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Abstract

Perchlorate is a water-soluble contaminant found throughout the United States and many

other countries. Perchlorate competitively inhibits iodide uptake at the sodium/iodide sym-

porter, reducing thyroid hormone synthesis, which can lead to hypothyroidism and metabolic

syndromes. Chronic perchlorate exposure induces hepatic steatosis and non-alcoholic fatty

liver disease (NAFLD) in developing threespine stickleback (Gasterosteus aculeatus). We

hypothesized that perchlorate would also induce zebrafish (Danio rerio) to develop pheno-

types consistent with NAFLD and to accumulate lipids throughout the body. We exposed

zebrafish embryos to four concentrations of perchlorate treated water (10μg/L, 10mg/L,

30mg/L, and 100mg/L) and a control (0mg/L) over the course of 133 days. Adult zebrafish

were euthanized, sectioned, H&E and Oil Red-O stained, and analyzed for liver morphology

and whole body lipid accumulation. In a representative section of the liver, we counted the

number of lipid droplets and measured the area of each droplet and the total lipid area. For

whole body analysis, we calculated the ratio of lipid area to body area within a section. We

found that zebrafish exposed to perchlorate did not differ in any measured liver variables or

whole body lipid area when compared to controls. In comparison to stickleback, we see a

trend that control stickleback accumulate more lipids in their liver than do control zebrafish.

Differences between the species indicate that obesogenic effects due to perchlorate expo-

sure are not uniform across fish species, and likely are mediated by evolutionary differences

related to geographic location. For example, high latitude fishes such as stickleback evolved

to deposit lipid stores for over-winter survival, which may lead to more pronounced obeso-

genic effects than seen in tropical fish such as zebrafish.

Introduction

Obesity rates in the United States, and in many other countries around the world, have risen

persistently for several decades in what is known as the global obesity epidemic [1]. The trend

has profound implications for obesity-related diseases as well as economic and social struc-

tures within communities [2–4]. The view within the scientific community has long been that
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high-calorie diets and increasingly sedentary lifestyles are the main drivers of this trend [5].

Although these factors should not be discounted, recent evidence suggests that exposure to

environmental contaminants may also influence fat accumulation in animals, including

humans [6, 7]. This link between obesity and chemical factors is known as the obesogen

hypothesis, and the chemicals (a class of endocrine disrupting compounds [EDCs]) that pro-

mote abnormal lipid accumulation are known as obesogens [6–9].

EDCs can disrupt normal hormone levels, and potentially affect lipid accumulation,

through a number of pathways. For example, many EDCs affect the regulation of sex hor-

mones, the hypothalamic-pituitary-thyroid (HPT) axis, or other endocrine pathways [6, 10].

Changes in androgen and estrogen levels (sex hormones) influence lipid accumulation and

can cause obesity [11, 12]. For example, estrogens control subcutaneous fat accumulation [13]

and xenoestrogens, such as hexachlorocyclohexanes, are linked to the development of meta-

bolic abnormalities in obese women [14]. Many of these chemicals work indirectly through

epigenetic mechanisms by affecting key genes linked to obesity. Specifically, phthalate esters

such as bisphenol-a and mono-(2-ethylhexyl) phthalate upregulate adipocyte or lipogenic

genes which can lead to obese phenotypes [15, 16]. Additionally, EDCs can act directly on the

HPT axis by altering levels of circulating thyroid hormones (triiodothyronine [T3] and thyrox-

ine [T4]) which regulate, among other things, lipid metabolism [6]. Hypothyroidism is linked

to reduced metabolic rates and obesity in humans [17, 18].

