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Abstract
This	 study	 characterized	 the	 effect	 of	 moderate-		 or	 vigorous-	intensity	 exercise	
on	leukocyte	counts,	using	fingertip	sampling,	and	mitogen-	stimulated	oxidative	
burst,	measured	in	whole	blood	with	a	point-	of-	care	test.	In	a	randomized	crosso-
ver	design,	13	healthy	adults	(mean ± SD	age:	22 ± 2 years;	seven	male,	six	female)	
cycled	for	30-	min,	once	at	52 ± 5%	V̇O2peak	and	on	another	occasion	at	74 ± 9%	
V̇O2peak.	Blood	was	sampled	at	baseline,	immediately	post-	exercise,	and	15-		and	
60-	min	post-	exercise.	The	leukocyte	differential	and	mitogen-	stimulated	Reactive	
Oxygen	 Species	 (ROS)	 production	 were	 assessed.	 Lymphocytes	 increased	 im-
mediately	post-	exercise	and	decreased	below	pre-	exercise	levels	15-		and	60-	min	
later.	Lymphocyte	mobilization	immediately	post-	exercise	was	59 ± 36%	greater	
with	vigorous-		compared	to	moderate-	intensity	exercise	(p < 0.01).	Neutrophils	
increased	 immediately	 after	 exercise	 (38  ±  19%,	 p  <  0.01)	 remaining	 elevated	
60-	min	later	(50 ± 34%,	p < 0.01;	averaged	across	intensities)	and	did	not	differ	
between	intensities	(p = 0.259).	Mitogen-	stimulated	ROS	production	was	ampli-
fied	immediately	(+32 ± 37%,	p < 0.01)	and	60-	min	post-	exercise	(+56 ± 57%,	
p < 0.01;	averaged	across	intensities)	compared	to	rest	and	did	not	differ	with	in-
tensity	(p = 0.739).	Exercise-	induced	amplification	of	ROS	production	was	abol-
ished	when	correcting	for	neutrophil,	monocyte	and	platelet	counts	and	correlated	
most	strongly	with	neutrophil	mobilization	immediately	(r = 0.709,	p < 0.01)	and	
60-	min	after	vigorous	exercise	(r = 0.687,	p < 0.01).	Leukocyte	kinetics	can	be	as-
sessed	using	fingertip	blood	sampling	in	exercise	settings.	Exercise-	induced	am-
plification	of	oxidative	burst	is	detectable	with	a	point-	of-	care	test,	but	results	are	
strongly	influenced	by	neutrophil	counts,	which	may	not	be	routinely	quantified.
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1 	 | 	 INTRODUCTION

It	 has	 consistently	 been	 demonstrated	 that	 acute	 bouts	
of	 exercise	 almost	 immediately	 increase	 the	 number	 of	
circulating	leukocytes	in	peripheral	blood	(Gabriel	et	al.,	
1992;	Nieman	et	al.,	1989;	Rooney	et	al.,	2018),	due	to	cells	
mobilizing	from	the	endothelium,	spleen	and	bone	mar-
row	which	is	thought	to	be	an	important	part	of	immune	
surveillance	(Dhabhar,	2014;	Dhabhar	et	al.,	2012).	In	the	
hours	after	exercise,	although	some	cells	such	as	neutro-
phils	 increase	further,	 lymphocytes	fall	 to	approximately	
half	 of	 normal	 levels,	 returning	 to	 pre-	exercise	 values	
within	24 h	(Gabriel	et	al.,	1992;	Nieman	et	al.,	1989).	It	
was	 originally	 thought	 that	 this	 decrease	 in	 circulating	
lymphocytes	was	a	sign	of	immune	suppression	(Nieman	
et	 al.,	 1990;	 Nieman	 &	 Wentz.,	 2019).	 However,	 animal	
models	have	since	shown	that	 following	exercise,	highly	
functional	sub-	types	of	lymphocytes	extravasate	to	target	
organs,	such	as	 the	 lungs,	where	they	are	more	 likely	to	
encounter	pathogens	(Krüger	et	al.,	2008).	Thus,	the	nu-
merical	 count	 of	 leukocytes	 and	 their	 phenotypic	 com-
position	in	blood	is	drastically	different	when	comparing	
measurements	made	before,	during	and	after	exercise.

Fluctuations	 in	 leukocytes	and	 their	 subsets	 in	blood	
strongly	influence	measurements	of	cell	function	after	ex-
ercise	 (Campbell	 &	Turner,	 2018;	 Lancaster	 et	 al.,	 2005;	
Nieman	et	al.,	1989).	Among	lymphocytes,	although	many	
studies	 have	 concluded	 that	 acute	 exercise	 bouts	 tran-
siently	 impair	T	cell,	B	cell	 and	NK	cell	 function	 (Shaw	
et	al.,	2018;	Siedlik	et	al.,	2016),	alterations	in	the	propor-
tions	of	specific	cell	subpopulations	have	often	not	been	
robustly	 accounted	 for	 in	 analyses	 (Campbell	 &	Turner,	
2018,	 2019).	Thus,	 there	 is	 limited	 evidence	 for	 exercise	
impairing	the	function	of	lymphocytes	on	a	per cell	basis	
(Simpson	et	al.,	2020).	However,	conclusions	over	the	im-
pact	that	acute	exercise	bouts	have	on	the	function	of	other	
leukocyte	subtypes	are	difficult	to	make	due	to	variation	in	
study	design,	assessment	of	different	leukocyte	functions,	
and	varied	assay	conditions	or	measurement	approaches	
(Beiter	et	al.,	2014;	Pyne,	1994;	Suzuki	et	al.,	1996).

