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Background: FGFR mutations are routinely explored in lung adenocarcinoma by sequencing tumoral DNA. The aim
of this study was to evaluate a fluorescent-labelled erlotinib based theranostic agent for the molecular imaging of
mutated EGFR tumours in vitro and ex vivo using a mice xenograft model and fibred confocal fluorescence

Methods: The fluorescent tracer was synthesized in our laboratory by addition of fluorescein to an erlotinib
molecule. Three human adenocarcinoma cell lines with mutated EGFR (HCC827, H1975 and H1650) and one
with wild-type EGFR (A549) were xenografted on 35 Nude mice. MTT viability assay was performed after exposure to our
tracer. In vitro imaging was performed at 1 uM tracer solution, and ex vivo imaging was performed on fresh tumours
excised from mice and exposed to a 1 uM tracer solution in PBS for 1 h. Real-time molecular imaging was performed
using FCFM and median fluorescence intensity (MFI) was recorded for each experiment.

Results: MTT viability assay confirmed that addition of fluorescein to erlotinib did not suppress the cytotoxic of erlotinib
on tumoral cells. In vitro FCFM imaging showed that our tracer was able to distinguish cell lines with mutated £GFR from
those lines with wild-type EGFR (p < 0.001). Ex vivo FCFM imaging of xenografts with mutated £GFR had a significantly
higher MFI than wild-type (p < 0.001). At a cut-off value of 354 Arbitrary Units, MFI of our tracer had a sensitivity of 100%
and a specificity of 96.3% for identifying mutated EGFR tumours.

Conclusion: Real time molecular imaging using fluorescent erlotinib is able to identify ex vivo tumours with

Keywords: Epidermal growth factor, EGFR, Molecular imaging, Lung cancer, Fibred confocal fluorescence

Background

Lung cancer is the most frequent cause of cancer related
death in the world [1]. Lung adenocarcinoma is the most
common histological subtype [2]. In Europe, 17.3% of lung
adenocarcinoma tumours harbour a mutation of the epi-
dermal growth factor receptor (EGFR) [3]. EGFR is a
transmembrane tyrosine kinase receptor that promotes
cell proliferation and survival [4]. De novo activating
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mutations occurring on the intracellular tyrosine kinase
activity domain of EGFR can drive tumour growth [4].
Targeted tyrosine kinase inhibitor (TKI) therapies such as
gefitinib or erlotinib inhibit EGFR activation by competi-
tive inhibition at the ATP binding site. As first-line treat-
ment, these TKI improve progression-free survival in
patients with tumours harbouring EGFR sensitive muta-
tions [5]. Therefore, identification of patients with tu-
mours harbouring such mutations is now recommended
to guide first line treatment.

To identify these patients, the gold standard technique
is DNA sequencing of EGFR on tumoral material. In
France, this analysis is performed in regional oncologic
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molecular platforms for all patients with lung adenocar-
cinoma. This approach allows identification of all eligible
patients but has dramatically increased the workload of
pathologists. Several techniques have been developed to
test for EGFR mutations [6]. As most of these tech-
niques are expensive, diagnostic algorithm and nomo-
gram have been proposed to rationalize their use [7, 8].

Theranostic agents can be defined as therapeutic agent
used for diagnostic purposes. They are of increased interest
in oncology [9] and could be an innovative way to rational-
ize the use of EGFR analysis technics. To date, most of the
published theranostic agents targeting EGFR have used full
body imaging such as Positon Emission Tomography (PET)
[10-21] or magnetic resonance imaging (MRI) [22, 23].
These imaging techniques can provide useful information
on the bio-distribution of theranostic agents but expose pa-
tients to radiations and to a drug that may have systemic ef-
fects. Furthermore, these imaging techniques cannot
provide a sufficient resolution for cellular imaging.