Obese individuals often display phenotypes consistent with the spectrum of non-alcoholic

fatty liver disease (NAFLD), a condition characterized by abnormally high lipid content in

liver tissues not due to the consumption of excess alcohol [19]. NAFLD is present in 20–30%

of adults in developed countries, making it the most common liver disorder in this part of the

world [20]. Prolonged accumulation of lipids in the liver can progress to inflammation and

scarring, a stage of NAFLD known as non-alcoholic steatohepatitis (NASH). NASH, in turn,

can progress to more serious hepatic fibrosis, decompensated cirrhosis, hepatocellular carci-

noma, or liver failure [21, 22]. A number of factors can influence the progression of NAFLD,

including insulin resistance, lifestyle (including nutrition), genetics, epigenetics, and the endo-

crine system [22, 23].

The effects of the endocrine system on liver health and obesity are of particular concern.

Estrogen, for example, has a protective effect against NAFLD [23, 24], and women treated with

the antiestrogen tamoxifen show a greater risk of developing NASH [25]. Estrogen also sup-

presses hepatic fibrosis by lessening activation of hepatic stellate cells in murine models [26].

Accordingly, estrogen replacement may reverse the progression of the disease in mice and

humans who have mutations in the aromatase gene, which is involved in the synthesis of estro-

gens [27, 28]. Endocrine factors leading to NAFLD can also be epigenetic in nature. For exam-

ple, prenatal exposure to tributyltin, a compound which inhibits aromatase and therefore

estrogen synthesis, induces a phenotype similar to NAFLD in the offspring of exposed female

mice as well as in the next two generations [29]. Dysregulation of the HPT axis, particularly a

reduction in thyroid function and low levels of thyroid hormone, are also linked with NAFLD

and NASH in animals and humans [23, 30].

Perchlorate (ClO4
-) is a water-soluble anion and strong oxidizing agent with a variety of

military and industrial applications, including rocket fuel, matches, fireworks, and airbags

[31–33]. Due to its widespread use, high water solubility, and chemical stability, perchlorate

has become widely distributed in the United States with contamination detected in at least 45

states [34], as well as in many other countries around the world. The compound has been doc-

umented in drinking water and in 213 of 285 common foods and drinks [35]. The U.S. Centers

for Disease Control and Prevention also discovered perchlorate in the urine of all 2820 Ameri-

cans tested with the highest levels found in children [36].
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Due to ionic similarity of perchlorate to iodide, the perchlorate anion competitively inhibits

the uptake of iodide at the sodium/iodide symporter (NIS) in thyroid follicular cells which can

lead to decreased T3 and T4 levels and hypothyroidism [37]. Perchlorate exposure during

development also has organizational effects on the vertebrate thyroid by leading to cellular

hypertrophy, depleted colloid, and increased angiogenesis [38–40].

Our research team has employed the threespine stickleback (Gasterosteus aculeatus) fish

model in many studies of perchlorate toxicity. For example, perchlorate impairs swimming

performance and reproductive behaviors [41]. Perchlorate also affects normal androgen levels

in embryos and disrupts gonadal development [40, 42, 43]. Because perchlorate disrupts the

HPT axis, it is a prime candidate as a possible obesogen. Indeed, perchlorate increases lipid

accumulation in developing stickleback; fish exposed to perchlorate during development form

lipid droplets around thyroid tissue and these effects are not rescued with exogenous iodine

[44]. Perchlorate exposure can also induce hepatic steatosis and cellular damage consistent

with early onset of NAFLD in stickleback [45].

In this study, we investigate whether perchlorate exposure has obesogenic effects on devel-

oping zebrafish (Danio rerio) in order to determine if effects seen in stickleback are also found

in another fish model. We exposed zebrafish to the same perchlorate concentrations as in our

prior stickleback studies (plus an additional low concentration treatment) and reared these

fish to reproductive maturity. We employed the same endpoints as used in stickleback to

investigate NAFLD [45] as well as histology of whole-body sections and lipid specific staining

to determine if lipids accumulate throughout the body.

Materials and methods

All research protocols were approved by Northern Arizona University’s IACUC, protocol #

17–004. Fish were euthanized for histological preparation via overdose of buffered MS-222.