Measuring	the	function	of	leukocytes	in	whole	blood	–		
rather	than	isolating	specific	cell	types	–		has	benefits,	in	part,	
because	samples	reflect	possible	contributing	effects	of	sol-
uble	mediators	and	other	cells	or	blood	components	which	
fluctuate	during	and	following	exercise.	Subsequently,	the	
need	 to	 consider	 blood	 sample	 composition,	 and	 in	 par-
ticular	cell	counts,	could	influence	the	precision	of	point-	
of-	care	tests	that	have	been	developed	to	assess	aspects	of	
immune	function,	especially	if	used	in	an	exercise	setting	
(McLaren	et	al.,	2003;	Shelton-	Rayner	et	al.,	2010).	For	ex-
ample,	assays	 that	measure	mitogen-	stimulated	oxidative	
burst	in	whole	blood,	may	need	to	quantify	and	account	for	
the	predominant	sources	of	reactive	oxygen	species	(ROS)	

production	in	samples,	 including	neutrophils,	monocytes	
and	platelets	(Ghasemzadeh	&	Hosseini,	2017;	Mantovani	
et	al.,	2011;	Ponath	&	Kaina,	2017).

The	 aim	 of	 this	 study	 was	 to	 examine	 the	 effect	 of	
steady	 state	 cycling	 for	 30  min	 at	 either	 moderate-		 or	
vigorous-	intensity	on	PMA-	stimulated	ROS	production	in	
whole	blood	using	fingertip	sampling	and	a	commercially	
available	point-	of-	care	assay.	It	was	hypothesized	that	leu-
kocyte	counts	and	function	would	increase	from	baseline	
to	 immediately	 post-	exercise,	 and	 that	 greater	 responses	
would	 occur	 when	 exercise	 was	 of	 vigorous-	intensity	
(Robson	et	al.,	1999).	It	was	also	hypothesized	that	exer-
cise	would	amplify	PMA-	stimulated	ROS	production,	re-
flecting	 most	 predominantly,	 increases	 in	 the	 numerical	
count	of	neutrophils	in	blood	(Suzuki	et	al.,	1996).

2 	 | 	 METHODS

2.1	 |	 Participants

Thirteen	participants	(seven	males,	six	females;	mean ± SD	
age:	 22  ±  2  years;	 BMI:	 24.7  ±  3.0  kg  m−2;	 V̇O2peak:	
44.8  ±  5.2  ml  kg−1  min−1;	 body	 fat:	 19.04  ±  7.94%)	 took	
part	(Table	S1).	All	participants	were	non-	smokers	and	self-	
reported	to	be	free	from	chronic	disease,	including	cancer,	
cardiovascular	disease,	diabetes,	auto-	immune	and	other	in-
flammatory	conditions.	In	the	two	weeks	prior	to	participa-
tion,	participants	self-	reported	that	they	had	not	developed	
an	infection	and	were	not	taking	any	form	of	medication.	
Participants	 were	 asked	 to	 refrain	 from	 exercise,	 caffeine	
and	alcohol	for	24 h	prior	to	the	experimental	trials.

2.2	 |	 Pre- experimental procedures

Height	 was	 assessed	 using	 a	 stadiometer	 (Harpenden,	
Holtain	Limited)	and	body	mass	was	assessed	using	me-
chanical	 scales	 (Weylux).	 Body	 fat	 percentage	 was	 es-
timated	 using	 a	 four-	site	 skinfold	 assessment	 (bicep,	
tricep,	 subscapular	 and	 iliac	 crest)	 using	 skinfold	 cal-
lipers	 (Harpenden),	 following	 the	 methods	 of	 Durnin	
and	 Womersley	 (1974).	 Peak	 oxygen	 uptake	 (V̇O2peak)	
was	determined	during	exercise	 to	volitional	exhaustion	
on	a	cycle	ergometer	 (Monark	Peak	894E;	Frayn,	1983).	
Following	a	5-	min	cycling	warm-	up	at	60 Watts,	the	load	
on	the	ergometer	was	increased	by	30 Watts	every	3-	min	
for	 the	 first	12-	min	of	 the	 test,	and	every	2-	min	 thereaf-
ter,	until	exhaustion,	maintaining	60	revolutions	per	min-
ute	 (RPM)	 throughout.	 During	 the	 final	 minute	 of	 the	
first	 four	stages	and	the	final	minute	of	 the	test,	expired	
air	 samples	 were	 collected	 using	 Douglas	 bags	 (Hans	
Rudolph),	heart	rate	was	monitored	(POLAR),	and	ratings	
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of	perceived	exertion	(RPE)	were	recorded	using	the	Borg	
scale.	Expired	air	samples	were	analysed	for	O2	and	CO2	
(Servomex).	The	final	expired	air	sample	was	considered	
to	be	V̇O2peak.	Strong	verbal	encouragement	was	provided	
throughout	the	test.	Oxygen	uptake	(V̇O2)	and	work	rate	
data	 were	 plotted	 to	 calculate	 the	 relative	 work	 rate	 to	
elicit	50%	and	70%	V̇O2peak	for	the	experimental	trials.

2.3	 |	 Experimental trials

At	 least	 2  days	 after	 pre-	experimental	 procedures,	 par-
ticipants	completed	their	first	experimental	visit,	arriving	
at	 the	 lab	following	an	overnight	 fast	between	08:00	and	
10:00.	Visits	were	undertaken	 in	a	randomized,	counter-
balanced	order,	with	a	7-	day	period	between	trials.	Body	
mass	was	assessed	upon	arrival,	and	participants	rested	in	
a	seated	position	for	15-	min.	A	resting	fingertip	blood	sam-
ple	was	taken	using	a	safety-	lancet	(Sarstedt).	Fingers	from	
the	same	hand	were	sampled	once	per	trial,	and	the	order	
of	blood	sampling	from	the	index,	middle,	and	ring	fingers	
(and	hand)	was	 randomized.	After	a	5-	min	gentle	warm	
up	on	the	cycle	ergometer	at	60 Watts,	work	rate	was	ad-
justed	to	the	predetermined	50%	or	70%	V̇O2peak,	and	ex-
ercise	continued	at	this	intensity	for	30-	min.	Participants	
were	instructed	to	maintain	a	cadence	of	60	RPM	through-
out.	At	5-	,	14-	,	and	29-	min,	expired	air	samples	were	col-
lected	for	1-	min	and	heart	rate	and	RPE	were	monitored.	
Data	were	averaged	across	the	three	measurement	points.	
Each	exercise	trial	was	conducted	under	similar	environ-
mental	 conditions	 (21°C),	 with	 a	 mechanical	 fan	 placed	
one	meter	away	from	the	cycle	ergometer	and	switched	on	
at	 the	 lowest	 setting.	Following	exercise,	participants	 re-
mained	seated.	Immediately	after	exercise	and	15-	,	and	60-	
min	post-	exercise,	a	fingertip	blood	sample	was	collected.