Fibred confocal fluorescent microscopy (FCFM) is a
non-invasive imaging technique that can provide real-
time in vivo microscopic imaging during a bronchoscopy
[24-26]. FCFM can be used with fluorescent tracers in
several pathologic conditions such as invasive aspergil-
losis using a fluorescent specific peptide [27]. In oncol-
ogy, fluorescent agents have been described for the
assessment of tumour response [28] or for the imaging
of human EGFR 2 [29]. For EGFR imaging, fluorescent
monoclonal antibodies have been used in colorectal can-
cer to assess EGFR expression [30, 31]. However, these
antibodies target the extracellular domain of the EGFR
and are not able to identify EGFR mutations. As erloti-
nib and gefitinib bind to the intracellular domain of mu-
tated EGFR, radio-labelled erlotinib and gefitinib have
been assessed to image EGFR mutated tumours [15, 16,
20, 21]. To our knowledge, no study has assessed the
feasibility of using fluorescence-labelled EGFR TKI as a
theranostic agent in order to perform real time molecu-
lar imaging of EGFR-mutated tumours.

The aim of this study was to evaluate a fluorescent-la-
belled erlotinib-based tracer for the molecular imaging
of EGFR-mutated tumours in vitro and ex vivo using a
mice xenograft model and FCFM imaging.

Methods

Cell lines

We used four human tumoral cell lines obtained from
the American Type Culture Collection (ATTC). Cells
lines were chosen according to their EGFR status and
their sensitivity to erlotinib. HCC827 cell line, which
harbours E746_A750 mutation on the exon 19 of EGFR,
is hypersensitive to erlotinib and has more than 20 cop-
ies of the mutated EGFR gene [32]. H1650 cell line,
which harbours the DelE746_A750 mutation on the
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exon 19 of EGFR, is insensitive to erlotinib because of
persistent activation of the p-ten pathway [33] and has 4
copies of the EGFR-mutated gene [34]. A549 cell line,
with wild-type EGFR, is resistant to erlotinib and has 2.5
copies of the EGFR gene [35]. H1975 cell line harbours
two EGFR mutations: T790 M, which confers resistance
to erlotinib [36] and L858R, which confers sensitivity to
erlotinib. H1975 has from 2.8 to 6.2 copies of the EGFR
gene [34, 35] and is insensitive to erlotinib. HCC827,
H1650, H1975 were cultured in RPMI (with 10% foetal
calf serum) and A549 cells were cultured in DMEM
(with 10% foetal calf serum) according to ATTC recom-
mendations. All cells were grown at 37 °C in an atmos-
phere of 5% CO2.

Animal model

All animal experiments were approved by Rouen Univer-
sity animal research committee (approval n° 0312-01).
Forty-eight 4-weeks-old female Swiss Nude Nu/Nu mice
were used for the study. Animals were commercially ac-
quired to Charles Rivers Laboratories, Saint-Germain-
sur-LArbersle, France. Animals were kept in an ap-
proved laboratory animal facility. They were housed in a
ventilated cage with a room temperature set at 25°C, a
humidity set between 45 and 49% and 12-h light and ob-
scurity alternation. Each cage contained a maximum of
5 animals. Animals had unrestricted access to food and
water. Cages were cleaned weekly. All animal experi-
ments were performed under sterile conditions. Xeno-
grafts were performed using 1x 10° of exponentially
growing tumoral cells. Tumoral cells were removed from
the plate with 2ml 0.05% EDTA trypsin and suspended
in phosphate-buffered saline (PBS). Subcutaneous injec-
tion of tumoral cells was performed in mice’s flank
under general anaesthesia induced by inhalation of 2%
isoflurane. Xenografts were grown until they reached a
size of 2mm. To allow 8 mice to be analysed in each
group, we hypothesize that at least two-third of xeno-
grafted mice would survive until sufficient tumoral
growth.

EGFR mutated fluorescent tracer

Tracer was designed and produced at the COBRA UMR
CNRS 6014 laboratory, Rouen University, France. The
tracer was obtained by adding fluorescein to erlotinib
using a linker (Fig. 1). The tracer had a molar mass of
1374.37 g/mol. Its maximum fluorescence excitation
wavelength was 507 nm and the maximal emission wave-
length was 528 nm. Full details of our tracer synthesis
can be found in Additional file 1.