AB strain zebrafish embryos were collected directly after fertilization in tanks housing

males and females at Northern Arizona University, mixed to disperse genetic diversity, and

immediately distributed among 25 250ml glass jars. Each jar contained one of the four nomi-

nal perchlorate treatments (10μg/L, 10mg/L, 30mg/L, and 100mg/L) or control water (no per-

chlorate added, 0mg/L). Each concentration was replicated five times resulting in five jars

containing 100ml each of four perchlorate treatments or the control. Each treatment solution

also contained 500mg/L Instant Ocean for appropriate salinity and was prepared in reverse

osmosis purified water. A perchlorate stock of 10g/L was created by dissolving 10g of sodium

perchlorate in 1L of reverse osmosis purified water. This stock was diluted, based on the vol-

ume of water, to create the 10mg/L, 30mg/L, and 100mg/L perchlorate treatments. The 10μg/L

treatment was created by dilution from the 100mg/L treatment.

Water was changed and dead embryos and larvae were removed daily for the first 25 days

post-fertilization (dpf). After 25dpf, the fish were transferred to static 37.9L aquaria, filled to

2L of water per fish to keep fish density consistent across treatments. Each aquarium was

equipped with an air stone and a sponge filter without the use of activated carbon. Each aquar-

ium corresponded with an earlier 250ml jar, and fish count varied among tanks due to differ-

ences in mortality. Tanks of different treatments were arranged randomly on shelves in the

experimental space to avoid positional associations between treatment and environmental

conditions, and the ambient temperature was kept between 29.5˚C and 32.5˚C.

Larvae were fed live rotifers 3–4 times daily until large enough to consume pellet food. The

pellet food (GEMMA Micro 300, Skretting) was introduced before this point, to prepare the

larvae for the diet change. Once fully transitioned to pellet food (20dpf), fish were fed once a

day. Water changes on static tanks occurred every two weeks because this interval maintains
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water pH and ammonia levels (<2mg/L) but also maintains prepared perchlorate concentra-

tions [43]. Aquarium test strips were used to monitor pH and ammonia levels weekly, but the

water chemistry never fell outside of “safe” parameters. At 133dpf, adult fish were euthanized

with pH-neutral tricaine methanesulfonate (MS-222), weighed, and photographed laterally to

obtain the standard length. Fish were transferred to 10% neutral buffered formalin for histo-

logical analysis.

Fixation of lipids was achieved using a procedure adapted from Tracy and Walia [46]. Inci-

sions were made on the ventral sides of each fish to promote penetration of fixatives prior to

treatment with a linoleic acid, lecithin, and ethylene glycol solution for five days. Samples were

then rinsed several times with 70% ethanol over an eight-hour period and then rinsed in sev-

eral changes of distilled water over an eight-hour period before transfer to a 2% aqueous chro-

mic acid solution for 10 hours at 4˚C. Specimens were then rinsed in several changes of

distilled water and placed in 5% sodium bicarbonate for 24 hours at room temperature [46].

Lastly, specimens were rinsed in several changes of distilled water then dehydrated in a graded

series of ethanol and xylene using a Shandon Citadel 2000 tissue processor (Leica

Microsystems).

Fish were embedded individually in paraffin and sectioned at 10μm. Two ventral, two

medial, and two dorsal histological sections were taken from each fish along the frontal plane.

One slide from each anatomical position was stained with a standard Harris’ hematoxylin and

eosin (H&E) protocol [47]. The other matching sections were prepared and stained with a

modified protocol from Tracy and Walia [46]. Because our sections were larger than in Tracy

and Walia, they were placed in Oil Red O for two hours on an agitating plate, then 85% propyl-

ene glycol for three minutes on an agitating plate, rinsed in water, and counterstained with

Harris’ hematoxylin for one minute. Images of each slide were obtained using a Leica DM6 B

digital microscope and Leica Application Suite X (LASX) software (Leica Microsystems). This

software was also used to quantify the area occupied by lipids on each slide.