2.4	 |	 Blood analysis

2.4.1	 |	 Leukocyte	count

Blood	 was	 collected	 in	 a	 500  µL	 ethylene	 diaminetet-
raacetic	acid	(EDTA)	tube	(MiniCollect)	and	analysed	im-
mediately	in	duplicate	for	total	leukocytes,	lymphocytes,	
monocytes,	neutrophils	and	platelets,	using	an	automated	
hematology	analyzer	(Sysmex	KX-	21N).

2.4.2	 |	 Leukocyte	production	of	reactive	
oxygen	species

Leukocyte	reactive	oxygen	species	(ROS)	production	was	
assessed	 using	 a	 commercially	 available	 point-	of-	care	

assay	 (Leukocyte	 Coping	 Capacity,	 Oxford	 Medistress	
Ltd).	Assay	reagents	were	prepared	10 min	prior	to	each	
blood	 sample	 by	 removing	 a	 lyophilized	 vial	 containing	
10−5 M	PMA,	10−4 M	luminol	and	0.1	U	Heparin	from	a	
−20°C	 freezer	and	 reconstituting	with	PBS	according	 to	
manufacturer	instructions.	After	mixing	and	centrifuging	
the	vial	for	30 s	at	2000 g,	100 μL	of	this	solution	was	added	
to	 a	 polystyrene	 antireflective	 luminometer	 tube	 and	
placed	into	a	dry	heat	block	at	37°C	for	10-	min.	For	each	
sample,	after	the	skin	was	pierced	with	a	lancet,	10 μL	of	
blood	was	pipetted	directly	from	the	finger	into	the	lumi-
nometer	tube,	gently	agitated	for	2 s	and	incubated	in	the	
heat	block	at	37°C	for	a	further	10-	min.	After	incubation,	
the	tube	was	placed	into	a	portable	luminometer	(Clean-	
Trace,	Gem	Scientific)	to	assess	relative	light	units	(RLU)	
of	chemiluminescence	and	thus	production	of	ROS.	Data	
are	presented	as	absolute	RLU	and	separately,	RLU	values	
corrected	 for	 the	 counts	 of	 neutrophils,	 monocytes	 and	
platelets	(or	in	combination)	due	to	their	capacity	to	pro-
duce	 ROS	 (Ghasemzadeh	 &	 Hosseini.,	 2017;	 Mantovani	
et	al.,	2011;	Ponath	&	Kaina,	2017).

2.5	 |	 Statistical analyses

Counts	 of	 total	 leukocytes,	 lymphocytes,	 monocytes,	
neutrophils,	and	platelets	were	corrected	for	blood	vol-
ume	 changes	 as	 part	 of	 data	 analyses	 relating	 to	 fre-
quency	 in	 blood	 (Bosch	 et	 al.,	 2005).	 However,	 when	
cell	function	data	was	adjusted,	changes	in	neutrophils,	
monocytes	 and	 platelets,	 data	 were	 not	 corrected	 for	
blood	volume	changes.	Data	were	assessed	for	normality	
using	 the	 Shapiro–	Wilk	 test.	 Non-	normally	 distributed	
data	 were	 log	 transformed	 prior	 to	 statistical	 analysis.	
Differences	at	baseline	between	experimental	conditions	
were	assessed	using	paired	sample	 t	 tests.	A	 three-	way	
repeated	measures	Analysis	of	Variance	(ANOVA),	with	
a	between	groups	 factor	 to	assess	 the	effect	of	sex,	was	
used	to	analyze	differences	across	time	and	exercise	in-
tensity	 on	 leukocyte	 counts	 and	 PMA-	stimulated	 ROS	
production.	 Post-	hoc	 pairwise	 comparisons	 were	 per-
formed	using	Bonferroni	Stepwise	adjustment.	Pairwise	
comparisons	were	assessed	using	Student's	t	tests.	Effect	
sizes	from	ANOVA	models	were	reported	as	partial	eta	
squared	(ηp

2)	and	were	considered	as	small	≥0.01	to	<0.6,	
medium  =  0.6	 to	 <0.14,	 and	 large	≥0.14.	 For	 pairwise	
comparisons,	 effect	 sizes	 were	 reported	 as	 Cohen's	 d	
and	interpreted	as	small	≥0.2	to	0.5,	medium	0.5	to	<0.8	
and	 large	 ≥0.8.	 Statistical	 significance	 was	 considered	
to	be	p < 0.05.	All	data	are	expressed	as	mean ± stand-
ard	 deviation	 (SD)	 and	 were	 analysed	 using	 Microsoft	
Excel	 (Version	 16.30)	 and	 IBM	 SPSS	 Statistics	 for	 Mac	
(Version	25).
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3 	 | 	 RESULTS

3.1	 |	 Physiological and psychological 
responses to exercise

All	 participants	 completed	 both	 experimental	 trials.	
Summary	data	for	%	V̇O2peak,	work	rate,	heart	rate,	V̇O2,	
respiratory	exchange	ratio	(RER)	and	RPE	are	shown	in	
Table	1.	Participants	exercised	at	52 ± 5%	V̇O2peak	during	
the	50%	V̇O2peak	trial,	and	at	74	±	9%	V̇O2peak	during	the	
70%	V̇O2peak	trial	(t(12) = −13.117,	p < 0.01,	d = 3.06).	As	
expected,	work	rate,	heart	rate,	V̇O2,	RER,	and	RPE	were	
significantly	higher	in	the	70%	V̇O2peak	trial	(all	p < 0.05).	
Males	and	females	exercised	at	a	similar	%	V̇O2peak	in	each	
trial,	and	all	other	parameters	were	significantly	higher	in	
the	70%	compared	to	50%	V̇O2peak	trial	when	analysed	sep-
arately	for	each	sex,	except	for	RER	among	males	(Table	
S2).	On	this	basis,	immunological	data	is	presented	for	all	
participants	 combined	 (n  =  13)	 but	 sex-	specific	 statisti-
cal	analysis	is	briefly	summarized	where	appropriate	and	
shown	in	Table	S3.