Imaging
FCFM imaging was performed using a Cellvizio lab®
system (Mauna Kea Technologies, France). The 488 nm
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Fig. 1 Fluorescent erlotinib based tracer
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laser light source illuminates the tissue through an optical
fibre probe that is applied onto the tumour surface. The
same probe and laser source were used throughout the
study. The system captures fluorescent signal emitted in a
wavelength range from 500 to 620 nm. The probe had a
diameter of 1.4 mm corresponding to a 603 pm circular
field of view. Lateral and axial resolution of the system
were 5pum and 15 pm respectively. Before each imaging
procedure, the probe was calibrated using dedicated Cell-
vizio® tool, according to the manufacturer recommenda-
tions. During the imaging procedure, the optical probe
was recalibrated every 30min. to avoid spontaneous
auto-fluorescence noise. For each experiment, real-time
imaging was captured at a frame rate of 8 to 12 images/
second using the CellVizio v1.2.0 dedicated software
(Mauna Kea Technologies, Paris, France). Images were ob-
tained by direct application of the probe tip onto the spe-
cimen. Recorded images were analysed using the CellVizio
Viewer 1.6 (Mauna Kea Technologies, Paris, France). Each
recorded sequence was analysed, frame-by-frame, with
lower and upper level thresholds of the look-up table set
to 1 and 8000 expressed in arbitrary unit (AU). For each
image, the median intensity was recorded. For each se-
quence, the image with the maximal median fluorescence
intensity (MFI) was selected. MFI was calculated by Cell-
Vizio Viewer Signal Quantification toolbox that ranged
from 1 to 8000 AU.

In vitro experiments

Cell viability after exposure to the tracer was assessed
using  3-[4,5-diméthylthiazol-2yl]-2,5-diphényltétrazo-
lium bromide test (MTT) (CellTiter96° non-radioactive
cell proliferation assay (Promega, Madison, USA). Cell

viability was assessed at increased concentration of
tracer and genuine erlotinib. As our tracer had a
3.5-fold higher molar mass than erlotinib, cell viability
assay was also performed at equimolar erlotinib con-
centrations. For each cell line, we calculated the con-
centration that resulted in 50% cell death (IC50). MTT
assay was chosen because of its lack of interference
with the emission wavelength of our tracer.

In vitro imaging was performed on centrifuged cell pellet.
Cells were removed from the plates at confluence by trypsi-
nation (1 ml of Trypsin in 0.05% EDTA), suspended in 8 ml
of culture medium, centrifuged twice at 2000 rpm for 3 min
and finally re-suspended in PBS at room temperature. 1 x
10° cells were re-suspended in a non-fluorescent culture
container using 0.5ml of PBS containing 1 pmol/l of
tracer, 1umol/l of erlotinib or PBS alone during an
hour at 37°C, in the dark, with 5% CO2 atmosphere.
Cells were then washed twice using PBS. Each washing
was followed by 3 min centrifugation at 2000 rpm.
FCEM imaging was then immediately performed by ap-
plication of the probe on the cell pellet. Experiments
and imaging were performed six times for each cell line.
Results of imaging are expressed as median fluores-
cence intensity (MFI), in arbitrary units (A.U).

Ex vivo experiments

For ex vivo imaging, xenografts were excised under gen-
eral anaesthesia after intra-peritoneal injection of 100
mg/kg of ketamine and 10 mg/kg of xylazine. After
xenograft excision, and under general anaesthesia, mice
were sacrificed by cervical dislocation. The xenograft
was then immerged in a 2ml solution containing
1 umol/l of tracer at room temperature and kept out of
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light. After an hour, each tumour was washed by con-
secutive immersion in 3 separate wells containing 2 ml
of 0.9% saline serum. FCFM imaging was then immedi-
ately performed by application of the optical probe on
the surface of each xenograft. Experiments and imaging
were performed at least eight times for each cell line.
Results of imaging are expressed as MFI.

Statistics

Results are expressed as headcounts and percentages,
medians, and first and third quartiles (IQR) or means
and standard deviation (SD). Comparisons were per-
formed using Student T-test and ANOVA test. Correla-
tions were assessed using the Spearman correlation
coefficient. ROC-curve was used to establish sensitivity
and specificity and to determine optimal cut-off value.
All tests were two-sided, the type I error rate was set at
0.05. Analyses were performed using GraphPad Prism
6° for Mac OS X° (GraphPad Software, La Jolla, CA,
USA).
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Results

Cell viability assay

Cell viability assay confirmed the sensitivity profile to er-
lotinib for each cell line. HCC827 was the only cell line
sensitive to erlotinib. Cell viability assay showed that the
erlotinib fluorescent tracer and erlotinib did not differed
significantly regarding their IC50 which was 100 nmol/l
in both cases (p = 0.1) (Fig. 2).