The sections stained with H&E were used for the analysis of liver lipid content to provide

comparison with stickleback from Minicozzi et. al. (2019). Lipids in the liver were analyzed

from the most anterior lobe, and areas with large arteries and veins were avoided. Because gly-

cogen storage appears similar in color to lipid droplets when using this staining technique, a

number of filters were applied in the Leica software to automate the analysis while ensuring

that only lipid was counted. Because lipid droplets are generally round, all features with a

roundness factor below 0.25 (where a value of 1 is a perfect circle) were excluded. All features

smaller than 25 pixels (~5μm) were also filtered out to reduce noise. In some cases, manual

adjustments were made to remove non-lipid structures not recognized by the filters. Represen-

tative images from the liver of each fish were evaluated according to three metrics by the Leica

software: number of lipid droplets, median size of lipid droplets present in a section, and area

occupied in the section by lipid droplets (total lipid area). All images were taken at 400x and

the sample of liver completely filled the field of view resulting in an area of identical size cap-

tured for each individual. Because laboratory strains of zebrafish do not have genetic sex deter-

mination [48], H&E slides were used to determine the sex of each individual through

identification of ovaries (female) or testes (male, S1 Fig).

In Oil Red O-stained slides, lipids in adipose tissue appeared bright red. To quantify the

ratio of lipid content in the body (total body lipid content), the LASX software was set to pick

bright red areas in sections from the ventral, medial, and dorsal sections of the entire fish.

Because lipid deposits outside of the liver throughout the body and can occur in a variety of

shapes and sizes, the only necessary filter used in this analysis excluded areas smaller than 100

pixels (~20μm). In some cases, the color threshold was manually adjusted to correct for slight

variations in stain color. Images for analysis were taken at a magnification of 5x. The outline of
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each fish section was manually traced to give to total area of the fish’s body for each of the sec-

tion types. To obtain the lipid content ratio of each section of the body, the total lipid area of

each section was divided by the total area of the body. To calculate the total body lipid ratio,

we added the lipid area of all three sections and the body area of all three sections (ventral,

middle, and dorsal) and divided total body lipid area by the total body area.

All statistical tests were conducted with IBM SPSS statistics 24 (IBM Corp. 2016). Analysis

of variance (ANOVA) was used to assess relationships between perchlorate exposure and

mass, standard length, liver lipid droplet size, number of droplets, and total lipid droplet area.

Differences across treatments in total body lipid ratios, as well as lipid ratios for the ventral,

medial, and dorsal sections, were also examined using ANOVA. Sex ratio data were analyzed

using a binomial test comparing the proportion of males in each treatment to 0.5 [48] to deter-

mine if perchlorate altered the sex ratio in developing zebrafish. All statistics were considered

significant if p<0.05.

Results

There was no difference in the mass of the fish across treatments (ANOVA, F4,153 = 1.06, p =

0.38, Table 1) but an ANOVA revealed a difference in the standard length (ANOVA, F4,153 =

2.64, p = 0.036, Table 1). When a Tukey’s post hoc was used, none of the groups showed a dif-

ference from each other (p>0.05 for all post hoc tests). The binomial tests revealed that the

proportions of males in the 30mg/L (0.74) and 100mg/L (0.81) treatments were higher than

the expected 50% sex ratio (p = 0.035 and 0.021 respectively, Table 1).

Histologically, perchlorate appears to have no effect on either whole body lipid accumula-

tion (Fig 1) or lipid accumulation in the liver (Fig 2). Control histological images appear strik-

ingly similar to all of the perchlorate treated sections. Our data indicate no difference in the

total body lipid content between perchlorate exposed fish and control fish (Fig 3, ANOVA,

F4,103 = 1.0, p = 0.41). Similarly, there was no difference in body lipid content when comparing

the ventral (ANOVA, F4,108 = 0.48, p = 0.75), medial (ANOVA, F4,106 = 1.49, p = 0.21), and

dorsal (ANOVA, F4,105 = 1.26, p = 0.29) sections of perchlorate exposed fish to the control sec-

tions (Fig 3).