3.2	 |	 Total leukocyte, lymphocyte, 
monocyte, neutrophil, and platelet count 
in response to exercise

Total	 leukocyte,	 lymphocyte,	 monocyte,	 neutrophil,	 and	
platelet	counts	changed	across	time	and	there	was	a	sig-
nificant	 time  ×  intensity	 interaction	 effect	 for	 all	 cells	
except	 neutrophils	 and	 platelets	 (Table	 2;	 Figure	 1a–	c).	
Immediately	 after	 exercise	 at	 50%	 V̇O2peak,	 lymphocyte	
count	 increased	by	7.4 ± 14.8%,	whereas	at	70%	 V̇O2peak	
lymphocytes	 increased	 by	 66.4  ±  36.2%	 (t(12)  =  −5.546,	
p < 0.01,	d = 2.13;	Figure	1d).	Lymphocyte	egress	 from	
baseline	to	60-	min	post-	exercise	was	not	significantly	dif-
ferent	between	the	70%	V̇O2peak	(−16.3 ± 14.1%),	and	the	

50%	V̇O2peak	trials	(−12.3 ± 5.5%;	t(12) = 0.961,	p = 0.356,	
d  =  0.37;	 Figure	 1g).	 However,	 egress	 was	 significantly	
different	between	the	intensities	when	assessed	from	im-
mediately	post-	exercise	to	60-	min	post-	exercise,	with	lym-
phocytes	decreasing	by	−48.3 ± 10.9%	in	the	70%	V̇O2peak	
trial	and	decreasing	by	−16.8 ± 13.0%	in	the	50%	V̇O2peak	
trial	(t(12) = −9.082,	p < 0.01,	d = 2.89;	Figure	1g).

Immediately	 after	 exercise	 at	 50%	 V̇O2peak,	 monocyte	
count	 increased	by	1.4 ± 13.3%,	whereas	at	70%	 V̇O2peak	
monocytes	 increased	 by	 33.9  ±  32.0%	 (t(12)  =  −3.305,	
p  <  0.01,	 d  =  1.32;	 Figure	 1e).	 Monocyte	 egress	 from	
baseline	to	60-	min	post-	exercise	was	not	significantly	dif-
ferent	between	the	70%	 V̇O2peak	 (−2.0 ± 18.3%),	and	the	
50%	V̇O2peak	trial	(−7.1 ± 23.7%;	t(12) = −0.598,	p = 0.561,	
d  =  0.24;	 Figure	 1h).	 However,	 egress	 was	 significantly	
different	between	the	intensities	when	assessed	from	im-
mediately	post-	exercise	 to	60-	min	post-	exercise.	Exercise	
at	 70%	 V̇O2peak	 decreased	 monocytes	 by	 −25.3  ±  12.1%	
whereas	 the	 50%	 V̇O2peak	 trial	 caused	 a	 decrease	 of	
−7.1 ± 24.6%	(t(12) = 2.543,	p < 0.05,	d = 0.94;	Figure	1h).

Immediately	after	exercise	at	50%	V̇O2peak,	neutrophil	
count	increased	by	27.8 ± 17.8%,	whereas	at	70%	V̇O2peak	
neutrophils	 increased	 by	 48.8  ±  30.8%	 (t(12)  =  −2.147,	
p  =  0.053,	 d  =  0.83;	 Figure	 1f).	The	 increase	 in	 neutro-
phil	 count	 from	 baseline	 to	 60-	min	 post-	exercise	 was	
not	 significantly	 different	 between	 the	 70%	 V̇O2peak	 trial	
(60.6 ± 51.4%),	and	the	50%	 V̇O2peak	 trial	 (41.5 ± 34.6%;	
t(12) = −1.264,	p = 0.230,	d = 0.44;	Figure	1i).	Likewise,	
increases	 in	 neutrophil	 count	 were	 not	 significantly	 dif-
ferent	between	the	intensities	when	assessed	from	imme-
diately	post-	exercise	to	60-	min	post-	exercise	(70%	V̇O2peak:	
9.4 ± 33.2%	and	50%	V̇O2peak:	10.8 ± 23.3%,	t(12) = 0.139,	
p = 0.892,	d = 0.05;	Figure	1i).

Immediately	 after	 exercise	 at	 50%	 V̇O2peak,	 plate-
let	 count	 increased	 by	 11.9  ±  15.1%,	 whereas	 at	 70%	 V̇
O2peak,	platelets	increased	by	18.5 ± 21.5%	(t(12) = −1.572,	
p = 0.116,	d = 0.61).	During	the	50%	V̇O2peak	trial,	platelet	
count	decreased	by	3.9 ± 16.6%	from	baseline	to	60 min	
post	exercise,	whereas	during	the	70%	V̇O2peak	trial,	platelet	
count	increased	marginally	by	5.6 ± 7.8%	(t(12) = −0.175,	
p = 0.861,	d = 0.19).	Decreases	in	platelet	count	were	not	
significantly	different	between	intensities	when	assessed	
from	 immediately	 post-	exercise	 to	 60-	min	 post	 exercise	
(50%	V̇O2peak	12.1 ± 22.7%	and	70%	V̇O2peak	11.7 ± 15.3%,	
t(12) = −1.433,	p = 0.152,	d = 0.30;	Table	2).

