15)
C5—C6—C7—C2	-0.9(2)	C15-C16-C17-C12	0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$		
N1—H1N····O3 ⁱ	0.91 (2)	2.27 (1)	3.0918 (17)	149 (2)		
C1—H1···O3 ⁱⁱ	1.00	2.55	3.503 (2)	160		
C19—H19B···O2 ⁱⁱⁱ	0.98	2.53	3.270 (2)	132		
Summatry addes: (i) $-x \pm 1$, $y \pm 1/2$, $-z \pm 2$; (ii) $x = y \pm 1$, $z = (iii) - x = y \pm 1/2$, $-z \pm 1$						

Symmetry codes: (i) -x+1, y+1/2, -z+2; (ii) x, y+1, z; (iii) -x, y-1/2, -z+1.

Fig. 1

Fig. 2