We also found no noticeable effect of perchlorate on liver morphology. Total lipid area did

not differ between perchlorate-treated fish and controls (ANOVA, F4,106 = 1.69, p = 0.16), nor

did the number of lipid droplets (ANOVA, F4,106 = 1.93, p = 0.11) or the median lipid area

(ANOVA, F4,106 = 1.69, p = 0.16) (Fig 4).

Discussion

The liver of zebrafish did not show abnormal lipid accumulation at any perchlorate concentra-

tion tested, and fish in the control treatment did not differ from perchlorate-treated fish in

Table 1. Mean standard length and mass (+/- standard error of the mean) and sex ratio for the control treatment (0mg/L) and four perchlorate treatments.

Concentration Standard Length (mm) Mass (mg) Sex Ratio (Male) p-value

0mg/L 19.5 +/- 0.48 144 +/- 9.77 0.375 0.454

10μg/L 19.71 +/- 0.33 140 +/- 7.81 0.714 0.078

10mg/L 20.57 +/- 0.28 162 +/- 8.07 0.6 0.424

30mg/L 20.39 +/- 0.33 153 +/- 8.54 0.739 0.035�

100mg/L 19.05 +/- 0.57 140 +/- 12.54 0.813 0.021�

The p-value derives from a binomial test comparing the frequency of males to 0.5. Asterisk denotes a significantly higher proportion of males than 50%.

https://doi.org/10.1371/journal.pone.0254500.t001

PLOS ONE Perchlorate and lipid accumulation in developing zebrafish

PLOS ONE | https://doi.org/10.1371/journal.pone.0254500 August 4, 2021 5 / 13

https://doi.org/10.1371/journal.pone.0254500.t001
https://doi.org/10.1371/journal.pone.0254500


mean lipid droplet size, number of lipid droplets present, or total lipid area. This contrasts

with our findings in the threespine stickleback fish model (Minicozzi et al. 2019). Not only do

the two species differ in their response to perchlorate exposure, but they also show differences

in lipid content of the liver in control fish. The liver of stickleback in control conditions

appears to have about six times more lipid content than does the liver in control zebrafish (Fig

5A). Similarly, stickleback livers have far more lipid droplets than do zebrafish livers (Fig 5B).

In contrast, the size of lipid droplets in livers of both species appears to be similar (Fig 5C).

Given the dramatic effect of perchlorate exposure on the stickleback liver, we were sur-

prised by the lack of response to perchlorate in the zebrafish liver. In some cases, stickleback

liver lipid content doubled in response to perchlorate, whereas in zebrafish, we observed no

noticeable change (Fig 5). Although liver physiology is thought to be conserved across verte-

brates [49], the general structure of the liver differs among fishes. Stickleback tend to have a

Fig 1. Whole-body lipid accumulation is not affected by perchlorate exposure in zebrafish. Lipid (bright red stain) appears around

the gills, peritoneal cavity and around the spinal cord in both control and perchlorate treated zebrafish. Slides were frontally sectioned at

10μm and stained with oil red O and hematoxylin.

https://doi.org/10.1371/journal.pone.0254500.g001

Fig 2. Lipids do not accumulate in zebrafish liver as a result of perchlorate exposure. Lipid droplets (white circles) appear throughout

the liver, but neither control zebrafish nor perchlorate-treated zebrafish exhibit elevated lipid accumulation. Slides were stained with

hematoxylin and eosin.