In vitro imaging

FCEM imaging of cell lines exposed to erlotinib alone
did not show any spontaneous fluorescence. MFI
obtained during FCFM imaging of cell pellets after
exposure to 1 pmol/l of tracer for an hour differed in
each tumoral cell line, and was significantly higher in
HCC827 cells (MFI=819 AU (728-1020] vs. MFI =217
AU [188-251] in A549; MFI=404 AU [356-566] in
H1975; and MFI =417 AU [315-491] in H1650; p < 0.001).
The tracer was able to distinguish cell lines with a mutated
EFGR from wild-type EGFR cell lines, and to distinguish

HCC827 cell line
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Fig. 2 MTT viability assay for each cell line to increasing concentrations of erlotinib, tracer and DMSO. Results are expressed in percentage of cell
alive to increasing concentrations of tracer, erlotinib and control (DMSO) (ns = not significant)
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cell lines with a sensitive phenotype (HCC827) from those
with a resistant phenotype (H1975 and H1650) (p = 0.002)
(Fig. 3).

Ex vivo imaging

FCFM imaging on excised tumour was performed on 8
HCC827, on 8 A549, on 8 H1975, and on 11 H1650 xe-
nografts. FCFM imaging of xenografts performed before
immersion in the tracer solution showed no spontaneous
fluorescence (Fig. 4).

MEFI was significantly lower in xenografts derived from
A549 cell line, which harbours a wild-type EGFR: 214
A.U [78-302] when compared to the ones derived from
HCC827 cell line: A.U=818 [657-1019], H1650 cell
line: A.U =503 [432—-675] and H1975 cell line: A.U=
578 [428-915], (p<0.001, p=0.013, p=0.015 respect-
ively). Using a cut-off value of 354 A.U, MFI had a sensi-
tivity of 100% and a specificity of 96.3% for identifying
mutated EGFR tumours. MFI did not differ significantly
between xenografts derived from the three cell lines with
a mutation of EGFR (HCC827, H1650 and H1975).
Therefore, ex vivo imaging could not distinguish tu-
mours with a sensitive phenotype from those with a re-
sistant phenotype to erlotinib (Fig. 5).

Discussion

This study shows for the first time that fluorescent er-
lotinib can be used as a tracer to distinguish lung
adenocarcinoma cells with EGFR mutation from
wild-type EGER, in real time, both in vitro and ex vivo.

15004 p = 0.0022 :
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Fig. 3 Median Intensity recorded by FCFM imaging following 1-h contact
between cell pellet and tracer at a concentration of 1 umol/I for each cell
line: A549, H1975, H1650 and HCC827 (p < 0.001) (ns = not significant)
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The ex vivo technique had a sensitivity of 100% and
specificity of 96% for the diagnosis of EGFR mutation.
In this study, use of labelled erlotinib as an ex vivo
fluorescent tracer did not allow to differentiate EGFR
mutated cells that are sensitive to erlotinib, from the
resistant ones.

In this study, the cytotoxic activity of erlotinib was not
altered by the adjunction of the fluorescein residue des-
pite modifications of the molar mass and of the steric ef-
fect of the molecule. The preserved cytotoxic activity of
the tracer addresses one potential limitation, as no
standard confocal microscopy was performed to confirm
the intracellular localization of the tracer. The functional
consequences of the adjunction of the fluorescein resi-
due were not assessed in the study. They may have a sig-
nificant impact in the activity of the erlotinib. Despite
such impact, our tracer kept a cytotoxic activity. This is
important to ascertain the theranostic feature of this
erlotinib-based tracer. Furthermore, previous studies on
theranostic erlotinib only assessed the EGFR phosphor-
ylation following exposure to the tracer and not its cyto-
toxic effect [14, 15, 20, 37].