There	 was	 no	 main	 effect	 of	 sex	 on	 leukocyte	
(F(1,	 11)  =  0.11,	 p  =  0.746,	 ηp

2  =  0.010),	 lymphocyte	
(F(1,	 11)  =  0.627,	 p  =  0.445,	 ηp

2  =  0.054),	 monocyte	
(F(1,	 11)  =  2.585,	 p  =  0.136,	 ηp

2  =  0.190),	 neutrophil	
count	(F(1,	11) = 0.182,	p = 0.678,	ηp

2 = 0.016)	or	platelet	
count	 (F(1,	11) = 1.275,	p = 0.283,	ηp

2 = 0.104).	The	only	
time  ×  intensity	 interaction	 effect	 that	 was	 statistically	
significant	when	analyzed	separately	for	each	sex	was	for	

T A B L E  1 	 Exercise	physiology	data	across	the	two	exercise	
intensities

50% V̇O2peak 70% V̇O2peak

%	VO2peak 52 ± 5 74 ± 9*

Work	rate	(Watts) 117 ± 34 181 ± 59	*

Heart	rate	(bpm) 124 ± 14 157 ± 13	*

V̇O2	(L/min) 1.80 ± 0.45 2.61 ± 0.78	*

RER 0.91 ± 0.07 0.97 ± 0.05	*

RPE 10 ± 1 13 ± 2	*

Note: Values	are	mean ± SD.
Abbreviations:	RER,	respiratory	exchange	ratio;	RPE,	rating	of	perceived	
exertion.
*p < 0.05,	denotes	a	significant	difference	between	the	two	exercise	
intensities.
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lymphocytes,	 and	 there	 were	 no	 statistically	 significant	
time  ×  intensity  ×  sex	 interaction	 effects	 for	 any	 cells	
(Table	S3).

3.3	 |	 PMA- stimulated ROS production 
expressed as absolute values

There	 was	 a	 statistically	 significant	 main	 effect	 of	 time	
for	 PMA-	stimulated	 ROS	 production	 (F(2,	 10)  =  6.069,	
p = 0.008,	ηp

2 = 0.356;	Figure	2a)	which	increased	from	
baseline	 to	 immediately	 post-	exercise	 (t(12)  =  −2.892,	
p  =  0.008,	 d  =  0.39)	 and	 from	 baseline	 to	 60-	min	 post-	
exercise	 (t(12)  =  −3.762,	 p  <  0.001,	 d  =  0.63).	 There	
was	 no	 significant	 time  ×  intensity	 interaction	 effect	
(F(2,	 10)  =  0.307,	 p  =  0.739,	 ηp

2  =  0.027).	 When	 PMA-	
stimulated	 ROS	 production	 was	 expressed	 as	 percent-
age	 change,	 there	 were	 no	 differences	 between	 trials	
from	baseline	to	immediately	post-	exercise	(50%	 V̇O2peak	
Δ  +  45  ±  95%	 and	 70%	 V̇O2peak	Δ  +  35  ±  100%)	 or	 be-
tween	 baseline	 and	 60-	min	 post-	exercise	 (50%	 V̇O2peak	
Δ + 64 ± 100%	and	70%	V̇O2peak	Δ+85 ± 134%;	Figure	2c).	
There	was	no	time × sex	interaction	effect	(F(1,	11) = 0.920,	
p = 0.409,	ηp

2 = 0.077)	or	time × intensity × sex	interac-
tion	effect	(F(1,	11) = 0.762,	p = 0.470,	ηp

2 = 0.065;	data	not	
shown).

3.4	 |	 PMA- stimulated ROS production 
expressed relative to neutrophil, 
monocyte, and platelet counts

When	PMA-	stimulated	ROS	production	was	expressed	per	
neutrophil,	the	main	effect	of	time	became	non-	significant	
(F(1,	11) = 1.834,	p = 0.183,	ηp

2 = 0.143).	However,	when	
correcting	 for	 monocytes	 or	 platelets	 the	 main	 effect	 of	
time	strengthened	(monocytes:	F(1,	11) = 12.6	p = 0.002,	
ηp

2 = 0.534;	platelets:	F(1,	11) = 7.221,	p = 0.004	ηp
2 = 0.396).	

Given	 the	 influence	 that	 neutrophils,	 monocytes,	 and	
platelets	 had	 on	 PMA-	stimulated	 ROS	 production,	 this	
combined	 effect	 was	 corrected	 for	 using	 a	 composite	
score	 (i.e.,	 combined	 counts	 of	 neutrophils  +  mono-
cytes  +  platelets)	 and	 the	 main	 effect	 of	 time	 became	
non-	significant	 (F(1,	 11)  =  2.303,	 p  =  0.130,	 ηp

2  =  0.161;	
Figure	2b,d).	Correcting	for	other	combinations	showed	
that	 neutrophil	 count	 had	 the	 strongest	 influence	 on	
PMA-	stimulated	ROS	production,	as	the	main	effects	of	
time	were	lost	(neutrophils + monocytes:	F(1,	11) = 1.449,	
p  =  0.257,	 ηp

2  =  0.116;	 and	 neutrophils  +  platelets:	
F(1,	 11)  =  1.820,	 p  =  0.189,	 ηp

2  =  0.132).	 When	 correct-
ing	 for	 the	 combination	 of	 monocytes  +  platelets,	 the	
main	effect	of	time	remained	significant	(F(1,	11) = 8.543,	
p = 0.002,	ηp

2 = 0.416).	There	were	no	time × intensity	
interaction	 effects	 for	 PMA-	stimulated	 ROS	 production	

T A B L E  2 	 Changes	in	total	leukocyte,	lymphocyte,	monocyte,	and	neutrophil	count	in	response	to	moderate	and	vigorous	intensity	
exercise

Baseline 0 15 60 Main effect of time
Interaction effect of 
intensity × time

Leukocytes

50% 5.8 ± 1.4 6.9 ± 2.2#	 6.0 ± 1.8 6.8 ± 1.8#	 F(3,	9) = 27.453	p < 0.01	ηp
2 = 0.714 F(3,	9) = 7.932,	p < 0.01,	ηp

2 = 0.340

70% 5.9 ± 1.5 9.1 ± 2.9#	,* 6.6 ± 2.1 7.3 ± 2.1#	

Lymphocytes

50% 1.9 ± 0.5 2.0 ± 0.5 1.6 ± 0.4 1.7 ± 0.4#	 F(3,	9) = 73.421,	p < 0.01,	ηp
2 = 0.870 F(3,	9) = 46.776,	p < 0.01,	ηp