https://doi.org/10.1371/journal.pone.0254500.g002
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tubular arrangement of hepatocytes while cyprinids can vary between tubular or a solid

arrangement of hepatocytes [50]. Some fishes (Gobeioidei and Tetraodontiformes) store lipids

as droplets in the liver as a normal part of their physiology [50]. Other animal models show

discrepancies in the onset and severity of NAFLD, which can be based on the species, sex,

genetic strain, and/or diet [51–53]. Male C57/BL6 mice display less steatosis when compared

to male Wistar rats when fed the same high-fat methionine choline-deficient diet (MCD) over

the same time frame [52]. Male rats from three stains (Wistar, Long-Evans, and Sprague–Daw-

ley) developed greater levels of steatosis when compared to the females of the same strains

[52]. Male C57/BL6 mice can develop steatosis in four weeks [52], whereas other mouse strains

(Diet-Induced Animal Model of NAFLD, DIAMOND) can develop the same pathologies in

8–16 weeks [54]. The mechanism of action by which perchlorate increases lipid content in

stickleback liver is unknown and the mechanisms driving divergent responses in fishes war-

rant study.

Stickleback and zebrafish also diverge in the effects of perchlorate exposure on the thyroid.

The stickleback response to perchlorate exposure during development includes hypertrophy of

thyroid follicular cells and lipid accumulation and vascularization in the surrounding tissue

[43]. Zebrafish also respond to perchlorate exposure through morphological changes to thy-

roid tissue but the obesogenic effect is not evident in the surrounding tissue [55]. Excess iodine

rescues the developmental effects of perchlorate exposure on the stickleback thyroid, with the

exception that lipid remains in surrounding tissue [43]. This suggests that lipid accumulation
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due to perchlorate exposure is not a direct effect of perchlorate on thyroid hormone levels.

Interactions between sex hormone synthesis and the HPT axis [56] or epigenetic control of

these systems may interact with perchlorate exposure to determine lipid accumulation in

fishes.
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Some EDCs influence gene expression, including expression of genes related to lipid stor-

age [15, 16]. Tributyltin also has epigenetic effects [29], although it is unknown if these effects

extend to genes related to lipid accumulation. Future investigations should test whether per-

chlorate causes obesogenic effects in some fishes, such as stickleback, by upregulating genes

that promote fat storage.
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Perchlorate exposed line is an average value derived from treatment conditions in which stickleback were affected.

https://doi.org/10.1371/journal.pone.0254500.g005
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Perchlorate treatment at the high exposure levels was associated with a sex ratio skewed

toward males (Table 1). Sex determination in laboratory strains of zebrafish is environmentally

mediated [57]. Other studies investigating the effects of perchlorate on sex ratios in zebrafish

have shown a dose dependent trend towards feminizing gonadal sex [58] as opposed to our

dose dependent shift towards masculinizing the gonadal sex. However, our results in this

study are consistent with a masculinizing effect of perchlorate in stickleback [43, 59]. The

effects of perchlorate on sexual development warrant further study, including the mechanisms

driving divergent results.

The differing response to perchlorate exposure between stickleback and zebrafish may be

due to differences in their evolutionary histories. Zebrafish are native to the Indian subconti-

nent [60], whereas stickleback are native to temperate, subarctic and arctic waters where lipid

accumulation is a widespread adaptation for over-winter survival [61]. Testing the effects of

perchlorate exposure on other fish species from both high and low latitude, including mecha-

nistic studies at the molecular level, would address this hypothesis.

Supporting information

S1 Fig. Representative images of testes (A) and ovaries (B) used to determine the gonadal sex

of each individual. Testes (A) stain light purple (spermatogonia) and dark purple (spermato-

cysts) and ovaries (B) stain light pink (large vitellogenic oocytes) and purple (previtellogenic

oocytes). Gonadal sex was not determined from a small sample of the control (0mg/L, n = 3),

30mg/L (n = 4) and 100mg/L (n = 4) treatments because the gonads were not visible in the sec-

tions.

(TIF)

S1 Data.

(XLSX)
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