In the in vitro experiments, the tracer was able to dis-
tinguish tumoral cells with a wild-type EGFR from those
with a mutated EGFR. Likewise, the tracer was able to
distinguish tumoral cells with a sensitive phenotype from
those with a resistant one. This result has to be inter-
preted cautiously. Firstly, this difference in fluorescence
intensity could be partially explained by the number of
EGFR copies that each cell lines carry. Indeed, H1650
and H1975 have less than 5 copies of EGFR [34, 35]
whereas as HCC827 has more than 20 copies [32]. Yet,
unlike in colorectal cancer, the number of EGFR copies
has no clinical or therapeutic consequence on the man-
agement of lung cancer. Therefore, this result should
not preclude the use of this tracer in lung adenocarcin-
omas. Secondly, the theranostic agent presented in this
study only inhibits the EGFR pathway whereas other
pathways can be involved in tumour growth. For in-
stance, the H1650 cell line has an abnormal activation of
p-ten pathway that induces tumour growth and confers
resistance to erlotinib [33] despite the effective inhib-
ition of the EGFR pathway. To address this limitation,
the combination with other published theranostic
molecules targeting could be interesting [28, 38, 39].
Thirdly, other mutations, such as T790 M mutation,
present in the H1975 cell line, may have modified
the binding of this tracer to EGFR. Indeed, T790 M
mutation increases EGFR affinity to ATP which acts
as a competing inhibitor of TKI [36]. A way to ad-
dress this limitation would be to develop a tracer
using third generation TKI that are effective to stop
tumour growth in patients harbouring T790 M muta-
tions [40-42].
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Fig. 4 FCFM imaging from ex vivo xenograft following 1-h immersion in tracer at a concentration of 10 umol/I. Image A: HCC827 line - Image B:
H1650 line - Image C: H1975 line - Image D: A549 line
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Fig. 5 Median Fluorescence Intensity recorded by FCFM imaging following 1-h immersion in a solution of tracer at 1 umol/I for xenografts
derived from cell line HCC827, H1650, A549 and H1975 (p < 0.001)
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In this study, the tracer was not able to distinguish
tumours harbouring the T790 M resistance mutation
from the other EGFR-mutated cells, but its presence
is rare in TKI-naive patients [43, 44]. If the T790 M
mutation is the most common acquired resistance
mechanism to EGFR specific TKI [45, 46], other
mechanisms of resistance such as MET amplification
can occur [45, 46]. Hence, for patients with tumoral
progression under TKI treatment, bronchial biopsies
should be repeated in order to identify the resistance
mechanism and to give an adequate second line treat-
ment. As EFGR mutations are not found in normal
tissue, positivity of the ex vivo test would confirm
that the bronchial sample contains tumoral cells. This
rapid and easy to perform ex vivo imaging process
may improve the diagnostic yield of bronchoscopy. In
such situation, the presence of fluorescence following
ex vivo use of tracer would guarantee to the physician
that the biopsy taken is an adequate tumoral sample
and not necrotic tissue. As the technique avoids any
systemic administration of a modified licensed drug
to the patient, any risk of adverse event for the pa-
tient is eluded.

However, we did not perform any test on human bron-
chial samples in that study. Thus, we are not able to as-
sess any deleterious consequence of the immersion of
the biopsy in the tracer. Similarly, the MFI cut-off value
chosen to diagnose mutated EGFR tumors may be differ-
ent in human bronchial samples as their spontaneous
fluorescence may create background noise.

In conclusion, the use of this tracer was associated
with a high sensitivity to detect swiftly mutated EGFR
tumour. Because it wouldn’t have to be administered
to patients, we believe that this fluorescent tracer
could be used as a pre-test diagnostic tool to confirm
that the sampling of the tumour was adequate in pa-
tient with progressive disease under EGEFR specific
TKI therapy. These experimental results require fur-
ther confirmation studies on fresh human bronchial
biopsies.

Conclusions

Our study describes a novel fluorescent theranostic mol-
ecule that can perform ex vivo for molecular imaging of
EGFR mutations and identify mutated form of EGEFR.
Further studies using human tumours are required to
evaluate the usefulness of this tracer as a diagnostic tool
of EGFR mutations.

Additional file

Additional file 1: Tracer synthesis. Chemical steps to produce the tracer
used in our experiments. (DOCX 474 kb)
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