2 = 0.810

70% 2.0 ± 0.6 3.2 ± 0.7#	,* 1.9 ± 0.4* 1.7 ± 0.5#	

Monocytes

50% 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 F(3,	9) = 12.932,	p < 0.01,	ηp
2 = 0.540 F(3,	9) = 5.447,	p < 0.01,	ηp

2 = 0.331

70% 0.6 ± 0.2 0.8 ± 0.3#	,* 0.6 ± 0.2 0.6 ± 0.2

Neutrophils

50% 3.3 ± 1.3 4.3 ± 1.9 3.9 ± 1.7#	 4.6 ± 1.7#	 F(3,	9) = 23.347,	p < 0.01,	ηp
2 = 0.680 F(3,	9) = 1.404,	p = 0.259,	ηp

2 = 0.113

70% 3.3 ± 1.3 5.0 ± 2.5#	 4.1 ± 1.9 5.1 ± 2.0#	

Platelets

50% 1.9 ± 0.4 2.0 ± 0.6#	 1.9 ± 0.5 1.8 ± 0.5 F(3,	9) = 22.359,	p < 0.01,	ηp
2 = 0.651 F(3,	9) = 2.497,	p = 0.111,	ηp

2 = 0.172

70% 1.9 ± 0.5 2.4 ± 0.7#	 2.1 ± 0.6#	 1.9 ± 0.5

Note: Values	are	mean ± SD.	0,	15,	and	60	refer	to	minutes	post	exercise.
*p < 0.05	indicates	a	significant	difference	between	exercise	intensities.
#p < 0.05	indicates	a	significant	difference	compared	to	baseline,	where	a	main	effect	of	time	was	found	for	each	intensity,	determined	by	post	hoc	Bonferroni	
Stepwise	analyses.	Of	monocytes,	<10%	will	be	basophils	and	eosinophils.	Leukocytes,	lymphocytes,	monocytes,	and	neutrophils	are	presented	as	×109/L	and	
platelets	are	presented	as	×107/L.
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corrected	 separately	 for	 neutrophils,	 monocytes,	 and	
platelets	or	 their	combinations	(F(1,	11) = 0.200	to	1.482,	
p = 0.252	to	0.658,	ηp

2 = 0.018	to	0.119).	Across	all	cor-
rections,	 there	 were	 no	 time  ×  sex	 interaction	 effects	
(F(1,	11) = 0.595	to	3.891,	p = 0.059	to	0.556,	ηp

2 = 0.051	
to	 0.261),	 or	 time  ×  intensity  ×  sex	 interaction	 effects	
(F(1,	11) = 0.461	to	1.318,	p = 0.287	to	0.549,	ηp

2 = 0.040	to	
0.107;	data	not	shown).

3.5	 |	 Relationship between PMA- 
stimulated ROS production and neutrophil, 
monocyte and platelet counts

There	 was	 a	 positive	 correlation	 between	 percentage	
change	 in	 PMA-	stimulated	 ROS	 production	 and	 per-
centage	 change	 in	 neutrophil	 count	 from	 baseline	
to	 immediately	 post-	exercise	 (r  =  0.709,	 p  =  0.007)	

and	 from	baseline	 to	60-	min	post	exercise	 (r = 0.687,	
p = 0.01)	in	the	70%	V̇O2peak	trial	(Figure	S1A,D).	The	
relationship	 was	 not	 statistically	 significant	 in	 the	
50%	 V̇O2peak	 trial	 from	 baseline	 to	 immediately	 post-	
exercise	(r = 0.302,	p = 0.316)	but	was	significant	be-
tween	 baseline	 and	 60-	min	 post	 exercise	 (r  =  0.621,	
p = 0.024;	Figure	S1D).

There	 was	 a	 positive	 correlation	 between	 percentage	
change	in	PMA-	stimulated	ROS	production	and	percent-
age	 change	 in	 monocyte	 count,	 from	 baseline	 to	 imme-
diately	post-	exercise	(r = 0.590,	p = 0.034)	 in	the	70%	 V̇
O2peak	trial	(Figure	S1B).	The	relationship	was	not	statis-
tically	 significant	 in	 the	 50%	 V̇O2peak	 trial	 from	 baseline	
to	immediately	post-	exercise	(r = 0.590,	p = 0.564).	There	
were	 no	 significant	 correlations	 between	 percentage	
change	in	monocyte	count	and	PMA-	stimulated	ROS	pro-
duction	from	baseline	to	60-	min	post-	exercise	(r < 0.376,	
p > 0.206;	Figure	S1E).

F I G U R E  1  Panels	A-	C	show	absolute	counts	of	cells	before	and	after	exercise.	Panels	D-	F	show	percentage	change	in	cell	counts	
during	exercise,	calculated	between	baseline	and	immediately	post	exercise.	Panel	G-	I	show	percentage	change	in	cell	counts	after	exercise,	
calculated	between	baseline	and	60	min	post,	or	between	immediately	post	and	60	min	post.	Values	are	mean ± SD.	BL	refers	to	baseline	
which	was	assessed	pre-	exercise.	0,	15,	60	refer	to	minutes	post	exercise.	*p < 0.05	indicates	a	significant	difference	between	exercise	
intensities,	and	#p < 0.05	indicates	a	significant	difference	compared	to	baseline	across	both	intensities	combined,	determined	by	post	hoc	
Bonferroni	Stepwise	analyses
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There	was	a	positive	correlation	between	percentage	
change	in	PMA-	stimulated	ROS	production	and	percent-
age	change	 in	platelet	count,	 from	baseline	 to	 immedi-
ately	 post-	exercise	 in	 the	 70%	 V̇O2peak	 trial	 (r  =  0.609,	
p  =  0.027)	 but	 not	 the	 50%	 V̇O2peak	 trial	 (r  =  0.357,	
p = 0.231;	Figure	S1C).	There	were	no	significant	correla-
tions	with	change	in	platelet	count	for	either	intensities	
between	 baseline	 and	 60-	min	 post	 exercise	 (r  <  0.352,	
p > 0.239;	Figure	S1F).

Figure	3a	shows	 that	 there	was	a	positive	correlation	
between	percentage	change	in	PMA-	stimulated	ROS	pro-
duction	and	percentage	change	in	the	combined	counts	of	
neutrophils + monocytes + platelets,	from	baseline	to	im-
mediately	post-	exercise	in	the	70%	V̇O2peak	trial	(r = 0.766,	

p = 0.002)	but	there	was	no	relationship	in	the	50%	V̇O2peak	
trial	(r = 0.357,	p = 0.231).	There	was	positive	correlation	
between	percentage	change	in	PMA-	stimulated	ROS	pro-
duction	 and	 percentage	 change	 in	 the	 combined	 counts	
of	neutrophils + monocytes + platelets,	from	baseline	to	
60-	min	post-	exercise	in	both	trials	(r > 0.570,	p < 0.041;	
Figure	3b).

4 	 | 	 DISCUSSION

This	 study	 characterized	 the	 effect	 of	 exercise	 on	 leu-
kocyte	 counts	 using	 fingertip	 sampling,	 and	 mitogen-	
stimulated	oxidative	burst,	measured	in	whole	blood	with	

F I G U R E  2  Panel	A	shows	PMA-	stimulated	ROS	production	during	and	after	exercise	with	data	expressed	as	absolute	values.	Panel	
B	shows	PMA-	stimulated	ROS	production	during	and	after	exercise	with	data	expressed	relative	to	a	composite	score	of	neutrophil,	
monocyte	and	platelet	counts.	Panel	C	and	D	show	data	from	Panel	A	and	B	expressed	as	percentage	change,	calculated	between	baseline	
and	immediately	post	exercise,	or	baseline	and	60	min	post	exercise.	Values	are	mean ± SD.	BL	refers	to	baseline	which	was	assessed	pre-	
exercise.	0,	30,	60	refer	to	minutes	post	exercise.	#p < 0.05	indicates	a	significant	difference	compared	to	baseline	across	both	intensities	
combined,	determined	by	post	hoc	Bonferroni	Stepwise	analyses
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a	 point-	of-	care	 test.	 Exercise	 elicited	 the	 expected	 and	
well-	characterized	 changes	 to	 the	 counts	 of	 leukocytes	
and	platelets.	PMA-	stimulated	ROS	production	in	whole	
blood	was	 increased	 immediately	after	exercise,	 remain-
ing	 high	 for	 1  h.	 When	 the	 increase	 in	 PMA-	stimulated	
ROS	 production	 was	 expressed	 relative	 to	 the	 increase	
in	 neutrophils,	 monocytes	 and	 platelets	 –		 key	 ROS	 pro-
ducers	in	whole	blood	–		 the	amplification	effect	of	exer-
cise	was	abolished.	The	increase	in	PMA-	simulated	ROS	
production	 in	whole	blood	was	most	strongly	correlated	
with	the	increase	in	neutrophils,	indicating	that	exercise	
bouts	are	capable	of	amplifying	oxidative	burst	assessed	in	
whole	blood,	but	this	is	largely	brought	about	by	exercise-	
induced	increases	to	cell	counts.

The	influence	that	acute	exercise	bouts	have	on	leuko-
cyte	counts	is	well-	investigated.	To	establish	whether	these	
highly	reproducible	effects	were	measurable	with	finger-
tip	blood	sampling,	 this	study	examined	both	moderate-	
and	vigorous-	intensity	exercise,	and	the	expected	biphasic	
change	to	the	counts	of	leukocytes	and	their	subtypes	was	
shown	 across	 both	 intensities.	 Compared	 to	 moderate-	
intensity	exercise,	vigorous-	intensity	exercise	elicited	the	
most	 pronounced	 effects,	 but	 only	 among	 lymphocytes,	
aligning	with	previous	studies	(Neves	et	al.,	2015).	In	the	
present	study,	there	was	not	a	differential	effect	of	exercise	

intensity	on	neutrophils,	however	 this	phenomenon	has	
been	 reported	 previously.	 For	 example,	 Robson	 et	 al.	
(1999)	showed	that	neutrophil	count	was	greater	following	
cycling	exercise	to	exhaustion	at	80%	V̇O2max	compared	to	
cycling	 exercise	 for	 3  h	 at	 55%	 V̇O2max.	 Similar	 findings	
were	shown	by	Thammawong	et	al.	(2017)	by	comparing	
exercise	bouts	that	were	substantially	different	in	terms	of	
exercise	intensity:	cycling	at	90%	V̇O2max	compared	to	30%	
V̇O2max.	It	is	possible	that	a	differential	effect	of	moderate-		
(52  ±  5%	 V̇O2peak)	 versus	 vigorous-	intensity	 (74  ±  9%	 V̇
O2peak)	 exercise	 on	 neutrophil	 counts	 was	 not	 shown	 in	
the	present	study	due	to	the	smaller	difference	in	exercise	
intensity	compared	to	previous	investigations.

This	study	showed	that	PMA-	stimulated	ROS	produc-
tion	in	whole	blood	increased	immediately	after	exercise	
and	 remained	 high	 for	 1  h.	 However,	 when	 data	 were	
corrected	 for	 the	 change	 in	 sample	 composition	 con-
sidering	 key	 ROS	 producers	 in	 blood	 (i.e.	 neutrophils,	
monocytes	and	platelets)	the	amplifying	effects	of	exer-
cise	were	abolished.	Similar	findings	have	been	reported	
previously.	 For	 example,	 Suzuki	 et	 al.	 (1996)	 reported	
an	 increase	 in	 zymosan-	stimulated	 ROS	 production	
among	 isolated	 neutrophils	 using	 luminol-	amplified	
chemiluminescence	 immediately	 after	 incremental	
treadmill	running	to	exhaustion.	This	exercise-	induced	

F I G U R E  3  (a)	Correlation	between	the	percentage	change	in	a	composite	score	of	neutrophils + monocytes + platelets	and	the	
percentage	change	in	PMA-	stimulated	ROS	production	from	baseline	to	0	(immediately	post	exercise).	(b)	Data	are	shown	from	baseline	to	
60 min	post	exercise
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amplification	of	ROS	production	was	significantly	cor-
related	 (r  =  0.669)	 with	 neutrophil	 count.	 However,	
other	 studies	have	 reported	different	 results,	 including	
a	decrease	in	PMA-	stimulated	oxidative	burst	in	whole	
blood	assessed	using	flow	cytometry	and	the	probe	hy-
droethidine	 following	 cycling	 exercise	 at	 both	 80%	 V̇
O2max	(37 ± 19 min)	and	at	55%	V̇O2max	for	3 h	(Robson	
et	al.,	1999).	Conclusions	over	the	impact	that	acute	ex-
ercise	 bouts	 have	 on	 measurements	 of	 leukocyte	 func-
tion	are	difficult	to	make,	primarily	due	to	varied	assay	
conditions	and	measurement	approaches	 (Beiter	et	al.,	
2014;	Pyne,	1994;	Suzuki	et	al.,	1996).

The	results	of	this	study	show	that	changes	to	leuko-
cyte	 function	can	be	assessed	 in	 the	context	of	exercise	
using	fingertip	blood	sampling	and	a	commercially	avail-
able	point-	of-	care	test.	The	functional	assay	used	in	the	
present	study	has	the	advantage	of	working	with	a	stim-
ulant	that	 is	commonly	used	in	laboratory-	based	assays	
(i.e.	PMA	which	stimulates	ROS	production	via	NADPH	
oxidase	activation;	Bedouhène	et	al.,	2017;	Karlsson	et	al.,	
2000),	 but	 in	 an	 easy-	to-	use,	 readily	 available	 format	
that	can	be	employed	 in	non-	laboratory	 settings.	Using	
whole	blood	has	other	advantages,	such	as	avoiding	non-	
specific	cell	activation	which	can	occur	with	some	blood	
processing	and	cell	 separation	 techniques	 (Himmelfarb	
et	al.,	1992).	Further,	as	the	test	used	in	the	present	study	
is	 compatible	 with	 small	 blood	 volumes	 obtained	 via	
fingertip	 samples,	which	has	previously	been	shown	 to	
be	 reflective	 of	 venous	 sampling	 (Canetti	 et	 al.,	 2016),	
this	kit	provides	greater	accessibility	to	functional	tests.	
However,	it	should	be	considered	that	this	method	is	yet	
to	be	validated	against	other	measurements	of	neutrophil	
function,	including,	for	example,	a	test	that	is	considered	
to	 be	 a	 “gold	 standard	 measure”	 (i.e.	 counting	 colony	
forming	units;	van	Grinsven	et	al.,	2018).	It	should	also	
be	emphasized	 that	even	with	simple	measurements	of	
leukocyte	 function	 that	 are	 compatible	 with	 fingertip	
sampling	 and	 point-	of-	care	 methodology,	 it	 is	 essen-
tial	 to	 consider	 cell	 counts,	 to	 avoid	 over-	interpreting	
“immune-	boosting”	 effects	 of	 exercise	 (Campbell	 &	
Turner,	 2018).	 Thus,	 for	 other	 studies	 using	 point-	of-	
care	leukocyte	function	assays,	a	dual	platform	approach	
might	be	needed,	whereby	leukocyte	function	is	assessed	
in	parallel	with	the	leukocyte	differential,	which	can	also	
be	 assessed	 with	 portable	 devices	 (Karawajczyk	 et	 al.,	
2017).

In	the	present	study,	males	and	females	took	part,	but	
sex	differences	in	leukocyte	kinetics	and	PMA-	stimulated	
ROS	production	were	not	shown.	A	limitation	is	that	the	
menstrual	 cycle	phase	was	not	controlled	 for	which	has	
previously	been	shown	to	influence	the	immune	response	
to	exercise	 (Davis	et	al.,	2000;	Timmons	et	al.,	2005).	As	
with	other	studies	(Hack	et	al.,	1992;	Robson	et	al.,	1999;	

Suzuki	et	al.,	1996),	the	present	work	did	not	account	for	
proportional	shifts	in	neutrophil	sub-	types.	For	example,	
the	 neutrophils	 which	 are	 rapidly	 responsive	 to	 exercise	
mobilize	from	the	endothelium	and	are	mature,	whereas	
at	 other	 post-	exercise	 time-	points,	 immature	 cells	 may	
mobilize	 from	 bone	 marrow	 (Smith	 et	 al.,	 1996).	 Given	
that	 immature	neutrophils	have	an	 impaired	capacity	 to	
produce	 ROS	 (Pillay	 et	 al.,	 2010),	 future	 studies	 should	
quantify	the	proportions	of	mature	and	immature	neutro-
phils	in	samples.	Another	limitation	of	the	present	work	
is	that	we	did	not	examine	whether	other	characteristics	
of	 our	 samples,	 such	 as	 the	 post-	exercise	 inflammatory	
milieu,	could	have	influenced	cell	function.	Indeed,	it	has	
previously	been	shown	that	circulating	pro-	inflammatory	
cytokines,	 such	 as	 tumor	 necrosis	 factor-	alpha	 (TNF-	α),	
primes	 neutrophil	 ROS	 production	 (Elbim	 et	 al.,	 1994).	
A	final	consideration	is	that	the	point-	of-	care	assay	used	
in	this	investigation	(Leukocyte	Coping	Capacity,	Oxford	
Medistress	Ltd,	Oxford,	UK)	is	limited	to	the	assessment	
of	ROS	production	in	whole	blood	stimulated	with	PMA	
and	 does	 not	 include	 an	 unstimulated	 control.	 Thus,	
analyses	cannot	quantify	 the	effects	of	exercise	on	basal	
ROS	production	and	are	therefore	limited	to	establishing	
whether	there	is	a	further	exercise-	induced	amplification	
effect	following	stimulation.

In	summary,	the	present	study	showed	that	30 min	of	
cycling	exercise	elicited	the	expected	biphasic	changes	to	
the	counts	of	leukocytes	and	their	subtypes,	as	well	as	the	
expected	changes	to	neutrophil	function	measured	using	
fingertip	 blood	 sampling	 and	 a	 commercially	 available	
point-	of-	care	 test.	 Both	 intensities	 of	 exercise	 amplified	
PMA-	stimulated	ROS	production,	primarily	by	increasing	
neutrophil	counts.
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